Derivatives and the Shapes of Curves
http://www.math.wustl.edu/~freiwald/Math131/shapes.pdf

$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
Increasing	$f^{\prime}(x)>0$	
Decreasing	$f^{\prime}(x)<0$	

Concave up
$f^{\prime}(x)$ increasing
$f^{\prime \prime}(x)>0$
Concave down
$f^{\prime}(x)$ decreasing
$f^{\prime \prime}(x)<0$

A critical point c of $f(x)$ is a point in the domain of f (not an endpoint) where either f ${ }^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist. Local maxima/minima, if they exist, can only occur at critical points (but some critical points may turn out to be neither a local maximum nor minimum).

A local maximum occurs at a if $f^{\prime}(x)$ switches from critical point c
positive to negative at c
if $f^{\prime}(x)$ switches from negative to positive at c

$$
f^{\prime \prime}(c)<0
$$

(assuming that near $c, f^{\prime \prime}$ is continuous)

A local minimum occurs at a critical point c

$$
f^{\prime \prime}(c)>0
$$

(assuming that near $c, f^{\prime \prime}$ is continuous)

An inflection point occurs at a point c in the domain of f if the graph of $f(x)$ changes concavity (from up to down, or vice-versa) at the point c. Inflection points may occur at points where $f^{\prime \prime}(c)=0$ or where $f^{\prime \prime}(c)$ doesn't exist (but some such points c may turn out not to be inflection points after all.

If c is a point where $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ doesn't exist
An inflection point occurs at $c \quad$ if $f^{\prime \prime}(x)$ changes sign (positive to negative or vice-versa) at c.

