Math 418, Spring 2010 Homework 5

Homework 5 is due in class on Thursday, March 18.

- 1. Let (X,d) be a metric space and $S \subseteq X$. Prove that if each continuous $f: S \to \mathbb{R}$ extends to a continuous $g: X \to \mathbb{R}$, then S is closed. (The converse, of course, is from Tietze's Extension Theorem.)
- 2. Prove that a Hausdorff space X is normal iff for each finite open cover $\mathcal{U} = \{U_1, \dots, U_n\}$ of X, there exist continuous functions $f_i: X \to [0,1]$ (i=1,...,n) such that $\sum_{i=1}^n f_i(x) = 1$ for each $x \in X$ and such that, for each i, $f_i \mid X U_i = 0$. (Such a set of functions is called a partition of unity subordinate to the finite cover \mathcal{U} .)
- 3.. Suppose X is a T_1 space. X is called <u>perfectly normal</u> if whenever A and B are disjoint nonempty closed sets in X, there is an $f \in C(X)$ with $f^{-1}(0) = A$ and $f^{-1}(1) = B$.
 - a) Prove that every metric space (X, d) is perfectly normal.
 - b) Prove that X is perfectly normal iff X is T_4 and every closed set in X is a G_δ -set.
- 4. A space X is called <u>locally compact</u> if each $x \in X$ has a neighborhood base consisting of compact neighborhoods. For example: every discrete space is locally compact, \mathbb{R}^n is locally compact, and \mathbb{Q} is not locally compact.
 - a) Prove that a compact Hausdorff space is locally compact.

Suppose X is a locally compact Hausdorff space that is not compact. For $x \in X$, let \mathcal{B}_x be a neighborhood base at x consisting of compact neighborhoods. Let p be a point not in X, and define $X^* = X \cup \{p\}$. Put a topology on X^* by using the following definition for neighborhood bases:

$$\begin{cases} \mathcal{B}_x, & \text{for } x \in X \\ \mathcal{B}_p = \{B \subseteq X^* : p \in B \text{ and } X^* - B \text{ is compact} \} \end{cases}$$

(You can assume that this definition satisfies the conditions in the Neighborhood Base Theorem III.5.2).

- b) Prove that X^* is a compact Hausdorff space and that X is dense in X^* .
- c) Suppose X is a noncompact Hausdorff space, but <u>not</u> locally compact and we construct X^* using exactly the same definition. In that case, which statements in b) are no longer necessarily true? (Aside: ask yourself the same questions if the definition for X^* is applied to a compact Hausdorff space X; or to a locally compact noncompact X that is not Hausdorff.

 $(OVER \rightarrow)$

- d) Suppose again that X is a locally compact, noncompact Hausdorff space, that $q \notin X$ and that $Y = X \cup \{q\}$ is a compact Hausdorff space with X as a dense subspace. Define $h: X^* \to Y$ by h(p) = q and h(z) = z for $z \in X$. Prove that h is a homeomorphism.
- e) Suppose X=(0,1) and we construct X^* . What familiar space is X^* ? Note: the answer is the same if $X=\mathbb{R}$ since (0,1) and \mathbb{R} are homeomorphic: this follows easily from the argument in d).