Math 418, Spring 2010 Homework 2

Homework 2 is due in class on Tuesday, February 9

1. a) Suppose X and Y are topological spaces and that $A \subseteq X$, $B \subseteq Y$. Prove that $\operatorname{int}_{X \times Y}(A \times B) = \operatorname{int}_X A \times \operatorname{int}_Y B$: that is, "the interior of the product is the product of the interiors." (By induction, the same result holds for any <u>finite product</u>.) Give an example to show that the statement may be false for <u>infinite</u> products.

b) Suppose $A_{\alpha} \subseteq X_{\alpha}$ for all $\alpha \in A$. Prove that in the product $X = \prod X_{\alpha}$,

$$\operatorname{cl}\left(\prod A_{\alpha}\right) = \prod \operatorname{cl} A_{\alpha}$$

Note: When the A_{α} 's are closed, this shows that $\prod A_{\alpha}$ is closed: so "any product of closed sets is closed." Can you see any plausible reason why products of closures are better behaved than products of interiors?

c) Suppose $\prod X_{\alpha} \neq \emptyset$ and that $A_{\alpha} \subseteq X_{\alpha}$. Prove that $\prod A_{\alpha}$ is dense in X iff A_{α} is dense in X_{α} for each α . Note: Part c) implies that a finite product of separable spaces is separable. Part c) doesn't tell us whether or not an infinite product of separable spaces is separable: why not?

d) For each α , let $q_{\alpha} \in X_{\alpha}$. Prove that $B = \{x \in \prod X_{\alpha} : x_{\alpha} = q_{\alpha} \text{ for all but at most finitely many } \alpha\}$ is dense in $\prod X_{\alpha}$. (*Note: Suppose* $X = \mathbb{R}^{\mathbb{N}} = \prod_{n \in \mathbb{N}} X_n$ where each $X_n = \mathbb{R}$. Suppose each q_n is chosen to be a rational – say $q_n = 0$. What does d) say about $\mathbb{R}^{\mathbb{N}}$?)

2. Let X be a topological space and consider the "diagonal" set

$$\Delta = \{(x, x) : x \in X\} \subseteq X \times X.$$

a) Prove that Δ is closed in $X \times X$ iff X is Hausdorff.

b) Prove that Δ is open in $X \times X$ iff X is discrete.

3. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent sequence of real numbers. A series $\sum_{n=1}^{\infty} a'_n$ where each $a'_n = a_n$ or $a'_n = 0$ is called a <u>subseries</u> of $\sum_{n=1}^{\infty} a_n$.

Prove that $S = \{s \in \mathbb{R} : s \text{ is the sum of a subseries of } \sum_{n=1}^{\infty} a_n\}$ is closed in \mathbb{R} .

Hint: "Absolute convergence" just guarantees that every subseries converges. Each subseries $\sum_{n=1}^{\infty} a'_n$ can be associated in a natural way with a point $x \in \{0,1\}^{\aleph_0}$. Consider the mapping $f: \{0,1\}^{\aleph_0} \to \mathbb{R}$ given by $f(x) = \sum_{n=1}^{\infty} a'_n \in \mathbb{R}$. Must f be a homeomorphism?

4. Let $X = [0, 1]^{[0,1]}$ with the product topology.

a) Prove that the set of all functions in X with finite range (sometimes called step functions) is dense in X.

b) By Theorem 3.5, X is separable. Describe a countable set of step functions which is dense in X.

c) Let A be the set of points in X which are the characteristic functions of singleton sets $\{r\} \subseteq [0, 1]$. Prove that A, with the subspace topology, is discrete and not separable.

5. "Boxes" of the form $\prod \{U_{\alpha} : \alpha \in A\}$, where U_{α} is open in X_{α} , are a base for the box topology on $\prod \{X_{\alpha} : \alpha \in A\}$. Throughout this problem, we assume that products have the box topology rather than the usual product topology.

a) Show that the "diagonal map" $f: \mathbb{R} \to \mathbb{R}^{\aleph_0}$ given by f(x) = (x, x, x, ...) is not continuous, but that its composition with each projection map is continuous.

b) Show that $[0,1]^{\aleph_0}$ is not compact.

Hint: let $A_0 = [0,1)$ and $A_1 = (0,1]$. Consider the collection \mathcal{U} of all sets of the form $A_{\epsilon_1} \times A_{\epsilon_2} \times \ldots \times A_{\epsilon_n} \times \ldots$, where $(\epsilon_1, \epsilon_2, \ldots, \epsilon_n, \ldots) \in \{0,1\}^{\aleph_0}$.

Note: In contrast, with the product topology, $[0,1]^m$ is compact for any cardinal m – by the Tychonoff Product Theorem (3.10) which we will prove later.

c) Show that \mathbb{R}^{\aleph_0} is not connected by showing that the set $A = \{x \in \mathbb{R}^{\aleph_0} : x \text{ is an unbounded sequence in } \mathbb{R}\}$ is clopen.

d) Suppose (X, d) and (X_{α}, d_{α}) $(\alpha \in A)$ are metric spaces. Prove that a function $f: X \to \prod X_{\alpha}$ (with the <u>box</u> topology) is continuous iff each coordinate function $f_{\alpha} = \pi_{\alpha} \circ f$ is continuous <u>and</u> each $x \in X$ has a neighborhood on which all but a finite number of the f_{α} 's are constant.