Review of exponential and logarithm functions (See text material in §1.5 and 1.6)

Functions f and g are called <u>inverses</u> to each other if each one "undoes" the effect of the other, that is : for a in the domain of f and b in the domain of g,

1) if f(a) = b, then g(b) = a (so that g(f(a)) = a) 2) if g(b) = a, then f(a) = b (so that f(g(b)) = b

For example, f(x) = 2x and $g(x) = \frac{1}{2}x$ are inverses:

$$g(f(a)) = g(2a) = \frac{1}{2}(2a) = a$$
 and $f(g(b)) = f(\frac{1}{2}b) = 2(\frac{1}{2}b) = b.$

For inverse functions f and g, 1) and 2) tell us that:

domain f = range gdomain g = range fif (a, b) is on the graph of f(because f(a) = b),then (b, a) is on the graph of g(because g(b) = a)

and vice-versa,

if (b, a) is on the graph of g	(because $g(b) = a$),
then (a, b) is on the graph of f	(because $f(a) = b$)

(See the figure)

The figure illustrates how (a, b) and (b, a) are related: each is the reflection of the other across the line y = x. Therefore the graphs of inverse functions f and g are reflections of

each other across the line y = x. (*Carefully draw the graphs of* f(x) = 2x and $g(x) = \frac{1}{2}x$ to see another example of this "reflection" property of inverse functions.)

Exponential functions and logarithm functions are inverses of each other. The inverse of $f(x) = a^x$ (exponential, base *a*) is $g(x) = \log_a x$ (logarithm, base *a*). (*Here, a* > 0 and $a \neq 1$.

Since 1^x is constant we don't want to call it an "exponential" function; and we want to avoid functions like $(-2)^x$ because they aren't defined for certain x's – for example, $(-2)^{1/2} = ?$

The two figures below show (on the left) the graphs of 2^x and $\log_2 x$ and (on the right) $(\frac{1}{2})^x$ and $\log_{\frac{1}{2}} x$ (*Most often we will be using base a* > 1, so usually the graph of $\log_a x$ will be shaped similarly to that of $\log_2 x$.). The graphs are reflections of each other across the line y = x.

The domain of $f(x) = a^x$ is the set of all real numbers $(-\infty < x < \infty)$ and the range is the set of all positive real numbers: x > 0).

Therefore the domain for the inverse function $g(x) = \log_a x$ is the set of positive real numbers and its range = set of all real numbers.

Because $f(x) = a^x$ and $g(x) = \log_a x$ are inverse functions, we have (for x's in the domain of the appropriate function) f(g(x)) = x and g(f(x)) = x, that is

(*)
$$a^{\log_a x} = x$$
 and $\log_a(a^x) = x$

For example, $10^{\log_{10}13} = 13$ and $\log_5(5^9) = 9$.

We can think of the equation $a^{\log_a x} = x$ as saying: " $\log_a x$ is the power (<u>exponent</u>) to which a must be raised to give x." If we put it that way,

 $log_{10}100 = 2$ because 2 is the exponent to which 10 must be raised to give 100 $log_3 81 = 4$ because 4 is the exponent to which 3 must be raised to give 81. $log_a 1 = 0$ because $a^0 = 1$. (*Therefore* (1,0) is on the graph of $y = log_a x$ for any base a; we should have known this anyway – because (0,1) is on the graph of $y = a^x$.

Since logarithms can be thought of as <u>exponents</u>, they have properties similar to rules of exponents. For example:

 $\begin{array}{l} \log_a(xy) = ?\\ \text{This is asking "}a^? = xy"? \quad \text{The answer is } \log_a x + \log_a y\\ \underline{\text{because}} \text{ the laws of exponents say } a^{\log_a x + \log_a y} = a^{\log_a x} \cdot a^{\log_a y} = xy.\\ \text{Therefore} \end{array}$

$$\log_a xy = \log_a x + \log_a y$$

 $\log_a(x^r) = ?$

This is asking " $a^{?} = x^{r}$ "? The answer is $r \log_{a} x$ because the laws of exponents say $a^{r \log_{a} x} = (a^{\log_{a} x})^{r} = x^{r}$. Therefore

$$\log_a(x^r) = r \log_a x$$

Examples:

1) $\log_3(48) = \log_3(3 \cdot 16) = \log_3 3 + \log_3(16) = 1 + \log_3 16$ $\log_{10}(400) = \log_{10}(10^2) + \log_{10}(4) = 2 + \log_{10} 4$

2) To solve $10^{3x^2-4} = 7$, we can "kill" the exponential as follows:

$$log_{10}(10^{3x^2-4}) = log_{10}7$$

$$3x^2 - 4 = log_{10}7$$

$$x^2 = (4 + log_{10}7)/3$$

$$x = \pm \sqrt{(4 + log_{10}7)/3}$$

3) To solve $\log_9(7x - 3) = 10$, we can "kill" the logarithm as follows:

$$9^{\log_9(7x-3)} = 9^{10}$$

 $7x - 3 = 9^{10}$
 $x = (9^{10} + 3)/7$

The base most often used in calculus is base a = e. As we know, e is a constant whose value is approximately 2.71828. The exponential function $y = e^x has y = \log_e x$ as its inverse. Since we most often use base e, $\log_e x$ is given a simpler name: $\log_e x = \ln x$.

We can use properties of logarithms to see how to convert logs from one base to another.

The formula is:

(**)
$$\log_b x = \frac{\log_a x}{\log_a b}$$

(In remembering this: imagine you already know how to compute logs in base a and want to compute logs in a new base b instead: the "new thing", $log_b x$ is given in terms of the "old" things – both logs on the right side of the equation use base a.

Equation (***) is the same as saying: $(\log_b x)(\log_a b) = \log_a x$ But $\log_a x$ is "the power to which *a* must be raised to give *x*. Therefore, to prove *** is true, we need to check <u>whether</u>

$$a^{(\log_b x)(\log_a b)} = x.$$

But this is true because of laws of exponents:

$$\begin{aligned} a^{(\log_b x)(\log_a b)} &= ((a^{\log_a b})^{(\log_b x)} \\ &= b^{\log_b x} = x. \end{aligned}$$

Examples

$$\log_a x = \frac{\log_e x}{\log_e a} = \frac{\ln x}{\ln a}$$

Therefore if your calculator can do "ln", you can also use it to find the value of, say, $\log_{17}35 = \frac{\ln 35}{\ln 17} \approx 1.2549$

For base a = e, the earlier equations (*) become:

$$e^{\ln x} = x$$
 and $\ln(e^x) = x$

The graphs look like:

Notice how in reflecting across the line y = x, the <u>horizontal</u> asymptote (x-axis) of $y = e^x$ turns into a <u>vertical</u> asymptote (the y-axis) for the graph of the inverse $y = \ln x$.

We know that for $f(x) = e^x$, $f'(x) = f''(x) = e^x$. Since the first and second derivatives are both > 0 always, e^x is always increasing and concave up (as the graph of e^x seems to show.).

We will see soon that for $g(x) = \ln x$:

$$g'(x) = \frac{1}{x},$$
 and so $g''(x) = -\frac{1}{x^2}$

Since g(x) is only defined for x > 0, $\frac{1}{x}$ is always > 0 so the graph of $y = \ln x$ is always increasing. Since $-\frac{1}{x^2} < 0$ always, the graph of $y = \ln x$ is always concave down (as the graph of $\ln x$ seems to indicate).

Notice finally that:

$$\begin{split} &\lim_{x\to\infty}e^x=\infty, \ \ \lim_{x\to-\infty}e^x=0\\ &\lim_{x\to0^+}\ln x=\,-\infty\, \text{and}\, \lim_{x\to\infty}\ln x=\infty. \end{split}$$

(The last limit seems a little counterintuitive: the graph of $\ln x$ has a slope $\frac{1}{x}$ approaching 0 as $x \to \infty$, so one might feel $\ln x$ should have a horizontal asymptote. But a little thought shous that $\ln x$ can be made as large as we like by taking x large enough. For example:

 $\ln x > 1000$ if $x = e^{\ln x} > e^{1000}$.

Of course, e^{1000} is very large: $e^{1000} > 10^{333}$ (why?!?). It takes a long while for the graph of $\ln x$ to rise about height 1000, but it does eventually do so. Similarly, $\ln x > 1000000$ if $x = e^{\ln x} > e^{1000000}$.