Math 418, Spring 2010 Homework 8

Homework 8 is due in class on Thursday, April 29 (last day of class)

Not to hand in:

Two set theory students, Ray and Debra, are arguing:

Ray: "There must be a maximal countable set of real numbers. Look: partially order the countable infinite subsets of \mathbb{R} by inclusion. Now every chain of such sets has an upper bound (remember, a countable union of countable sets is countable), so Zorn's Lemma gives us a maximal element."

Debra: "I don't know anything about Zorn's Lemma but it seems to me that you can always add another real to any countable set of real numbers and still have a countable set. So how can there be a largest one?"

Ray: "I didn't say largest! I said maximal!"

Resolve their dispute.

To hand in:

1. A cover of the space X is called <u>irreducible</u> if it has no proper subcover.

- a) Give an example of an open cover of a noncompact space which has no irreducible subcover.
- b) Prove that X is compact iff every open cover has an irreducible subcover.

Hint (\Leftarrow) *Let* \mathcal{U} *be any open cover and let* \mathcal{A} *be a subcover of the smallest possible cardinality* m. *Let* γ *be the least ordinal of cardinality* m, *and write* $\mathcal{A} = \{U_{\alpha} : \alpha < \gamma\}$. *Then consider* $\{V_{\beta} : \beta < \gamma\}$, where $V_{\beta} = \bigcup\{U_{\alpha} : \alpha < \beta\}$.

2. Let (C, \leq) be an uncountable chain in which each element has only countably many predecessors. Suppose $f : C \to \mathbb{R}$ and that $f(\lambda) > 0$ for each $\lambda \in C$. Show that the net f does not converge to 0 in \mathbb{R} .

3. Let (X, d) be a metric space and $f : [0, \omega_1) \to X$ a function given by $f(\alpha) = x_{\alpha}$. Show that the net (x_{α}) converges iff (x_{α}) is eventually constant.

$$(OVER \rightarrow)$$

4. a) Suppose X is infinite set with the cofinite topology. Let \mathcal{F} be the filter generated by the filter base consisting of all cofinite sets. To what points does \mathcal{F} converge?

b) Translate the work in part a) into statements about nets.

5. a) Suppose \mathcal{U} is an ultrafilter in X and that $A_1 \cup ... \cup A_n \in \mathcal{U}$. Prove that one of the sets A_i must be in \mathcal{U} .

b) "By duality." there is a corresponding result about universal nets. State that result and then prove it directly (*without referring to any results about filters*).

6. Let \mathcal{U} be a <u>free</u> ultrafilter in \mathbb{N} and let $\Sigma = \mathbb{N} \cup \{\sigma\}$, where $\sigma \notin \mathbb{N}$.

Define a topology \mathcal{T} on Σ by $\mathcal{T} = \{ O : O \subseteq \mathbb{N} \text{ or } O = U \cup \{\sigma\} \text{ where } U \in \mathcal{U} \}$

a) Prove that Σ is T_4 and that \mathbb{N} is dense in Σ .

b) Prove that a free ultrafilter \mathcal{U} on \mathbb{N} cannot have a countable base. *Hint*: $\mathcal{B} = \{U_1, ..., U_n, ...\}$ is a base. Since \mathcal{U} is free, each set in \mathcal{U} must be infinite. Why? To prove \mathcal{B} cannot be a base for \mathcal{U} : by induction, create a set A such that neither A nor $\mathbb{N} - A$ contains one of the $U'_n s$.)

c) Prove that no sequence in \mathbb{N} can converge to σ (and therefore there can be no countable neighborhood base at σ in Σ) *Hint: Work you did in b) might help.*

Thus, Σ is another example of a countable space where only one point is not isolated and which is not first countable, See the space L in Example III.9.8.

d) How would the space Σ be different if \mathcal{U} were a fixed ultrafilter?

Comment: if \mathcal{U}' is a free ultrafilter on \mathbb{N} and $\mathcal{U}' \neq \mathcal{U}$, then the corresponding spaces Σ' and Σ may not be homeomorphic: the neighborhood systems of σ may look quite different. In this sense, free ultrafilters in \mathbb{N} do <u>not</u> all "look alike."