
Math 131, Fall 2004
Discussion Section 11 Solutions
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3. What are the dimensions of an aluminum can that holds 40 cm  of juice and that uses$

the least material (aluminum)?  Assume the can is cylindrical and is capped on both ends.

Solution:

Suppose the can has radius  and height  (cm).  The material needed is< 2

  the surface area of the cylinder    (why?)œ # <21
                 the area of the circular top of the can œ <1 #

 the area of the circular bottom of the can œ <1 #
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Clearly we must have  and, in theory anyway,  could be as large as we like.<  ! <
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In other words, the amount of material need is smallest when the height  is twice the2
radius <Þ
(The actual values are  and < ¸ "Þ)& 2 ¸ $Þ(!ÑÞ



4.  One hallway which is 4 ft wide meets another hallway which is 8 ft wide in a right
angle.  What is the length of the longest ladder that can be carried horizontally around the
corner?

(This problem is exactly the same mathematically as the WebWork problem with the
ladder going over a fence to lean against a building.)

As the ladder is moved around the corridor, it will get stuck if it is ever longer than the
line segment   Therefore the  ladder that will go around the corner is theTUÞ longest
length of the  line segment   We want to  the length shortest minimizeTUÞ P œ TUÞ
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We want to minimize   It makes our job easier, however, to notice that will bePÞ P
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instead and avoid needing to work with the square root.
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Since there are points where the derivative doesn't exist and the only criticalB  !ß
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Here is a different way to set up the same problem.  It is easier (less “algebra-intensive”)
if you're comfortable with the trig functions.  A few details are omitted.
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Substituting this value of  into sec csc) ) )P œ )  %
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