
Math 131, Fall 2004
Discussion Section 6 Solutions

1. The graphs of  and  are shown below:0 1
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Solution:
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2. How many tangent lines to the curve  pass through the point  ?  WhatC œ Ð"ß #ÑB
B"

are the coordinates where these lines touch the graph?

Solution:  .C.B ÐB"Ñ ÐB"Ñ
ÐB"ÑÐ"ÑBÐ"Ñ "œ œ Þ# #

Pick any point  on the graph.  The tangent line there has slope , so theÐ+ß Ñ+ "
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The following figure is not necessary to solve the problem.  But it does illustrate what's
happening:





 3. In the study of ecosystems, predator-prey models are often used to study the
interaction between species.  Consider a population of tundra wolves, given by  and[Ð>Ñ
caribou, given by , in northern Canada.  The interaction of these populations hasGÐ>Ñ
been modeled by the following system of equations:
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where  are positive constants (which a biologist might estimate from population+ß ,ß -ß .
data).

a) What values of  and  correspond to stable populations?.G .[
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b) How would the statement “the caribou go extinct” be represented mathematically?
c) What would  mean ?lim
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d) Suppose a population biologist looks at some data and (somehow) decides that the
following values are reasonable estimates:
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Find all population pairs  that lead to stable populations.  According to thisÐGß[Ñ
model, is it possible for the species to live in harmony or will one or both species become
extinct?

e) On each line of the original pair of equations, why is there both a positive and a
negative term?

Solutions:

a) “The wolf population is stable” means that it has reached a constant value, so[
.[ .G
.> .>œ !Þ œ !  Similarly, the population of caribou is stable if .

b) “The caribou go extinct” could be expressed as    (“as time passes, thelim
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number of Caribou approaches ”).  However, there cannot be a fractional number of!
caribou.  If  “gets closer and closer to  as time passes ”  it must be that eventuallyGÐ>Ñ ! ß
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approaches , that is, that the wolf population  approaches some stable value.! [

d) With the values given, the equations become  .G
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By part a) stable populations requires:
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The first equation has solutions or G œ ! [ œ œ &!Þ!Þ!!"
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 If the second equation becomes or G œ !ß  !Þ!&[ œ ! [ œ !Þ
 The pair  is one way to have a stable situation between theÐG œ !ß [ œ !Ñ
  caribou and wolf populations.

 If , the second equation becomes[ œ &!
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 The pair  is another way to have a stable situation betweenÐG œ &!!ß [ œ &!Ñ
 the caribou and wolf populations.  The species can live in harmony.

e) Looking at the equation :   if there were no wolves, then.G
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predators!).   corresponds to a “birth rate.”   The negative term !Þ!&G  !Þ!!"G[
corresponds to a “death rate” that comes from the “interaction” of wolves and caribou.  In
this model, rate of change in caribou population “birth rate death rate.”.G
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The same sort of analysis applies to .  If there were no.[
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caribou, the equation would be  and the wolf population would be.[
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decreasing (no prey).  The positive term contributes to growing the wolf population due
to interaction of the wolves (predators) with the prey (caribou).


