Homework 8 will be due in class on Thursday, December 3.

1. Let T be the cofinite topology on X. Prove that (X, T) is a Baire space if and only if X is either finite or uncountable.

2. Suppose that (X, d) is a complete metric space and that F is a family of continuous functions from X to \mathbb{R} with the following property:

\[\forall x \in X, \exists \text{ a constant } M_x \text{ such that } |f(x)| \leq M_x \text{ for all } f \in F \]

Prove that there exists a nonempty open set U and a constant M (independent of x) such that $|f(x)| \leq M$ for all $x \in U$ and all $f \in F$.

Hint: Let $E_k = \{ x \in X : |f(x)| \leq k \text{ for all } f \in F \}$. Use the Baire Category Theorem.

3. Suppose that (X, T) is a topological space and $f : X \to Y$, where (Y, d) is a metric space. For $x \in X$, define

\[\omega_f(x) = \text{"the oscillation of } f \text{ at } x = \inf \{ \text{diam}(f[N]) : N \text{ is a neighborhood of } x \} \]

a) Prove that f is continuous at a if and only if $\omega_f(a) = 0$.

b) Prove that for $n \in \mathbb{N}$, $\{ x \in X : \omega_f(x) < \frac{1}{n} \}$ is open in X.

c) Prove that $\{ x \in X : f \text{ is continuous at } x \}$ is a G_δ-set in X.

As mentioned in class: \mathbb{Q} is not a G_δ set in \mathbb{R}. By c), there cannot exist a function $f : \mathbb{R} \to \mathbb{R}$ for which $\mathbb{Q} = \{ x \in \mathbb{R} : f \text{ is continuous at } x \}$; equivalently, there cannot exist a function $f : \mathbb{R} \to \mathbb{R}$ for which the set of discontinuities is \mathbb{Q}.

4. Suppose (X, T) is compact and that $f : (X, T) \to (Y, T')$ is continuous and onto. Prove that (Y, T') is compact.

5. a) Suppose that (X, T) is compact and (Y, S) is Hausdorff. Let $f : (X, T) \to (Y, S)$ be a continuous bijection. Prove that f is a homeomorphism.

b) Let T be the usual topology on $[0, 1]$ and suppose T_1 and T_2 are two other topologies on $[0, 1]$ such that $T_1 \subset T \subset T_2$ and $([0, 1], T_1)$ is not Hausdorff and that $([0, 1], T_2)$ is not compact.

Hint: Consider the identity map $i : [0, 1] \to [0, 1].$

c) If part b) true if $[0, 1]$ is replaced by an arbitrary compact Hausdorff space (X, T)?

(OVER) →
6. Suppose that A and B are disjoint nonempty closed sets in (X, d) and that A is compact. Prove that $d(A, B) > 0$.

7. Let (X, T) and (Y, S) be topological spaces.

 a) Prove that X is compact iff every open cover by basic open sets has a finite subcover.

 b) Suppose $X \times Y$ is compact. Prove that if $X, Y \neq \emptyset$, then X and Y are compact.
 (By induction, a similar statement applies to any finite product.)

 c) Prove that if X and Y are compact, then $X \times Y$ is compact. (By induction, a similar statement applies to any finite product.)
 (Hint: for any $x \in X$, $\{x\} \times Y$ is homeomorphic to Y. Part a) is also relevant.)