Math 131, Fall 2004 **Discussion Section 12 Solutions**

- 1. A point is moving along a straight line. Its velocity v(t) is $\begin{cases} t & 0 \le t \le 1 \\ 2-t & 1 < t < 3 \end{cases}$ where v is measured in m/sec. Its position at time 0 is s(0) = 2.
- a) Use antiderivatives to get a formula for the position function s(t).

gives us that C=2, so $s(t)=\begin{cases} \frac{t^2}{2}+2 & 0\leq t\leq 1\\ 2t-\frac{t^2}{2}+D & 1\leq t\leq 3 \end{cases}$. The first line of the formula gives us that $s(1)=\frac{1}{2}+2=\frac{5}{2}$. The second line gives us that $s(1)=2-\frac{1}{2}+D$. These values for s(1) must agree so $\frac{5}{2}=\frac{3}{2}+D$ and D=1. Therefore

$$s(t) = \begin{cases} \frac{t^2}{2} + 2 & 0 \le t \le 1\\ 2t - \frac{t^2}{2} + 1 & 1 \le t \le 3 \end{cases}$$

b) Find s(3) - s(0) (= the net displacement of the point as t goes from 0 to 3). What are the units?

Solution: $s(3) - s(0) = \frac{5}{2} - 2 = \frac{1}{2}$ meters.

c) What is the total distance the point traveled between times 0 and 3?

Solution: For 0 < t < 2: v > 0, so the point is moving in the positive direction and the displacement = distance traveled is s(2) - s(0) = 3 - 2 = 1 meter.

For $2 \le t \le 3$: v(t) < 0, so the point is moving in the negative direction and the displacement $= s(3) - s(2) = \frac{5}{2} - 3 = -\frac{1}{2}$; the distance traveled is |s(3) - s(2)| $=\frac{1}{2}$.

The total distance traveled is $s(2) - s(0) + |s(3) - s(2)| = \frac{3}{2}$ meters.

- d) Draw the velocity function v(t) on the grid below.
- e) By computing areas, evaluate $\int_0^3 v(t) dt$. What are its units?
- f) Add the graph of |v(t)| to the grid, and find the value of $\int_0^3 |v(t)| dt$. What are its units and what does it represent?

Graphs of v(t) and | v(t) | ; | v(t) | is dotted where different from v(t)

0.8

0.6

0.4

0.2

0.4

0.6

0.8

-1

0 0.5

1 1.5

2 2.5

3

Solution: The graphs for parts d) and f) are indicated above. Label the three triangular areas A_1 , A_2 and A_3 as shown.

For e): $\int_0^3 v(t) \, dt = A_1 - A_2 = \frac{1}{2}(2)(1) - \frac{1}{2}(1)(1) = \frac{1}{2}$ meters. This represents the <u>net displacement</u> of the moving point between times 0 and 3.

For f) $\int_0^3 |v(t)| \, dt = A_1 + A_3 = \frac{1}{2}(2)(1) + \frac{1}{2}(1)(1) = \frac{3}{2}$ meters. Geometrically, $\int_0^3 |v(t)| \, dt$ is the area under the pictured graph of |v(t)|. Physically, it represents the <u>total distance traveled</u> by the point for $0 \le t \le 3$. This is different because, when v(t) is negative, some positive and negative distances traveled cancel out. in computing $\int_0^3 |v(t)|$, sign differences on v are ignored and no cancellations of distances traveled occur. By the way, |v(t)| is called the <u>speed</u> of the moving point: it is different from velocity in that it ignores sign.

2. a) If
$$\int_0^1 f(t) dt = 2$$
, $\int_0^4 f(t) dt = -6$, and $\int_3^4 f(t) dt = 1$, what is $\int_1^3 2f(t) dt$?

Solution:
$$\int_0^1 f(t) \, dt + \int_1^3 f(t) \, dt + \int_3^4 f(t) \, dt = \int_0^4 f(t) \, dt, \text{ so }$$

$$2 + \int_1^3 f(t) \, dt + 1 = -6, \text{ so }$$

$$\int_1^3 f(t) \, dt = -9, \text{ so }$$

$$\int_1^3 2f(t) \, dt = -18$$

b) In class, we used the definition of an integral (a limit of Riemann sums) to calculate that $\int_0^2 2x^2 dx = \frac{16}{3}$. What then is $\int_0^2 5 - 6x^2 dx$?

Solution:
$$\int_0^2 5 - 6x^2 dx = \int_0^2 5 dx - 3 \int_0^2 2x^2 dx = 10 - 3(\frac{16}{3}) = -6$$
.

c) Suppose a function f(x) satisfies $4 \le f(x) \le 9$ for $-3 \le x \le 0$. What can you say about the size of $\int_{-3}^{0} f(x) \, dx$?

Solution: (See property 8, p. 366 in text)
$$4 \le f(x) \le 9$$
, so $4(0-(-3)) \le \int_{-3}^{0} f(x) dx \le 9(0-(-3))$, that is, $12 \le \int_{-3}^{0} f(x) dx \le 27$.

d) For the function f(x) in part c), what can you say about $\int_{-1}^{0} f(x) dx - \int_{1}^{0} f(x) dx + \int_{1}^{-1} f(x) dx$?

Solution:
$$\int_{-1}^{0} f(x) dx - \int_{1}^{0} f(x) dx + \int_{1}^{-1} f(x) dx$$
$$= \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx - \int_{-1}^{1} f(x) dx$$
$$= \int_{-1}^{1} f(x) dx - \int_{-1}^{1} f(x) dx = 0.$$

e) Evaluate $\int_1^4 \frac{1}{x} - \sqrt{x} \, dx$

Solution: An antiderivative for $\frac{1}{x}-\sqrt{x}$ is $F(x)=\ln|x|-\frac{2}{3}x^{3/2}$. By the Evaluation Theorem, $\int_1^4 \frac{1}{x}-\sqrt{x}\ dx=F(4)-F(1)=(\ln 4-\frac{2}{3}(8))-(0-\frac{2}{3})=\ln 4-\frac{14}{3}$