Review of exponential and logarithm functions

(See text material in §1.5 and 1.0)
Functions f and g are called inverses to each other if each one "undoes" the effect of the other, that is : for a in the domain of f and b in the domain of g,

1) if $f(a)=b$, then $g(b)=a$ (so that $g(f(a))=a)$
2) if $g(b)=a$, then $f(a)=b$ (so that $f(g(b))=b$

For example, $f(x)=2 x$ and $g(x)=\frac{1}{2} x$ are inverses:

$$
g(f(a))=g(2 a)=\frac{1}{2}(2 a)=a \quad \text { and } \quad f(g(b))=f\left(\frac{1}{2} b\right)=2\left(\frac{1}{2} b\right)=b
$$

For inverse functions f and $g, 1$) and 2) tell us that:

$$
\text { domain } f=\text { range } g \quad \text { domain } g=\text { range } f
$$

if (a, b) is on the graph of $f \quad$ (because $f(a)=b$), then (b, a) is on the graph of $g \quad$ (because $g(b)=a$)
and vice-versa,

$$
\text { if }(b, a) \text { is on the graph of } g \quad \text { (because } g(b)=a)
$$

$$
\text { then }(a, b) \text { is on the graph of } f \quad \text { (because } f(a)=b \text {) }
$$

(See the figure)

The figure illustrates how (a, b) and (b, a) are related: each is the reflection of the other across the line $y=x$. Therefore the graphs of inverse functions f and g are reflections of
each other across the line $y=x$. (Carefully draw the graphs of $f(x)=2 x$ and $g(x)=\frac{1}{2} x$ to see another example of this "reflection" property of inverse functions.)

Exponential functions and logarithm functions are inverses of each other. The inverse of $f(x)=a^{x}$ (exponential, base a) is $g(x)=\log _{a} x$ (logarithm, base a). (Here, $a>0$ and $a \neq 1$.

Since 1^{x} is constant we don't want to call it an "exponential" function; and we want to avoid functions like $(-2)^{x}$ because they aren't defined for certain x 's for example, $(-2)^{1 / 2}=$?

The two figures below show (on the left) the graphs of 2^{x} and $\log _{2} x$ and (on the right) $\left(\frac{1}{2}\right)^{x}$ and $\log _{\frac{1}{2}} x$ (Most often we will be using base $a>1$, so usually the graph of $\log _{a} x$ will be shaped similarly to that of $\log _{2} x$.). The graphs are reflections of each other across the line $y=x$.

The domain of $f(x)=a^{x}$ is the set of all real numbers $(-\infty<x<\infty)$ and the range is the set of all positive real numbers: $x>0$).

Therefore the domain for the inverse function $g(x)=\log _{a} x$ is the set of positive real numbers and its range $=$ set of all real numbers.

Because $f(x)=a^{x}$ and $g(x)=\log _{a} x$ are inverse functions, we have (for x 's in the domain of the appropriate function) $f(g(x))=x$ and $g(f(x))=x$, that is

$$
\text { (*) } \quad a^{\log _{a} x}=x \quad \text { and } \log _{a}\left(a^{x}\right)=x
$$

For example, $10^{\log _{10} 13}=13$ and $\log _{5}\left(5^{9}\right)=9$.

We can think of the equation $a^{\log _{a} x}=x$ as saying: " $\log _{a} x$ is the power (exponent) to which a must be raised to give x." If we put it that way,
$\log _{10} 100=2$ because 2 is the exponent to which 10 must be raised to give 100 $\log _{3} 81=4$ because 4 is the exponent to which 3 must be raised to give 81 . $\log _{a} 1=0$ because $a^{0}=1$. (Therefore $(1,0)$ is on the graph of $y=\log _{a} x$ for any base a; we should have known this anyway - because $(0,1)$ is on the graph of $y=a^{x}$.

Since logarithms can be thought of as exponents, they have properties similar to rules of exponents. For example:

$$
\log _{a}(x y)=?
$$

This is asking " a ? $=x y$ "? The answer is $\log _{a} x+\log _{a} y$ because the laws of exponents say $a^{\log _{a} x+\log _{a} y}=a^{\log _{a} x} \cdot a^{\log _{a} y}=x y$. Therefore

$$
\log _{a} x y=\log _{a} x+\log _{a} y
$$

$\log _{a}\left(x^{r}\right)=?$

This is asking " a ? $=x^{r "}$ "? The answer is $r \log _{a} x$ because the laws of exponents say $a^{r \log _{a} x}=\left(a^{\log _{a} x}\right)^{r}=x^{r}$.
Therefore

$$
\log _{a}\left(x^{r}\right)=r \log _{a} x
$$

Examples:

$$
\text { 1) } \begin{aligned}
& \log _{3}(48)=\log _{3}(3 \cdot 16)=\log _{3} 3+\log _{3}(16)=1+\log _{3} 16 \\
& \log _{10}(400)=\log _{10}\left(10^{2}\right)+\log _{10}(4)=2+\log _{10} 4
\end{aligned}
$$

2) To solve $10^{3 x^{2}-4}=7$, we can "kill" the exponential as follows:

$$
\begin{aligned}
& \log _{10}\left(10^{3 x^{2}-4}\right)=\log _{10} 7 \\
& 3 x^{2}-4=\log _{10} 7 \\
& x^{2}=\left(4+\log _{10} 7\right) / 3 \\
& x= \pm \sqrt{\left(4+\log _{10} 7\right) / 3}
\end{aligned}
$$

3) To solve $\log _{9}(7 x-3)=10$, we can "kill" the logarithm as follows:

$$
\begin{aligned}
& 9^{\log _{9}(7 x-3)}=9^{10} \\
& 7 x-3=9^{10} \\
& x=\left(9^{10}+3\right) / 7
\end{aligned}
$$

The base most often used in calculus is base $a=e$. As we know, e is a constant whose value is approximately 2.71828. The exponential function $y=e^{x}$ has $y=\log _{e} x$ as its inverse. Since we most often use base $e, \log _{e} x$ is given a simpler name: $\log _{e} x=\ln x$.

We can use properties of logarithms to see how to convert logs from one base to another.
The formula is:

$$
(* *) \quad \log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

(In remembering this: imagine you already know how to compute logs in base a and want to compute logs in a new base b instead: the "new thing", $\log _{b} x$ is given in terms of the "old" things - both logs on the right side of the equation use base a.

Why is $\left({ }^{* *}\right)$ true?
Equation (${ }^{* * *)}$ is the same as saying:

$$
\left(\log _{b} x\right)\left(\log _{a} b\right)=\log _{a} x
$$

But $\log _{a} x$ is "the power to which a must be raised to give x. Therefore, to prove ${ }^{* * *}$ is true, we need to check whether

$$
a^{\left(\log _{b} x\right)\left(\log _{a} b\right)}=x .
$$

But this is true because of laws of exponents:

$$
\begin{aligned}
& a^{\left(\log _{b} x\right)\left(\log _{a} b\right)}=\left(\left(a^{\left.\log _{a} b\right)}\right)^{\left(\log _{b} x\right)}\right. \\
& =b^{\log _{b} x}=x .
\end{aligned}
$$

Examples

$$
\log _{a} x=\frac{\log _{e} x}{\log _{e} a}=\frac{\ln x}{\ln a}
$$

Therefore if your calculator can do "ln", you can also use it to find the value of, say, $\log _{17} 35=\frac{\ln 35}{\ln 17} \approx 1.2549$

For base $a=e$, the earlier equations (*) become:

$$
e^{\ln x}=x \quad \text { and } \ln \left(e^{x}\right)=x
$$

The graphs look like:

Notice how in reflecting across the line $y=x$, the horizontal asymptote (x-axis) of $y=e^{x}$ turns into a vertical asymptote (the y-axis) for the graph of the inverse $y=\ln x$.

We know that for $f(x)=e^{x}, f^{\prime}(x)=f^{\prime \prime}(x)=e^{x}$. Since the first and second derivatives are both >0 always, e^{x} is always increasing and concave up (as the graph of e^{x} seems to show.).

We will see soon that for $g(x)=\ln x$:

$$
\begin{aligned}
& g^{\prime}(x)=\frac{1}{x}, \quad \text { and so } \\
& g^{\prime \prime}(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Since $g(x)$ is only defined for $x>0, \frac{1}{x}$ is always >0 so the graph of $y=\ln x$ is always increasing. Since $-\frac{1}{x^{2}}<0$ always, the graph of $y=\ln x$ is always concave down (as the graph of $\ln x$ seems to indicate).

Notice finally that:
$\lim _{x \rightarrow \infty} e^{x}=\infty, \quad \lim _{x \rightarrow-\infty} e^{x}=0$
$\lim _{x \rightarrow 0^{+}} \ln x=-\infty$ and $\lim _{x \rightarrow \infty} \ln x=\infty$.
(The last limit seems a little counterintuitive: the graph of $\ln x$ has a slope $\frac{1}{x}$ approaching 0 as $x \rightarrow \infty$, so one might feel $\ln x$ should have a horizontal asymptote. But a little thought shous that $\ln x$ can be made as large as we like by taking x large enough. For example:

$$
\ln x>1000 \text { if } x=e^{\ln x}>e^{1000}
$$

Of course, e^{1000} is very large: $e^{1000}>10^{333}$ (why?!?). It takes a long while for the graph of $\ln x$ to rise about height 1000 , but it does eventually do so. Similarly, $\ln x>1000000$ if $x=e^{\ln x}>e^{1000000}$.

