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Proof   Let .  Since  and  are points interior to , we can choose positive radii.Ð+ß ,Ñ œ  ! + , E%
% % % %+ , + , and  so that int  and int .  In choosing, we may also take both  and F Ð+Ñ © E F Ð,Ñ © E% %+ ,

less than   Let min   Then clearly the closed balls  and%
#

w w
+ , +Þ œ Ö ß ×Þ J œ ÖB À .ÐBß +Ñ Ÿ ×% % % %

J œ ÖB À .ÐBß ,Ñ Ÿ × ñ,
w%  meet the conditions required.   

Proof of Theorem 3.6   The idea of the proof is to construct inductively  descending sequences-
of closed sets, each satisfying the condition 2) in the Cantor Intersection Theorem, and to do this
in a way that the intersection of each sequence gives a  point in .  It then follows thatdifferent \
l\l   -Þ The idea is simple although the notation gets a bit complicated.  First we will give the
idea of how the construction is done.  The actual details of the induction step are relegated to the
end of the proof.
  is nonempty and has no isolated points, so there must exist two points .\ B Á B − \! "

Pick disjoint closed balls  and , centered at  and , each with diameterJ J B B  Þ! " ! "
"
#

 Since int  and  is not isolated, we can pick distinct points and (bothB − J B B B! ! ! !! !" 
Á B J J J B! ! !! !" !!) in int  and use Lemma 3.5 to pick disjoint closed balls  and  (centered at and 
B © J Þ!" !) and both int We can then shrink the balls, if necessary, so that each has diameter
 Þ"

##

 We can repeat the  with  since int  and  is not isolated, wesame procedure J À B − J B" " " "

can pick distinct points and (both ) in int  and use the Lemma 3.5 to pick disjointB B Á B J"! "" " " 
closed balls  and  (centered at and ) and both int We can then shrink theJ J B B © J Þ"! "" "! "" " 
balls, if necessary, so that each has diameter   Þ"

##

 We now repeat the same construction inside  of the 4 sets .  Foreach J ß J ß J ß J!! !" "! ""

example,  we can pick distinct points and (both ) in int  and use the Lemma 3.5B B Á B J!!! !!" !! !! 
pick disjoint closed balls  and  (centered at and ) and both int We canJ J B B © J Þ!!! !!" !!! !!" !! 
 then shrink the balls, if necessary, so that each has diameter      Þ"

#$ See the figure below.

At this stage we have the beginnings for 8 descending sequences of nonempty closed sets.  In
each sequence, at the  “stage,” the sets have diameter .8 th "

#8
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     J!!!

    J ª!!

     J!!"

        J ª!

     J!"!

    J ª!"

      J!""

and

   
     J"!!

    J ª"!

     J"!"

      J ª"

     J""!

    J ª""

      J"""

 We continue inductively ( ) in this way each descending sequencesee the details below 
splits into two new “disjoint branches” at each stage.  For the next step, we make sure that we
choose nonempty disjoint closed sets that descend “deeper” and that their diameters keep
shrinking toward .!

 In the end, we will have one such descending sequence of closed sets for each
for each  (that is, for each binary sequence).= œ Ð8 ß 8 ß ÞÞÞß 8 ß ÞÞÞÑ − Ö!ß "×" # 5



  For example, the binary sequence  corresponds= œ Ð!ß "ß "ß !ß !ß "ÞÞÞÑ − Ö!ß "×

  to the descending sequence of closed sets

     J ª J ª J ª J ª J ª J ª ÞÞÞ! !" !"" !""! !""!! !""!!"

 The Cantor Intersection theorem tells us for each such ,  there is an such that= B − \=

  J  J  J  ÞÞÞ  J  ÞÞÞ œ J œ ÖB ×8 8 8 8 8 8 8 8 ÞÞÞ8 8 8 ÞÞÞ8 =5œ"
_

" # # " # $ " # " #5 5
+

For two different binary sequences, say , there> œ Ð7 ß7 ß ÞÞÞß7 ß ÞÞÞÑ Á Ð8 ß 8 ß ÞÞÞß 8 ß ÞÞÞÑ œ =" # 5 " # 5

is a   for which .  Then  and .  Since thesesmallest 5 7 Á 8 B − J B − J5 5 = 8 8 ÞÞÞ8 8 8 8 ÞÞÞ8 7" # > " #5" 5 5" 5

sets are disjoint, we have .  Thus, mapping  gives a  function from B Á B = È B "  " Ö!ß "×= > = 


into .  We conclude that \ - œ # œ lÖ!ß "×l Ÿ l\lÞi! 

Here are the details of the formal induction step in the proof..

Induction Hypothesis: Suppose we have completed  stages that is, for each 5  3 œ "ß ÞÞÞß 5
and for each -tuple we have defined points and closed balls3 Ð8 ß ÞÞÞß 8 Ñ − Ö!ß "× B" 3 8

3
" 3...n

J B ÐJ Ñ 8 ÞÞÞ8 8 8 ÞÞÞ8
"
#" 3 " 3 " 3 3centered at , with diam  and so that...n
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  for each , Ð8 ß ÞÞÞß 8 Ñ J ª J ª ÞÞÞ ª J" 3 8 8 8 8 8 ÞÞÞ8" " # " # 3

Induction step:  We must construct the sets for stage   For each -tuple5  "Þ Ð5  "Ñ
Ð8 ß ÞÞÞß 8 ß 8 Ñ − Ö!ß "× B" 5 5" 8 ÞÞÞ8 8

5", we need to define a point and a closed ball
" 5 5"

J8 ÞÞÞ8 8" 5 5" in such a way that the conditions in the induction hypothesis remain true with
5  " 5 replacing .
     For any :  we have int .  Since is notÐ8 ß ÞÞÞß 8 Ñ B − J B" 5 8 ßßß8 8 ÞÞÞ8 8 ßßß8" " "5 5 5

isolated, we can pick distinct points  and  (both ) in intB B Á B  J8 ÞÞÞ8 ! 8 ÞÞÞ8 " 8 ÞÞÞ8 8 8" " " "5 5 5 5...
and use the Lemma 3.5 to pick disjoint closed balls  and  (centered atJ J8 8 ! 8 8 "" "5 5... ...
B B © J8 ßßß8 ! 8 ÞÞÞ8 " 8 8" " "5 5 5

 and ) and both int .  We can then shrink the balls, if necessary,...
so that each has diameter  Þ ñ"

#5

Corollary 3.7   If  is a nonempty complete separable metric space with no isolated points,Ð\ß .Ñ
then .l\l œ -

Proof  Theorem II.5.21 (using separability) tells us that ;  Theorem 3.6 gives usl\l Ÿ -
l\l   -Þ ñ  

The following corollary gives us another variation on the basic result.

Corollary 3.8  If is an uncountable complete separable metric space, then .Ð\ß .Ñ l\l œ -
(So we might say that “the Continuum Hypothesis holds among complete separable metric
spaces.” )

Proof   Since is separable, Theorem II.5.21 gives us .Ð\ß .Ñ l\l Ÿ -

 Call a point  a  if every neighborhood of  is uncountable. LetB − \ Bcondensation point
G \ + − \  G be the set of all condensation points in .  Each point  has a countable open
neighborhood . Each point of  is also a non-condensation point, so .S S + − S © \ G
Therefore  is open so  is closed and  is a complete metric space.\ G G ÐGß .Ñ
 Since  is separable (and therefore second countable),  is also secondÐ\ß .Ñ \  G
countable and therefore Lindelof.  Since  can be covered by countable open sets, it can be¨ \ G
covered by countably many of them, so  is countable: therefore  (in fact,  must be\ G G Á g G
uncountable).
 Finally,  has no isolated points: if  were isolated , then there would be anÐGß .Ñ , − G in G
open set  in  with .  Since ,  would be countable which isS \ S  G œ Ö,× S  Ö,× © \  G S 
impossible since  is a condensation point.,
 Corollary 3.7 therefore applies to , and therefore ÐGß .Ñ l\l   lGl   -Þ ñ

Why was the idea of a “condensation point” introduced?  Will the proof work if, throughout, we
replace “condensation point” with “non-isolated point?” If not, precisely where would the proof
break down?

The next corollary answers a question we raised earlier: is there a metric  on  which is. w 
equivalent to the usual metric  but for which  is complete that is, is  “completely. Ð ß . Ñ  w

metrizable?”
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Corollary 3.9    is not completely metrizable.

Proof  Suppose  is a metric on   to the usual metric , so that Then. . œ Þw
. . g gequivalent w

Ð ß . Ñ . µ . Ð ß . Ñ w w w is a nonempty metric space and, since , the space  has no isolated points
(no set  is in “isolated point” is a  notion.).  If  were complete,Ö;× œ À Ð ß . Ñg g . .

w
w topological

Theorem 3.6 would imply that  is uncountable.     ñ
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Exercises

E1.  Prove that in a pseudometric space , :Ð\ß .Ñ the following are equivalent

 a) every Cauchy sequence is eventually constant
 b)  is complete  and   is the discrete topologyÐ\ß .Ñ g.
 c) for every a Cauchy sequence in  converges to a point in E © \ß E E
 (i.e., every subspace of is complete).Ð\ß .Ñ

E2.   Suppose that  is a dense subspace of the pseudometric space  and that everyX Ð] ß .Ñ
Cauchy sequence in  converges to some point in .  Prove that  is complete.X Y Ð] ß .Ñ

E3.   Suppose that  is a metric space and that  is a Cauchy sequence with onlyÐ\ß .Ñ ÐB Ñ8
finitely many distinct terms.  Prove that  is eventually constant, i.e., that for some ,ÐB Ñ 8 −8 
B œ B œ ÞÞÞ8 8"

E4.  Let  be a fixed prime number.  On the set  of rationals, the p  :-adic absolute
value |  |  (sometimes called the -adic norm) is defined by:: :

If 0 , we write for integers , where  does not divide  or  andÁ B − B œ p m
n
k

 k,m,n p m n,
let  and define | | .  ( ).  We define  | |B œ : œ ! œ !Þ: :

5 "
:5

Of course,  may be negative.5

For all ,Bß C − 

 a)  and  iff l Bl   ! l Bl œ ! B œ !: :

 b) l BCl œ l Bl † l Cl: : :

 c) l B  Cl Ÿ l Bl  l Cl: : :

 d) maxl B  Cl Ÿ Öl Bl ß l Cl × Ÿ Bl  l Cl: : : : :

The -adic metric  is defined on  by  : . . ÐBß CÑ œ lB  Cl: : :

Prove or disprove that ( ) is complete.ß .:

E5.   Suppose that is complete, that  is a Hausdorff space and that Ð\ß .Ñ Ð] ß Ñ 0 À \ Ä ]g
is continuous. Suppose that  is a sequence of closed sets for whichJ" # 8ª J ª ª J ª... ...
diam 0.  Prove that .ÐJ Ñ Ä 0Ò J Ó œ 0Ò J Ó8 88œ" 8œ"

_ _+ +8
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E6.  A metric space is called  if every point  has a neighborhoodÐ\ß .Ñ B Rlocally complete B

(necessarily closed) which is complete.  Prove that if  is a locally complete dense subspaceÐ\ß .Ñ
the complete metric space , then  is open in .Ð] ß .Ñ \ ]
(Hint: it may be helpful to recall that in any space : if O is open and D is dense, thenÐ\ß Ñg
 cl ( ) = cl(O).S H )
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4.  The Contraction Mapping Theorem

Definition 4.1  A point  is called a  for the function   if B − \ 0 À \ Ä \ 0ÐBÑ œ BÞfixed point
We say that a topological space  has the  if every continuous \ 0 À \ Ä \fixed point property
has a fixed point.

It is easy to check that the fixed point property is a topological property.

Example 4.2

 1) A function  has a fixed point if and only if the graph of  intersects the line0 À Ä 0‘ ‘
C œ B.
     It's easy to see that if  is the characteristic function of a set , then  is the set; ‘E E © E
of fixed points for the function    0ÐBÑ œ B † ÐBÑÞ;E Is every set  the set of fixed points forE © ‘
some  function  ?  Are there any restrictions on the cardinality of ?continuous 0 À Ä E‘ ‘

 2) The interval  has the fixed point property.  To see this, suppose thatÒ+ß ,Ó
0 À Ò+ß ,Ó Ä Ò+ß ,Ó 0Ð+Ñ œ + 0Ð,Ñ œ , 0  is continuous.  If or , then  has a fixed point so without
loss of generality, we assume that  and  and define .  Since 0Ð+Ñ  + 0Ð,Ñ  , 1ÐBÑ œ 0ÐBÑ  B 1
is continuous and  and , the Intermediate Value1Ð+Ñ œ 0Ð+Ñ  +  ! 1Ð,Ñ œ 0Ð,Ñ  ,  !
Theorem (from calculus) tells us that there is a point  with , that is,- − Ð+ß ,Ñ 1Ð-Ñ œ 0Ð-Ñ  - œ !
0Ð-Ñ œ -Þ 0  So  has a fixed point.

 3) The  generalizes the preceding example.  It states thatBrouwer Fixed Point Theorem
the solid ball  has the fixed point property.  (In the case , H œ ÖB − À .ÐBß !Ñ Ÿ "× 8 œ " H8 8 8‘
is homeomorphic to .)  The proof of Brouwer's theorem is much more difficult and the usualÒ+ß ,Ó
proofs use technique from algebraic topology.
    In fact, the theorem can be generalized even further as the Schauder Fixed Point
Theorem: every nonempty compact convex subset  of a Banach space has the fixed pointO
property.

We will see that knowing whether a function  has a fixed point can sometimes be very0 À \ Ä \
useful. So we will look at an important kind of mapping for which this is true.

Definition 4.3  A function is a  (or just a ,0 À Ð\ß .Ñ Ä Ð\ß .Ñ contraction mapping contraction
for short) if there is a constant  with  and such that for all ! !!   " Bß C − \ß
.Ð0ÐBÑß 0ÐCÑÑ Ÿ .ÐBß CÑÞ!

Notice that a contraction  is automatically continuous:  for every , we can choose .0  ! œ% $ %
Then, for any  implies .B − \ß .ÐBß CÑ  .Ð0ÐBÑß 0ÐCÑÑ  $ !$ %

In fact, the choice of  depends  on  and not the point .  In this case we say that $ %only B 0
is .  The definition of the continuity of  reads:uniformly continuous 0

    (aB a b aC .ÐBß CÑ  Ê .Ð0ÐBÑß 0ÐCÑÑ  Ñ% $ $ %

The definition of the uniform continuity of  demands more:0
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    (a b aB aC .ÐBß CÑ  Ê .Ð0ÐBÑß 0ÐCÑÑ  Ñ% $ $ %

Example 4.4

 1)  given by   is a contraction since, for any ,0 À Ò!ß Ó Ä Ò!ß Ó 0ÐBÑ œ B Bß C − Ò!ß Ó" " "
% % %

#

l0ÐBÑ  0ÐCÑl œ lB  C l œ lB  CllB  Cl Ÿ lB  Cl# # "
# .

 2) However,  given by  is not a contraction.  To be a contraction0 À Ä 0ÐBÑ œ B‘ ‘ #

would require that there exist some  such that the inequality! − Ð!ß "Ñ

   holds for all choices of ,  which would mean thatlB  C l Ÿ lB  Cl Bß C# # !

    would have to hold for all choices of   (which is false).lB  Cl Ÿ B Á C!

One can also see that  is not a contraction by noting that is  uniformly continuous.0 0 À Ä‘ ‘ not
For example, if , then no suitable  can be found.  In fact, for any choice of , we can% $ $œ #  !

let  and .  Then .B œ C œ  l0ÐBÑ  0ÐCÑl œ #   ## #
# %$ $
$ $#

Theorem 4.5 (The Contraction Mapping Theorem)   If  is a nonempty complete metricÐ\ß .Ñ
space and  is a contraction, then has a unique fixed point.0 À \ Ä \ 0

The Contraction Mapping Theorem is often a useful tool to produce a fixed point.  Moreover, the
proof of the Theorem 4.5 is also important since it indicates how to make some useful numerical
estimates ( )See Picard's Theorem, below, and the example which follows it.

Proof   Suppose  and that  for all  . Pick  point!   " .Ð0ÐBÑß 0ÐCÑ Ÿ .ÐBß CÑ Bß C − \! ! any
B − \ 0!  and repeatedly apply the function , defining

   B œ 0ÐB Ñß" !

   B œ 0ÐB Ñ œ 0Ð0ÐB ÑÑ œ 0 ÐB Ñ# " ! !
#

    …
   B œ 0ÐB Ñ œ ÞÞÞ œ 0 ÐB Ñ8 8" !

8

    …
We claim that the sequence  is Cauchy and converges to a fixed point for .  (Intuitively, youÐB Ñ 08

can think of a “control system” where the initial input is  and each output becomes the newB!

input in a “feedback loop.” The system, we argue, must approach a “steady state” where
“input output.”)œ

Suppose .  We estimate the size of   (Without loss of generality ( ), we can%  ! .ÐB ß B ÑÞ8 7 why?
assume 7  8Þ

         .ÐB ß B Ñ œ .Ð0 ÐB Ñß 0 ÐB ÑÑ œ .Ð0Ð0 ÐB ÑÑß 0Ð0 ÐB ÑÑÑ8 7 ! ! ! !
8 7 8" 7"

   
   Ÿ .Ð0 ÐB Ñß 0 ÐB ÑÑ Ÿ .Ð0 ÐB Ñß 0 ÐB ÑÑ! !8" 7" # 8# 7#

! ! ! !

    Ÿ ÞÞÞ Ÿ .ÐB ß 0 ÐB ÑÑ œ .ÐB ß B Ñ! !8 78 8
! ! ! 78
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   Ÿ Ð.ÐB ß B Ñ  .ÐB ß B Ñ  ÞÞÞ  .ÐB ß B ÑÑ!8
! " " # 78" 78

   Ÿ Ð.ÐB ß B Ñ  .ÐB ß B Ñ  .ÐB ß B Ñ  ÞÞÞ  .ÐB ß B ÑÑ! ! ! !8 # 78"
! " ! " ! " ! "

   œ .ÐB ß B Ñ Ð"    ÞÞÞ  Ñ  .ÐB ß B Ñ! ! ! ! ! !8 # 78" 8 5
! " ! " 5œ!

_!
    as .œ Ä ! 8 Ä _

!
!

8
! ".ÐB ßB Ñ

"

Therefore if some , we have , so  is Cauchy.  Since is7  8  R .ÐB ß B Ñ  ÐB Ñ Ð\ß .Ñ8 7 8%
complete, there is some  such that .B − \ ÐB Ñ Ä B8

By continuity, .  But  .  Since  is a metric, the sequenceÐ0ÐB ÑÑ Ä 0ÐBÑ Ð0ÐB ÑÑ œ ÐB Ñ Ä B .8 8 8"

Ð0ÐB ÑÑ 0ÐBÑ œ B8  has at most one limit, so .  (If  were merely a pseudometric, we could only.
conclude that ..ÐBß 0ÐBÑÑ œ ! )

If  is a fixed point for , then .  This implies thatC 0 .ÐBß CÑ œ .Ð0ÐBÑß 0ÐCÑÑ Ÿ .ÐBß CÑ!
.ÐBß CÑ œ !  "Ñ B œ C  B(since  so that is, the fixed point  is unique.  (! If  were merely a.
pseudometric,  could have several fixed points at distance  from each other.)  0 ! ñ

Notes about the proof

 1) The proof gave us that if , then  for each .  If  we7  8 .ÐB ß B Ñ  8 −8 7
.ÐB ßB Ñ
"

!
!

8
! " 

fix  and let , we get that .  Thus we have a computable bound on8 7 Ä _ .ÐB ß BÑ Ÿ8
.ÐB ßB Ñ
"

!
!

8
! "

how the how well  approximates the fixed point .B B8

 2) We can think of  as an “approximate fixed point” in the sense that, for large , B 8 08

doesn't move the point  very far.  To be specific,B8

     .ÐB ß 0ÐB ÑÑ Ÿ .ÐB ß BÑ  .ÐBß 0ÐB ÑÑ œ .ÐB ß BÑ  .Ð0ÐBÑß 0ÐB ÑÑ8 8 8 8 8 8

   Ÿ .ÐB ß BÑ  .ÐBß B Ñ œ Ð"  Ñ .ÐB ß BÑ8 8 8! !

    as .Ÿ Ð"  Ñ Ä ! 8 Ä _!
!

!

8
! ".ÐB ßB Ñ

"

Example 4.6  Consider the following functions mapping the complete space  into itself:‘

  1) :   is (uniformly) continuous, is not a contraction, and has0ÐBÑ œ #B  " 0
B œ  " as s unique fixed point.
  2)  is not a contraction and has no fixed point.1ÐBÑ œ B  "#

  3) sin has infinitely many fixed points.2ÐBÑ œ B  B

We are going to use the Contraction Mapping Theorem to prove a basic theorem about the
existence and uniqueness of a solution for a certain kind of problem involving differential
equations.  To do that, we need to work inside of the “correct” complete metric space. The
following example and theorem give us that space.

Example 4.7 Let  be a topological space and  be the set of  continuous real-\ G Ð\Ñ‡ bounded
valued functions , with the metric sup .  (0À\ Ä Ð0ß 1Ñ œ Ö ± 0ÐBÑ  1ÐBÑ ± À B − \×‘ 3 Since
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0ß 1 are bounded, this sup is always a real number.  It is easy to check that  is a metric3 .)  The
metric  is called the metric of “uniform convergence” since  implies that3 3 %Ð0 ß 1Ñ 
± 0ÐBÑ  1ÐBÑl  B − \  0 1% at every point that is,  is “uniformly close” to .

   In the specific case of , the statement that a sequence  simplyÐG Ð Ñß Ñ Ð0 Ñ Ä 0‡
8‘ 3

3

states in the familiar language of advanced calculus that  converges to  uniformly  Ð0 Ñ 08

on .‘
 

Theorem 4.8    is complete.ÐG Ð\Ñß Ñ‡ 3

Proof   Suppose that  is a Cauchy sequence in : given , there is some  soÐ0 Ñ ÐG Ð\Ñß Ñ  ! R8
‡ 3 %

that  whenever .  In particular, this means that for any fixed ,3 %Ð0 ß 0 Ñ  8ß7  R B − \8 7

3 % ‘Ð0 ÐBÑß 0 ÐBÑÑ  8ß7  R Ð0 ÐBÑÑ8 7 8whenever .  Therefore  is a Cauchy sequence in , so
Ð0 ÐBÑÑ Ä < − 0ÐBÑ œ < 0 À Ä Þ8 B Bsome .  We define .  In this way we get a function   To‘ ‘ ‘

complete the proof, we claim that  and that 0 − G Ð\Ñ Ð0 Ñ Ä 0‡
8

3

 
         First we argue that  is bounded.  Pick  so that  whenever  .0 R Ð0 ß 0 Ñ  " 8ß7   R3 8 7

For , this gives  for  and therefore, for every 7 œ R Ð0 ß 0 Ñ  " 8   R B − \ß3 8 R

l0 ÐBÑ  0 ÐBÑl  " 8 Ä _ l0ÐBÑ  0 ÐBÑl Ÿ " BÞ8 R R.  If we now let , we conclude that  for every 
Since is bounded, there is a constant  such that  for every .  We therefore0 Q l0 ÐBÑl Ÿ Q BR R

have, for every B À
 
                       " Ÿ 0ÐBÑ  0 ÐBÑ Ÿ "R

   Q  " Ÿ 0 ÐBÑ  " Ÿ 0ÐBÑ Ÿ 0 ÐBÑ  " Ÿ Q  "R R

                            l0 ÐBÑl Ÿ Q  "R

So  is bounded.0

         We now claim that .  (Ð0 Ñ Ä 08

3
Note:  Technically, this is an abuse of notation because  3

has only been defined on  and we don't yet know that  is in ! However, the sameG Ð\Ñ 0 G Ð\Ñ‡ ‡

definition of  would make sense on any collection of  real-valued functions, continuous3 bounded
or not.  We are using that observation here. )  Let  and pick  so that % 3 ! R Ð0 ß 0 Ñ 8 7 #

%

whenever .  Then  whenever .  Letting , we get7ß8   R l0 ÐBÑ  0 ÐBÑl  8ß7   R 7 Ä _8 7 #
%

that

    for all  and all .l0 ÐBÑ  0ÐBÑl Ÿ B 8   R8 #
%

Therefore  if .3 %Ð0 ß 0Ñ  8   R8

 Finally, we claim that  is continuous.  Suppose  and .  Pick  so that if0 + − \  ! R%
8   R Ð0 ß 0Ñ  8   Rß l0 ÐBÑ  0ÐBÑl  B − \ then .  This implies that when  for every .3 8 8$ $

% %

Since the function  is continuous at , we can find a neighborhood  of  in  such that0 + [ + \R

l0 ÐBÑ  0 Ð+Ñl  B − [ÞR R $
% if 

 Therefore, if , we haveB − [

   l0ÐBÑ  0Ð+Ñl Ÿ l0Ð+Ñ  0 Ð+Ñl  l0 Ð+Ñ  0 ÐBÑl  l0 ÐBÑ  0ÐBÑl    œR R R R $ $ $
% % % %
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so  is continuous at .  0 + ñ

Theorem 4.9 (Picard's Theorem)   Suppose  is continuous, where  is a closed box0 À H Ä H‘
in  and let int .  Suppose that there exists a constant  such that for all ‘#

! ! " "ÐB ß C Ñ − H Q ÐB ß C Ñ
and  in ÐB ß C Ñ H" #

       (L)± 0ÐB ß C Ñ  0ÐB ß C Ñ ± Ÿ Q ± C  C ±" " " # " #

Then

 i) there exists an interval   { ,  andM œ ÒB  +ß B  +Ó œ BÀ ± B  B ± Ÿ +×! ! !

 ii) there exists a unique differentiable function 1 À M Ä ‘

such that   for  œ C œ 1ÐB Ñ
1 ÐBÑ œ 0ÐBß 1ÐBÑ

B − M! !
w

 
In other words, on some interval  centered at , there is a unique solution to the initial valueM B!

problem

    œ C œ 0ÐBß CÑ
CÐB Ñ œ C

Ð‡Ñ
w

! !

Before beginning the proof, we want to make some comments about the hypotheses.

 1) The condition (L) on the function  is called 0 Lipschitz condition in the variable .C
It may seem a bit obscure.  For our purposes, it's enough to note that (L) holds if the partial
derivative  exists and is continuous on the box .  In that case, we know (from advanced0 HC

calculus) that | | some constant  on .  We can think of  as a single-variable0 Ÿ Q H 0ÐB ß CÑC "

function of  and use the ordinary Mean Value Theorem to get that, for some  between  andC D C"
C ß#

  |   0ÐB ß C Ñ  0ÐB ß C Ñl œ l0 ÐB ß DÑl † lC  C l Ÿ QlC  C l" " " # C " " # " #

 2) As a concrete example, suppose , that , and that (say)0ÐBß CÑ œ C  B ÐB ß C Ñ œ Ð!ß !Ñ! !

H œ Ò  "ß "Ó ‚ Ò  "ß "Ó 0 œ ".  Since , the preceding comment 1) assures us that condition (L)C

holds.
     Picard's Theorem asserts that there is a unique differentiable function ,C œ 1ÐBÑ
defined on some interval  for which  and for which .Ò  +ß +Ó 1Ð!Ñ œ ! 1 ÐBÑ œ 0ÐBß 1ÐBÑÑw

In other words,  the “initial value problem”

   œ C œ C  B
CÐ!Ñ œ !

w



170

has a unique solution defined on some interval containing the origin. We shall see, moreover, that
the proofs of Picard's Theorem and the Contraction Mapping Theorem can actually help us to find
such a solution.  Once a solution is actually found, it  turn out to be valid on some intervalmight
larger than the interval  that comes out of the proof.M

Proof of Picard's Theorem

We begin by picking some things.
  
 The constant  is given in the hypotheses.Q
   
 Pick  so that  on the set .  (O 0ÐBß CÑ Ÿ O H We will prove later that a
 continuous function on a closed box in  must be bounded.  For now, we‘#

 assume that as a fact taken from advanced calculus. )
   
 Pick a constant  so that     +  !

    i)     and+Q  "
   ii) ÖBÀ B  B l Ÿ +× ‚ ÖCÀ C  C Ÿ O+× © H! !

 Let M œ ÖBÀ lB  B l Ÿ +× œ ÒB  +ß B  +Ó! ! !

Next, we transform the initial value problem  into an equation involving an integralÐ‡Ñ
equation rather than a differential equation.Ð‡‡Ñ

 Suppose  is a continuous function on  and  satisfies (*).  Since C œ 1ÐBÑ M 1ÐBÑ 0
 is continuous, we know that  is continuous. ( )1 ÐBÑ œ 0ÐBß 1ÐBÑÑw Why?
 Therefore the Fundamental Theorem of Calculus gives us that for ,   B − M
 , ,  so1ÐBÑ  1ÐB Ñ œ 0Ð> 1Ð>ÑÑ .>! B

B'
!

    
     ,   (**)1ÐBÑ œ C  0Ð> 1Ð>ÑÑ .>! B

B'
!

 On the other hand, if  is a continuous function on  and  satisfiesC œ 1ÐBÑ M 1ÐBÑ
 the equation (**), then ) and, since  is continuous, theC œ 1ÐB 0Ð>ß 1Ð>ÑÑ! !

 Fundamental Theorem gives that for ,   = B − M 1 ÐBÑ 0ÐBß 1ÐBÑÑw

 so the function  satisfies (*).1ÐBÑ
  
It is equivalent, then, for us to find a  satisfying (**) rather than (*).  (1 Note
that the initial condition is“built into” the single equation C œ 1ÐB Ñ Ð‡‡ÑÞ! ! )
  

We consider , where  is the metric of uniform convergence.  By Theorem 4.8, thisÐG ÐMÑß Ñ‡ 3 3
space is complete.  Let  . (F œ Ö1 − G ÐMÑ À a> − Mß ± 1Ð>Ñ  C ± Ÿ O+×‡

! We want to consider
only the subset  because if  and , then we will have  and  willF 1 − F > − M Ð>ß 1Ð>ÑÑ − H 0Ð>ß 1Ð>ÑÑ
be defined.)  Notice that  since the constant function  is certainly in .F Á g 1ÐBÑ ´ C F!
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We claim is also complete.  To see that, we prove that  is closed in .  If cl ,ÐFß Ñ F G Ð\Ñ 2 − F3 ‡

then there is sequence of functions  in  such that  in the metric .  Therefore forÐ1 Ñ F Ð1 Ñ Ä 28 8 3
all , , so (subtracting ) we getB − M 1 ÐBÑ Ä 2ÐBÑ C8 !

 l1 ÐBÑ  C ± Ä ± 2ÐBÑ  C ±8 ! !

Since  for each , then |  for each .  Therefore± 1 ÐBÑ  C ± Ÿ O+ B − M 2ÐBÑ  C ± Ÿ O+ B − M8 ! !

2 − F F, so  is closed.
  
For , define a function by1 − F 2 œ XÐ1Ñ

 ( ) .2ÐBÑ œ X 1 ÐBÑ œ C  0Ð>ß 1Ð>ÑÑ .>! B
B'
!

Notice that  is continuous (in fact, differentiable) and also that, for every ,2 B − M

l2ÐBÑl Ÿ C  0Ð>ß 1Ð>ÑÑ .> Ÿ C  0Ð>ß 1Ð>ÑÑ .> Ÿ C  O .> Ÿ lC l  O+| | | | | | | |  | |  ,! ! ! !B B B
B B B' ' '
! ! !

so  is bounded.  Therefore .   In fact,  is true:  , because2 X À F Ä G ÐMÑ X ÀF Ä F‡ more

  ,  | | | | aB − M XÐ1ÑÐBÑ  C œ 2ÐBÑ  C l œ l 0Ð>ß 1Ð>ÑÑ .> Ÿ O+! ! B

B'
!

We now claim that  is in fact a contraction.  To see this, we computeX À ÐFß Ñ Ä ÐFß Ñ3 3
distances:  if  and  , then1 1 − F" #

3ÐX Ð1 Ñ X Ð1 Ñl œ XÐ1 ÐBÑ  XÐ1 ÐBÑÑ À B − M" " " #,  sup { | ) | }
   sup { | | }œ 0Ð>ß 1 Ð>ÑÑ  0Ð>ß 1 Ð>ÑÑ .> À B − M'

B

B
" #

!

   sup { | | |  |  }Ÿ 0Ð>ß 1 Ð>ÑÑ  0Ð>ß 1 Ð>ÑÑ .> À B − M'
B

B
" #

!

   sup { | |  | }  ( from (L) )Ÿ Q l1 Ð>Ñ  1 Ð>Ñ .> À B − M'
B

B
" #

!

   sup{ |  | }Ÿ Q Ð1 ß 1 Ñ .> À B − M'
B

B
" #

!
3

   sup { }œ Q Ð1 ß 1 Ñ ± B  B l À B − M3 " # !

   œ +Q Ð1 ß 1 Ñ3 " #

   ,  where   1  (by choice of ).œ Ð1 ß 1 Ñ œ +Q  +!3 !" #

 Since  is a nonempty, complete metric space, the Contraction Mapping Theorem tells usF
that there is a unique function  such that . By definition of , that simply means:1 − F XÐ1Ñ œ 1 X

  ,  ,aB − M 1ÐBÑ œ XÐ1ÑÐBÑ œ C  0Ð> 1Ð>ÑÑ.>! B

B'
!

which is precisely condition (**).   ñ
  
Example 4.10  The proof of Picard's Theorem and the numerical estimates from the proof of the
Contraction Mapping Theorem can both be used to get useful information about a concrete initial
problem.  To illustrate, we will consider

  œ C œ C  B
CÐ!Ñ œ !

w

and find a solution valid on some interval containing 0.
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We begin by choosing a box  with  in its interior. Rather arbitrarily, we selectH Ð!ß !Ñ
H œ Ò  "ß "Ó ‚ Ò  "ß "ÓÞ l0ÐBß CÑl œ lC  Bl Ÿ lBl  lCl Ÿ # H O œ #  Since  on , we can use  in
the proof.

Because |  throughout , the Lipschitz condition (L) will be satisfied with  0 ÐBß CÑl œ " H Q œ "ÞC

 
Following the proof of Picard's Theorem, we now choose a constant  so that+

 i)   and+Q  "
 ii) ÖB À lBl Ÿ +× ‚ ÖC À lCl Ÿ +O œ #+× © HÞ

Somewhat arbitrarily, we choose , so that in the proof .   We then have+ œ M œ Ò  ß Ó" " "
# # #

F œ Ö1 − G ÐMÑ À l1ÐBÑ  !l Ÿ O+× œ Ö1 − G ÐMÑ À 1ÐBÑl Ÿ " B − M×‡ ‡ |  for all .

Finally, we then choose any function ; in the interests of simplicity, we might as well1 − F!

choose  to be the constant function  on .1 ! M!

According to the proof of the Contraction Mapping Theorem, the sequence of functions
Ð1 Ñ œ ÐX Ð1 ÑÑ Ä 1 1 X8 !

8 3
, where  is a fixed point for , which is the solution to our initial value

problem.  We can calculate:

 1 ÐBÑ œ C  0Ð>ß 1 Ð>ÑÑ .> œ !  0Ð>ß !Ñ .> œ  > .> œ " ! !B ! !

B B B B
#

' ' '
!

#

 1 ÐBÑ œ XÐ1 ÐBÑÑ œ !  0Ð>ß  Ñ .> œ   > .> œ  # " ! !

B B> > B B
# # ' #

' '# # $ #

 1 ÐBÑ œ XÐ1 ÐBÑÑ œ 0Ð>ß   Ñ .> œ    > .> œ   $ # ! !

B B> > > > B B B
' # ' # #% ' #

' '$ # $ # % $ #

and, in general,

 1 ÐBÑ œ XÐ1 ÐBÑÑ œ ÞÞÞ œ    ÞÞÞ 8 8"
B B B
#x $x Ð8"Ñx

# $ 8"

and the functions  converge (uniformly) to the solution we seek.1 ÐBÑ8

In this particular problem, we are lucky enough to recognize that the functions  are just the1 ÐBÑ8

partial sums of the series   Therefore! !
8œ# 8œ!
_ _B B

8x 8x
B œ "  B  œ "  B  / Þ

8 8

1ÐBÑ œ "  B  /B is a solution of our initial value problem, and we know it is valid on the
interval .  (M œ Ò  ß Ó" "

# # One may check by direct substitution that the solution is correct  and
that it turns out to be valid over the whole interval ‘.)

Even if we couldn't recognize a neat formula for the limit of the 's, we could make some1 ÐBÑ8

definite approximations. From the proof of the Contraction Mapping Theorem, we know that
3 !( , so that1 ß 1Ñ Ÿ œ +Q œ8

"
#

! 3
!

8
! "Ð1 ß1 Ñ

" .  In this example, we have 
 ( sup .3 1 ß 1Ñ Ÿ œ Öl!  Ð  Ñl À B − M× œ † œ8

" B " " "
# # # # #

"
#8 ! "

"
#

3Ð1 ß1 Ñ

" 8" 8" $ 8#

#

Therefore  is  within distance  of on the interval .1 ÐBÑ 1ÐBÑ œ "  B  / Ò  ß Ó8
" " "

# # #
Buniformly 8#



173

Finally, notice that our initial choice of was an arbitrary one. Since sin , the1 − F l Bl Ÿ "!

function sin  and we could just as well have chosen sin . The iterative process− F 1 ÐBÑ œ B!

would necessarily lead us to the  solution , since the fixed point of  is unique; but ofsame 1 X
course, the resulting series representation for  would look quite different for example, it would1 
not be a power series.  ñ

The Contraction Mapping Theorem can be used to prove other results for example, the Implicit
Function Theorem.  (See James Dugundji, for the details.)Topology, 
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Exercises

E7.   a) Suppose : [ ] [ ] is differentiable and suppose that there is a constant0 Äa,b a,b
O  0 Ÿ B − +ß , 01 such that | ( ) |  for all [ ].  Prove that  is a contraction (and therefore hasw x K
a unique fixed point.)

     b) Give an example of a continuous function  such that0 À Ä‘ ‘
   |  for0ÐBÑ  0ÐCÑ l  lB  C l
all  but such that  has no fixed point.B − 0Á C ‘
     (Note:  implies that  is not a contraction mapping.  The contraction mapping theorem,Ñ 0
would fail if we allowed in the definition of contraction mapping.! œ " )

E8.   Let , where  is a nonempty complete metric space.  Let 0À Ð\ß .Ñ Ä Ð\ß .Ñ Ð\ß .Ñ 0 5

denote the “  iterate of ” that is,  composed with itself   times.k fth  0 5
  a) Suppose that  for which  is a contraction.  Then, by the Contraction Mappingb5 − 0 5

Theorem,  has a unique fixed point .  Prove that  is also the unique fixed point for .0 : : 05

  b) Prove that the function cos  is not a contraction.À Ä‘ ‘
  c) Prove that cos is a contraction for some .5 5 − 
ÐH nt: the Mean Value Theorem may be helpful3 . )
  d) Let  be such that cos  is a contraction and let  be the unique fixed point of5 − 1 œ : 5

1 : B œ B.  By a),  is also the unique solution of the equation cos .  Start with 0 as a “first
approximation” for  and use the technique in the proof of the Contraction Mapping Theorem to:
find an  so that | < 0.00001.8 − 1 Ð!Ñ  : ± 8

  e) For this , use a calculator to evaluate .  (8 1 Ð!Ñ8 This “solves” the equation
cos    with Error  0.00001B œ B l l  .)

E9.   Consider the differential equation with the initial condition . ChooseC œ B  C CÐ!Ñ œ "w

a suitable rectangle  and suitable constants , , and  as in the proof of Picard's Theorem. UseD K M a
the technique in the proof of the contraction mapping theorem to find a solution for the initial
value problem.


