Math 417, Fall 2009 Homework 8

Homework 8 will be due in class on Thursday, December 3

1. Let \mathcal{T} be the cofinite topology on X. Prove that (X, \mathcal{T}) is a Baire space if and only if X is either finite or uncountable.

2. Suppose that (X, d) is a complete metric space and that \mathcal{F} is a family of continuous functions from X to \mathbb{R} with the following property:

 $\forall x \in X, \exists$ a constant M_x such that $|f(x)| \leq M_x$ for all $f \in \mathcal{F}$

Prove that there exists a nonempty open set U and a constant M (independent of x) such that $|f(x)| \leq M$ for all $x \in U$ and all $f \in \mathcal{F}$.

Hint: Let $E_k = \{x \in X : |f(x)| \le k \text{ for all } f \in \mathcal{F}\}$. Use the Baire Category Theorem.

3. Suppose that (X, \mathcal{T}) is a topological space and $f: X \to Y$, where (Y, d) is a metric space. For $x \in X$, define

 $\omega_f(x) =$ "the oscillation of f at x" = inf {diam(f[N]): N is a neighborhood of x}

- a) Prove that f is continuous at a if and only if $\omega_f(a) = 0$.
- b) Prove that for $n \in \mathbb{N}$, $\{x \in X : \omega_f(x) < \frac{1}{n}\}$ is open in X.
- c) Prove that $\{x \in X : f \text{ is continuous at } x\}$ is a G_{δ} -set in X.

As mentioned in class: \mathbb{Q} is not a G_{δ} set in \mathbb{R} . By c), there cannot exist a function $f : \mathbb{R} \to \mathbb{R}$ for which $\mathbb{Q} = \{x \in \mathbb{R} : f \text{ is continuous at } x\}$; equivalently, there cannot exist a function $f : \mathbb{R} \to \mathbb{R}$ for which the set of discontinuities is \mathbb{P} .

4. Suppose (X, \mathcal{T}) is compact and that $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is continuous and onto. Prove that (Y, \mathcal{T}') is compact.

5. a) Suppose that (X, \mathcal{T}) is compact and (Y, \mathcal{S}) is Hausdorff. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ be a continuous bijection. Prove that f is a homeomorphism.

b) Let \mathcal{T} be the usual topology on [0, 1] and suppose \mathcal{T}_1 and \mathcal{T}_2 are two other topologies on [0, 1] such that $\mathcal{T}_1 \subset \mathcal{T} \subset \mathcal{T}_2$ ([0, 1], \mathcal{T}_1) is not Hausdorff and that ([0, 1], \mathcal{T}_2) is not compact.

(*Hint: Consider the identity map* $i : [0, 1] \rightarrow [0, 1]$.)

c) If part b) true if [0, 1] is replaced by an arbitrary compact Hausdorff space (X, \mathcal{T}) ?

 $(OVER) \rightarrow$

6. Suppose that A and B are disjoint nonempty closed sets in (X, d) and that A is compact. Prove that d(A, B) > 0.

7. Let (X, \mathcal{T}) and (Y, \mathcal{S}) be topological spaces.

a) Prove that X is compact iff every open cover by <u>basic</u> open sets has a finite subcover.

b) Suppose $X \times Y$ is compact. Prove that if $X, Y \neq \emptyset$, then X and Y are compact. (*By induction, a similar statement applies to any finite product.*)

c) Prove that if X and Y are compact, then $X \times Y$ is compact. (By induction, a similar statement applies to any finite product.) (Hint: for any $x \in X$, $\{x\} \times Y$ is homeomorphic to Y. Part a) is also relevant.)