Why is the Fundamental Theorem of Calculus, Part I, True?

The following is an informal argument about why the Fundamental Theorem of Calculus, Part I, is true. It states:

Suppose f is a continuous function and that F is defined by $F(x)=\int_{a}^{x} f(t) d t$ (where a is some constant). Then $F^{\prime}(x)=f(x)$.

Why? To compute $F^{\prime}(x)$, we go back to the definition of a derivative.
$F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}$.
But the numerator $\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{x+h} f(t) d t$
(because $\int_{a}^{x+h} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t$).
Therefore
$F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h} . \quad$ Now look at the figure below:

As $h \rightarrow 0, f(x+h) \rightarrow f(x) \quad$ (because f is continuous) and therefore
Area under graph over $[x, x+h]=\int_{x}^{x+h} f(t) d t \rightarrow$ area of rectangle $=h f(x)$.
So $F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h}=\lim _{h \rightarrow 0} \frac{h f(x)}{h}=f(x)$.

Why is f required to be continuous?
If f is not continuous, the argument doesn't work: in the figure below, the region under the graph over $[x, x+h]$ doesn't come toward coinciding with the rectangle as $h \rightarrow 0$. Therefore replacing $\int_{x}^{x+h} f(t) d t$ with $h f(x)$, as we did above, isn't justified.

