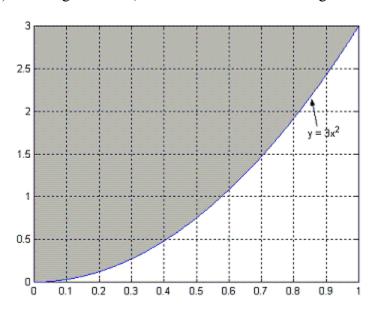
Math 131, Fall 2004 Discussion Section 13

1. a) In the figure below, find the area of the white region.



Solution: The area of the white region is $\int_0^1 3x^2 dx = x^3|_0^1 = 1^3 - 0^3 = 1$.

b) With using any additional calculus, find the area of the gray region.

Solution: The area of the gray region is the area of the whole rectangle minus the area of the white region = (3)(1) - 1 = 2.

c) Write two different integrals you could use to determine the area of the gray region.

Solution:

1) The gray area is the rectangular area under the graph of y=3 over [0,1]-(area of the white region) $=\int_0^1 3\,dx-\int_0^1 3x^2\,dx=\int_0^1 3-3x^2\,dx$ ($=(3x-x^3)|_0^1=(3-1)-(0-0)=2$)

2) Since $y=3x^2$ ($0 \le x \le 1$), we can write $x=(\frac{y}{3})^{1/2}$, $0 \le y \le 3$. The gray area is the area "under" (= "to the left of") the graph of $(\frac{y}{3})^{1/2}$ for $0 \le y \le 3$. (Turn your head to the right and look at the picture sideways, so that the y-axis is "horizontal" with positive direction left). The gray area is $\int_0^3 \sqrt{\frac{y}{3}} \ dy$.

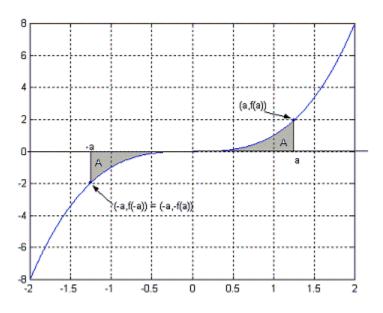
(Since $\int (\frac{y}{3})^{1/2} dy = 2(\frac{y}{3})^{3/2} + C$ (check by differentiating!!), we can calculate

$$\int_0^3 (\frac{y}{3})^{1/2} \, dy \, = 2(\frac{y}{3})^{3/2}|_0^3 = 2(1)^{3/2} - 2(0)^{3/2} = 2.$$

2. Suppose f(x) is a continuous function.

a) If f(-x) = -f(x), what can you say about the graph of f(x)? What can you say about $\int_{-a}^a f(x) \, dx$?

Solution: f(x) is an odd function so its graph is symmetric with respect to the origin. For example:

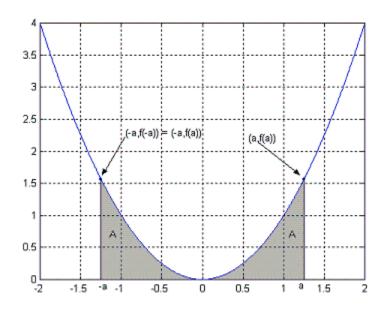


By symmetry, the shaded regions have the same area, and the integral counts the area below the x-axis as negative, so

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -A + A = 0.$$

b) If f(-x) = f(x), what can you say about the graph of f(x)? What can you say about $\int_{-a}^{a} f(x) dx$?

Solution: f(x) is an even function so its graph is symmetric with respect to the y-axis. For example:



By symmetry, the shaded areas are equal, so

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = A + A = 2 \int_{0}^{a} f(x) \, dx.$$

c) Find the value of $\int_0^{\pi} \cos(\frac{1}{2}x) dx$.

Solution: $\int \cos(\frac{1}{2}x) \, dx = 2\sin(\frac{1}{2}x) + C \text{ (check by differentiating!!)}.$ Therefore $\int_0^\pi \cos(\frac{1}{2}x) \, dx = 2\sin(\frac{1}{2}x)|_0^\pi = 2\sin(\frac{\pi}{2}) - 2\sin(0) = 2.$

d) Find the value of $\int_{-\pi}^{\pi} x \sqrt[4]{7x^4 + 9x^2 + 13} - 9\cos(\frac{1}{2}x) dx$

Solution: $x\sqrt[4]{7x^4+9x^2+13}$ is an odd function, and $9\cos(\frac{1}{2}x)$ is an even function so (using parts a), b), and c)), we get

$$\int_{-\pi}^{\pi} x \sqrt[4]{7x^4 + 9x^2 + 13} - 9\cos(\frac{1}{2}x) dx$$

$$= \int_{-\pi}^{\pi} x \sqrt[4]{7x^4 + 9x^2 + 13} - \int_{-\pi}^{\pi} 9\cos(\frac{1}{2}x) dx$$

$$= 0 - 9 \int_{-\pi}^{\pi} \cos(\frac{1}{2}x) dx$$

$$= -9(2) \int_{0}^{\pi} \cos(\frac{1}{2}x) dx = -9(2)(2) = -36.$$

3) a) What is $\frac{d}{ds} \int_1^2 s^2 ds$?

<u>Solution</u>: $\int_1^2 s^2 ds$ is a <u>constant</u> $(=\frac{7}{3}, \text{ if you work it out})$, and $\frac{d}{ds}(\text{constant}) = 0$.

b) What is $\frac{d}{ds} \int_1^s t^2 dt$?

Solution: By the Fundamental Theorem of Calculus (Part I),

 $\frac{d}{ds} \int_1^s t^2 dt = s^2$ (In this case, the integral is so easy that you could simplify it first and avoid the Fundamental Theorem: $\frac{d}{ds} \int_1^s t^2 dt = \frac{d}{ds} (\frac{s^3}{3} - \frac{1}{3}) = s^2$.)

c) What is
$$\frac{d}{dt} \int_1^s t^2 dt$$
?

Solution: $\int_1^s t^2 \, dt$ is a function of s, not t: so $\frac{d}{dt} \int_1^s t^2 \, dt = 0$. (Actually, this assumes that s and t are independent—that s is not really some function of t. To allow for that possibility and still be right, we could use the chain rule: $\frac{d}{dt} \int_1^s t^2 \, dt = s^2 \cdot \frac{ds}{dt}$. Then, if s is really independent of t, we have $\frac{ds}{dt} = 0$ so $\frac{d}{dt} \int_1^s t^2 \, dt = 0$ as we had before.)

d) What is
$$\frac{d}{dz} \int_{z^3}^{z^3} \sqrt[4]{t^2 + t + 1} \, dt$$
?

Solution: Since both limits on the integral are the same, $\int_{z^3}^{z^3} \sqrt[4]{t^2 + t + 1} = 0$, so $\frac{d}{dz} \int_{z^3}^{z^3} \sqrt[4]{t^2 + t + 1} \, dt = \frac{d}{dz}(0) = 0$. (Of course, you could work it out the "longer way": $\frac{d}{dz} \int_{z^3}^{z^3} \sqrt[4]{t^2 + t + 1} \, dt = \frac{d}{dz} \int_{z^3}^{0} \sqrt[4]{t^2 + t + 1} \, dt + \frac{d}{dz} \int_{0}^{z^3} \sqrt[4]{t^2 + t + 1} \, dt = 0$.)

e) What is
$$\frac{d}{du} \int_{u}^{2u} 2t \, dt$$
?

Solution: $\frac{d}{du} \int_{u}^{2u} 2t \, dt = \frac{d}{du} \int_{u}^{0} 2t \, dt + \frac{d}{du} \int_{0}^{2u} 2t \, dt$ $= \frac{d}{du} \int_{0}^{2u} 2t \, dt - \frac{d}{du} \int_{0}^{u} 2t \, dt = \frac{d}{du} \int_{0}^{2u} 2t \, dt - 2u$ $= 2(2u) \frac{d}{du} (2u) - 2u = 8u - 2u = 6u.$

f) What is
$$\frac{d}{ds} \int_1^{\int_1^s t^2 dt} t \, dt$$
?

Solution: Let $y = \int_1^{\int_1^s t^2 dt} t \, dt = \int_1^u t \, dt$, where $u = \int_1^s t^2 \, dt$. Then $\frac{du}{ds} = s^2$ (using the Fundamental Theorem, Part I)) so $\frac{dy}{ds} = \frac{dy}{du} \frac{du}{ds} = u \cdot \frac{du}{ds} = u \cdot s^2 = s^2 \int_1^s t^2 \, dt$ (If we simplify further, $s^2 \int_1^s t^2 \, dt = s^2 \cdot \frac{t^3}{3} \Big|_1^s = s^2 \left(\frac{s^3}{2} - \frac{1}{2}\right) = \frac{s^5 - s^2}{2}$.)