Math 418, Spring 2010 Homework 3

Homework 3 is due in class on Thursday, February 18.

1. A space (X, \mathcal{T}) is called a T_0 space if whenever $x \neq y \in X$, then $\mathcal{N}_x \neq \mathcal{N}_y$ (equivalently, either there is an open set U containing x but not y, or vice-versa). Notice that the T_0 condition is weaker than T_1 (see example III.2.6.4). Clearly, a subspace of a T_0 -space is T_0 .

a) Prove that a nonempty product $X = \prod \{X_{\alpha} : \alpha \in A\}$ is T_0 iff each X_{α} is T_0 .

b) Let S be "Sierpinski space" – that is, $S = \{0, 1\}$ with the topology $\mathcal{T} = \{\emptyset, \{1\}, \{0, 1\}\}$. Use the embedding theorems to prove that a space X is T_0 iff X is homeomorphic to a subspace of S^m for some cardinal m. (Nearly all interesting spaces are T_0 , so nearly all interesting spaces are (topologically) just subspaces of S^m for some cardinal m.)

Hint \Rightarrow : for each open set U in X, let χ_U be the characteristic function of U. Use an embedding theorems.

2. a) Let (X, d) be a metric space. Prove that C(X) (= the collection of continuous realvalued functions on X) separates points from closed sets. (Since X is T_1 , C(X) therefore also separates points).

b) Suppose X is any T_0 topological space for which C(X) separates points and closed sets. Prove that X can be embedded in a product of copies of \mathbb{R} .

3. A space X is called <u>totally disconnected</u> every connected subset A satisfies $|A| \le 1$ (equivalently, if all components in X are singletons). Prove that a totally disconnected compact Hausdorff space is homeomorphic to a closed subspace of $\{0, 1\}^m$ for some m.

Hint: see Lemma V.5.6.

4. a) Let \sim be the equivalence relation on \mathbb{R}^2 given by $(x_1, y_1) \sim (x_2, y_2)$ iff $y_1 = y_2$. Prove that \mathbb{R}^2/\sim is homeomorphic to \mathbb{R} .

b) Find a counterexample to the following assertion: if \sim is an equivalence relation on a space X and each equivalence class is homeomorphic to the same space Y, then $(X/\sim) \times Y$ is homeomorphic to X.

Why might someone ever wonder whether this assertion might be true? In part a), we have $X = \mathbb{R} \times \mathbb{R}$, each equivalence class is homeomorphic to \mathbb{R} and $(X/\sim) \times \mathbb{R} \simeq \mathbb{R} \times \mathbb{R} \simeq X$. In this example, you "divide out" equivalence classes that all look like \mathbb{R} , then "multiply" by \mathbb{R} , and you're back where you started.

c) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be given by $g(x, y) = x^2 + y^2$. Then the quotient space \mathbb{R}^2/g is homeomorphic to what familiar space?

5. For $x, y \in [0, 1]$, define $x \sim y$ iff x - y is rational. Prove that the corresponding quotient space $[0, 1]/\sim$ is trivial.

6. Suppose X_s (s \in S) and Y_t (t \in T) are pairwise disjoint spaces. Prove that $\sum_{s \in S} X_s \times \sum_{t \in T} Y_t$ is homeomorphic to $\sum_{s \in S, t \in T} (X_s \times Y_t)$.

7. A <u>base for the closed sets</u> in (X, \mathcal{T}) is a collection of \mathcal{F} of <u>closed</u> sets such that every closed set F is an intersection of sets from \mathcal{F} . Clearly, \mathcal{F} is a base for the closed sets in X iff $\mathcal{B} = \{O : O = X - F, F \in \mathcal{F}\}$ is a base for the open sets in X.

For a polynomial P in n real variable, define the zero set of P as

$$Z(P) = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : P(x_1, x_2, ..., x_n) = 0\}$$

a) Prove that $\{Z(P) : P \text{ a polynomial in } n \text{ real variables}\}$ is the base for the closed sets of a topology (called the <u>Zariski</u> topology) on \mathbb{R}^n .

b) Prove that the Zariski topology on \mathbb{R}^n is T_1 but not T_2 .

c) Prove that the Zariski topology on \mathbb{R} is the cofinite topology, but that if n > 1, the Zariski topology on \mathbb{R}^n is <u>not</u> the cofinite topology.

Note: The Zariski topology arises in studying algebraic geometry. After all, the sets Z(P) are rather special geometric objects—those "surfaces" in \mathbb{R}^n which can be described by polynomial equations $P(x_1, x_2, ..., x_n) = 0$.