Math 418, Spring 2010 Homework 6

Homework 6 is due in class on Thursday, April 1

1. Suppose (X, \leq) is a poset in which every nonempty subset contains a largest and smallest element. Prove that (X, \leq) is a finite chain.

2. Let (X, \leq) be an infinite poset. A subset C of X is called <u>totally unordered</u> if no two distinct elements of C are comparable, that is:

$$\forall a \in C \ \forall b \in C \ (a \le b) \ \Leftrightarrow (a = b)$$

Prove that either X has a subset C which is an infinite chain or X has a totally unordered infinite subset C.

3. Give examples of subsets of \mathbb{Q} that represent the order types:

a)
$$\omega_0^2 + \omega_0 \cdot 3 + 2$$

b) $\omega_0^3 + \omega_0$

4. Let η be the order type of \mathbb{Q} .

a) Give an example of a set $B \subseteq \mathbb{Q}$ such that neither B nor $\mathbb{Q} - B$ has order type η .

b) Prove that if A is a set of type η and $B \subseteq A$, then either B or A - B contains a subset of type η .

c) Prove or disprove: $\eta + 1 + \eta = \eta$.

Hint: Cantor's characterization of \mathbb{Q} as an ordered set may be helpful.

5. Suppose C is a subset of \mathbb{R} which is well-ordered (in the usual order on \mathbb{R}). Prove that C is countable.

 $(over \rightarrow)$

6. Prove the following facts about ordinal numbers α , β , γ :

a) if $\beta > 0$, then $\alpha + \beta > \alpha$

b) if $\alpha > \beta$, then there exists a unique γ such that $\alpha = \beta + \gamma$

We might try using b) to define subtraction of ordinals: $\alpha - \gamma = \beta$ if $\alpha = \beta + \gamma$. However this is perhaps not such a good idea. (Consider $\omega_0 = \alpha$, $\beta = 1$). Problems arise because ordinal addition is not commutative.

7. Recall definitions and results from Homework 5; see Homework 5 Solutions.

A <u>compactification</u> of a Hausdorff space X is a compact Hausdorff space Y which contains X (or a topological copy of X) as a dense subspace. In Homework 5, you proved that every locally compact noncompact Hausdorff space X has a "one-point" compactification X^* and that a one-point compactification is unique up to homeomorphism (so that we can speak of <u>the</u> one point compactification of X).

For example, the one point compactification of (0,1) is the circle S^1 : S^1 is a compact Hausdorff space and, for any $p \in S^1$, $S^1 - \{p\}$ is a dense subspace homeomorphic to (0,1).

Suppose X is a locally compact T_2 space that is separable and not compact. Show that the one-point compactification X^* is metrizable.

8. Again, from Homework 5: some very nice spaces do not have a one-point compactification – for example $\mathbb{Q} \cap (0,1)$, because this space is non locally compact. And sometimes a space has other compactifications. For example, [0,1] is a

compactification of $\mathbb{Q} \cap (0,1)$, and, for example, [0,1] is a "2-point compactification" of (0,1).

Prove that a space X has a compactification iff X is a Tychonoff space.

Hints: consider the embedding theorems; you can also appeal to the Tychonoff Product Theorem (although we have not yet proved it).