Math 418, Spring 2010

Homework 1

Homework 1 is due in class on Thursday, January 28

1. Let (X, d) and $\left(Y, d^{\prime}\right)$ be two unbounded connected metric spaces. Suppose $k>0$ and that $(a, b) \in X \times Y$. Let $K=\left\{(x, y) \in X \times Y: d(x, a) \leq k\right.$ and $\left.d^{\prime}(y, b) \leq k\right\}$. Prove that the complement of K in $X \times Y$ is connected.

Hint: Try to prove it first for the case $X=Y=\mathbb{R}$ and $d=d^{\prime}=$ the usual metric.
2. a) Find the cardinality of the collection of all compact connected subsets of \mathbb{R}^{2}.
b) Find the cardinality of the collection of all connected subsets of \mathbb{R}^{2}.
3. Suppose (X, d) is a connected metric space with $|X|>1$. Prove that $|X| \geq c$.

Hint: think about some continuous functions from X to \mathbb{R}.
 exists a finite set of points $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ where $x_{1}=x, x_{n}=y$, and $d\left(x_{i}, x_{i+1}\right)<\epsilon$ for all $i=1, \ldots, n-1$.
a) Give an example of a metric space which satisfies the ϵ-chain condition but which is not connected.
b) Prove that if (X, d) is connected, then (X, d) satisfies the ϵ-chain condition.
c) Prove that if (X, d) is compact and satisfies the ϵ-chain condition, then X is connected.
d) Prove that $(\{0\} \times[-1,1]) \cup\left\{\left(x, \sin \frac{1}{x}\right): 0<x \leq 1\right\} \subseteq \mathbb{R}^{2}$ is connected.

Use c) to give a different proof than the one given in Example 3.4
5. Prove that there does not exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f[\mathbb{P}] \subseteq \mathbb{Q}$ and $f[\mathbb{Q}] \subseteq \mathbb{P}$.
Hint: One method: What do you know about ran f ? What else do you know?
Another method: if such an f exists, let $g=\frac{1}{1+|f|}$ and let $h=g \mid[0,1]$. What do you know about h ?
6. Let $A=\mathbb{Q} \cap[0,1]$ and $p=(0,1) \in \mathbb{R}^{2}$. Let $X=\left\{(x, y) \in \mathbb{R}^{2}:(x, y)\right.$ lies on a line segment joining p to a point in $A\}$.
a) Prove that X is path connected
b) Prove that the condition in Definition 3.5a) is satisfied in X only at $x=p$ (so X is not locally connected).

$$
\text { (over } \rightarrow \text {) }
$$

7. a) Prove that for any space X and $n \geq 2$,
if X has $\geq n$ components, then there are nonempty pairwise separated sets H_{1}, \ldots, H_{n} for which $X=H_{1} \cup \ldots \cup H_{n} \quad\left({ }^{* *}\right)$

Hint. For a given n, do not start with the components and try to group them to form the H_{n} 's. Start with the fact that X is not connected. Use induction.
b) Recall that a disconnection of X means a pair of nonempty separated sets A, B for which $X=A \cup B$. Remember also that if C is a component of X, C is not necessarily "one piece in a disconnection of $X^{\prime \prime}$ (see Example 4.4).

Prove that X has only finitely many components $n(n \geq 2)$ iff X has only finitely many disconnections.

Hint: When X has infinitely many components, then X has $\geq n$ components for every n.

