Math 418, Spring 2010 Homework 1

Homework 1 is due in class on Thursday, January 28

1. Let (X, d) and (Y, d') be two unbounded connected metric spaces. Suppose k > 0 and that $(a, b) \in X \times Y$. Let $K = \{(x, y) \in X \times Y : d(x, a) \le k \text{ and } d'(y, b) \le k\}$. Prove that the complement of K in $X \times Y$ is connected.

Hint: Try to prove it first for the case $X = Y = \mathbb{R}$ *and* d = d' = *the usual metric.*

- 2. a) Find the cardinality of the collection of all compact connected subsets of R².
 b) Find the cardinality of the collection of all connected subsets of R².
- 3. Suppose (X, d) is a connected metric space with |X| > 1. Prove that $|X| \ge c$. *Hint: think about some continuous functions from X to* \mathbb{R} .

4. A metric space (X, d) satisfies the $\underline{\epsilon}$ -chain condition if for all $\epsilon > 0$ and all $x, y \in X$, there exists a finite set of points $x_1, x_2, ..., x_{n-1}, x_n$ where $x_1 = x, x_n = y$, and $d(x_i, x_{i+1}) < \epsilon$ for all i = 1, ..., n - 1.

a) Give an example of a metric space which satisfies the ϵ -chain condition but which is not connected.

- b) Prove that if (X, d) is connected, then (X, d) satisfies the ϵ -chain condition.
- c) Prove that if (X, d) is compact and satisfies the ϵ -chain condition, then X is connected.
- d) Prove that $(\{0\} \times [-1,1]) \cup \{(x, \sin \frac{1}{x}) : 0 < x \le 1\} \subseteq \mathbb{R}^2$ is connected.

Use c) to give a different proof than the one given in Example 3.4

5. Prove that there does not exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f[\mathbb{P}] \subseteq \mathbb{Q}$ and $f[\mathbb{Q}] \subseteq \mathbb{P}$.

Hint: One method: What do you know about ran f? What else do you know? Another method: if such an f exists, let $g = \frac{1}{1+|f|}$ *and let* h = g|[0,1]*. What do you know about h?*

6. Let $A = \mathbb{Q} \cap [0, 1]$ and $p = (0, 1) \in \mathbb{R}^2$. Let $X = \{(x, y) \in \mathbb{R}^2 : (x, y) \text{ lies on a line segment joining } p \text{ to a point in } A\}$.

a) Prove that X is path connected

b) Prove that the condition in Definition 3.5a) is satisfied in X only at x = p (so X is not locally connected).

 $(over \rightarrow)$

7. a) Prove that for any space X and $n \ge 2$,

if X has $\geq n$ components, then there are nonempty pairwise separated sets $H_1, ..., H_n$ for which $X = H_1 \cup ... \cup H_n$ (**)

Hint. For a given n, do not start with the components and try to group them to form the H_n 's. Start with the fact that X is not connected. Use induction.

b) Recall that a <u>disconnection</u> of X means a pair of nonempty separated sets A, B for which $X = A \cup B$. Remember also that if C is a component of X, C is not necessarily "one piece in a disconnection of X" (see Example 4.4).

Prove that X has only finitely many components $n (n \ge 2)$ iff X has only finitely many disconnections.

Hint: When X has infinitely many components, then X has $\geq n$ components for every n.