Chapter VI
Products and Quotients

1. Introduction

In Chapter III we defined the product of two topological spaces X and Y and developed some simple properties of the product. (See Examples III.5.10-5.12 and Exercise IIIE20.) Using simple induction, that work generalized easy to finite products. It turns out that looking at infinite products leads to some very nice theorems. For example, infinite products will eventually help us decide which topological spaces are metrizable.

2. Infinite Products and the Product Topology

The set $X \times Y$ was defined as $\{(x, y) : x \in X, y \in Y\}$. How can we define an “infinite product” set $X = \prod\{X_\alpha : \alpha \in A\}$? Informally, we want to say something like

$$X = \prod\{X_\alpha : \alpha \in A\} = \{(x_\alpha) : x_\alpha \in X_\alpha\}$$

so that a point x in the product consists of “coordinates x_α” chosen from the X_α's. But what exactly does a symbol like $x = (x_\alpha)$ mean if there are “uncountably many coordinates?”

We can get an idea by first thinking about a countable product. For sets $X_1, X_2, \ldots, X_n, \ldots$ we can informally define the product set as a certain set of sequences: $X = \prod_{n=1}^{\infty} X_n = \{(x_n) : x_n \in X_n\}$. But if we want to be careful about set theory, then a legal definition of X should have the form $X = \{(x_n) \in U : x_n \in X_n\}$. From what “pre-existing set” U will the sequences in X be chosen? The answer is easy: we write

$$X = \prod_{n=1}^{\infty} X_n = \{x \in (\bigcup_{n=1}^{\infty} X_n)^{\mathbb{N}} : x(n) = x_n \in X_n\}.$$

Thus the elements of $\prod_{n=1}^{\infty} X_n$ are certain functions (sequences) defined on the index set \mathbb{N}. This idea generalizes naturally to any product.

Definition 2.1 Let $\{X_\alpha : \alpha \in A\}$ be a collection of sets. We define the product set $X = \prod\{X_\alpha : \alpha \in A\} = \{x \in (\bigcup_{\alpha \in A} X_\alpha) : x(\alpha) \in X_\alpha\}$. The X_α's are called the factors of X. For each α, the function $\pi_\alpha : \prod\{X_\alpha : \alpha \in A\} \to X_\alpha$ defined by $\pi_\alpha(x) = x_\alpha$ is called the αth-projection map. For $x \in X$, we write more informally $x_\alpha = x(\alpha)$ = the αth-coordinate of x and write $x = (x_\alpha)$.

Note: the index set A might not be ordered. So, even though we use the informal notation $x = (x_\alpha)$, such phrases as “the first coordinate of $x,” “the next coordinate in x after $x_\alpha,” and “the coordinate in x preceding $x_\alpha,” may not make sense. The notation (x_α) is handy but can lead you into errors if you’re not careful.
A point \(x \) in \(\prod \{ X_\alpha : \alpha \in A \} \) is, by definition, a function that "chooses" a coordinate \(x_\alpha \) from each set in the collection \(\{ X_\alpha : \alpha \in A \} \). To say that such a "choice function" must exist if all the \(X_\alpha \)'s are nonempty is precisely the Axiom of Choice. (See the discussion following Theorem I.6.8.)

Theorem 2.2 The Axiom of Choice (AC) is equivalent to the statement that every product of nonempty sets is nonempty.

*Note: In ZF set theory, certain special products can be shown to be nonempty without using AC. For example, if \(X_n = \mathbb{N} \), then \(\prod_{n=1}^{\infty} X_n = \{ x \in \mathbb{N}^{\mathbb{N}} : x(n) \in \mathbb{N} \} = \mathbb{N}^{\mathbb{N}} \). Without using AC, we can precisely describe a point (\(= \) function) in the product -- for example, the identity function \(i = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m = n\} \) -- so \(\mathbb{N}^{\mathbb{N}} = \prod_{n=1}^{\infty} X_n \neq \emptyset \).

We will often write \(\prod \{ X_\alpha : \alpha \in A \} \) as \(\prod_{\alpha \in A} X_\alpha \). If the indexing set \(A \) is clearly understood, we may simply write \(\prod X_\alpha \).

Example 2.3

1) If \(A = \emptyset \), then \(\prod \{ X_\alpha : \alpha \in A \} = (\bigcup_{\alpha \in A} X_\alpha)^A \): \(x(\alpha) \in X_\alpha \) = \{\emptyset\}.

2) Suppose \(X_{\alpha_0} = \emptyset \) for some \(\alpha_0 \in A \). Then \(\prod_{\alpha \in A} X_\alpha = \{(\bigcup_{\alpha \in A} X_\alpha)^A \}: x(\alpha) \in X_\alpha \). Since \(x(\alpha_0) \in X_{\alpha_0} \) is impossible, \(\prod_{\alpha \in A} X_\alpha = \emptyset \).

3) Strictly speaking, we have two different definitions for a finite product \(X_1 \times X_2 \):

 i) \(X_1 \times X_2 = \{(x_1, x_2) : x_1 \in X_1, x_2 \in X_2\} \) (a set of ordered pairs)

 ii) \(X_1 \times X_2 = \{x \in (X_1 \cup X_2)^{[1,2]} : x(i) \in X_i\} \) (a set of functions)

But there is an obvious way to identify these two sets: the ordered pair \((x_1, x_2) \) corresponds to the function \(x = \{(1, x_1), (2, x_2)\} \in (X_1 \cup X_2)^{[1,2]} \).

4) If \(A = \mathbb{N} \), then \(\prod \{ X_n : n \in \mathbb{N} \} = \prod_{n=1}^{\infty} X_n = \{ x \in (\bigcup_{n=1}^{\infty} X_n)^{\mathbb{N}} : x_n \in X_n \} \) = \(\{x_1, x_2, ..., x_n, ...\} : x_n \in X_n \} = \) the set of all sequences \((x_n) \) where \(x_n \in X_n \).

5) Suppose the \(X_\alpha \)'s are identical, say \(X_\alpha = Y \) for all \(\alpha \in A \). Then \(\prod \{ X_\alpha : \alpha \in A \} = \{ x \in (\bigcup_{\alpha \in A} X_\alpha)^A : x(\alpha) \in X_\alpha \} = \{ x \in Y^A : x_\alpha \in Y \} = Y^A \). If \(|A| = m \), we will sometimes write this product simply as \(Y^m = \) "the product of \(m \) copies of \(Y \)" because the number of factors \(m \) is often important while the specific index set \(A \) is not.

Now that we have a definition of the set \(\prod \{ X_\alpha : \alpha \in A \} \), we can think about a product topology. We begin by recalling the definition and a few basic facts about the "weak topology." (See Example III.8.6.)
Definition 2.4 Let X be a set. For each $\alpha \in A$, suppose (X_α, T_α) is a topological space and that $f_\alpha : X \to X_\alpha$. The weak topology on X generated by the collection $\mathcal{F} = \{f_\alpha : \alpha \in A\}$ is the smallest topology on X that makes all the f_α's continuous.

Certainly, there is at least one topology on X that makes all the f_α's continuous: the discrete topology. Since the intersection of a collection of topologies on X is a topology (why?), the weak topology exists — we can describe it “from the top down” as $\bigcap \{T : T$ is a topology on X making all the f_α's continuous$\}$.

However, this slick description of the weak topology doesn't give a useful description of what sets are open. Usually it is more useful to describe the weak topology on X “from the bottom up.” to make all the f_α's continuous it is necessary and sufficient that

for each $\alpha \in A$ and for each open set $U_\alpha \subseteq X_\alpha$, the set $f_\alpha^{-1}[U_\alpha]$ must be open.

Therefore the weak topology T is the smallest topology that contains all such sets $f_\alpha^{-1}[U_\alpha]$ and that is the topology for which $\mathcal{G} = \{f_\alpha^{-1}[U_\alpha] : \alpha \in A, U_\alpha \text{ open in } X_\alpha\}$ is a subbase. (See Example III.8.6.)

Therefore a base for the weak topology consists of all finite intersections of sets from \mathcal{G}. A typical basic open set has form $f_{\alpha_1}^{-1}[U_{\alpha_1}] \cap f_{\alpha_2}^{-1}[U_{\alpha_2}] \cap \ldots \cap f_{\alpha_n}^{-1}[U_{\alpha_n}]$ where each $\alpha_i \in A$ and each U_{α_i} is open in X_{α_i}. To cut down on symbols, we will use a special notation for these subbasic and basic open sets:

We will write $< U_\alpha >$ for $f_\alpha^{-1}[U_\alpha]$.

A typical basic open set is then $U = f_{\alpha_1}^{-1}[U_{\alpha_1}] \cap f_{\alpha_2}^{-1}[U_{\alpha_2}] \cap \ldots \cap f_{\alpha_n}^{-1}[U_{\alpha_n}]$

which we further abbreviate as $U = < U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} >$

So $x \in U = < U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} >$ iff $f_{\alpha_i}(x) \in U_{\alpha_i}$ for each $i = 1, \ldots, n$.

This notation is not standard but it should be because it’s very handy. You should verify that to get a base for the weak topology T on X, it is sufficient to use only the sets $< U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} >$ where each U_{α_i} is a basic (or even subbasic) open set in X_{α_i}.

Example 2.5 Suppose (X, T) is any topological space and $A \subseteq X$. Let $i : A \to X$ be the inclusion map $i(a) = a$. Then the subspace topology on A is the same as the weak topology generated by $\mathcal{F} = \{i\}$. To see this, just note that a base for the weak topology is $\{i^{-1}[U] : U \text{ open in } X\}$ and that $i^{-1}[U] = U \cap A$ which is a typical open set in the subspace topology.

The following theorem tells us that a map f into a space X with the weak topology is continuous iff each composition $f_\alpha \circ f$ is continuous.

Theorem 2.6 For $\alpha \in A$, suppose $f_\alpha : X \to (X_\alpha, T_\alpha)$ and that X has the weak topology generated by the functions f_α. Let Z be a topological space and $f : Z \to X$. Then f is continuous iff $f_\alpha \circ f : Z \to X_\alpha$ is continuous for every α.

Proof If f is continuous, then each composition $f_\alpha \circ f$ is continuous. Conversely, suppose each $f_\alpha \circ f$ is continuous. To show that f is continuous, it is sufficient to show that $f^{-1}[V]$ is open in Z whenever V is a subbasic open set in X (why?). So let $V = < U_\alpha >$ with U_α open in X_α. Then $f^{-1}[V] = f^{-1}[f_\alpha^{-1}[U_\alpha]] = (f_\alpha \circ f)^{-1}[U_\alpha]$ — which is open since $f_\alpha \circ f$ is continuous.

241
Definition 2.7 For each \(\alpha \in A \), let \((X_\alpha, T_\alpha)\) be a topological space. The **product topology** \(T \) on the set \(\prod X_\alpha \) is the weak topology generated by the collection of projection maps \(F = \{ \pi_\alpha : \alpha \in A \} \).

The product topology is sometimes called the “Tychonoff topology.” *We always assume that a product space \(\prod X_\alpha \) has the product topology unless something else is explicitly stated.*

Since the product topology is a weak topology, a subbase for the product topology consists of all sets of form \(\langle U_\alpha > = \pi_\alpha^{-1}[U_\alpha] \), where \(\alpha \in A \) and \(U_\alpha \) is open in \(X_\alpha \). A **base** consists of all finite intersections of such sets:

\[
\langle U_{\alpha_1} > \cap \ldots \cap \langle U_{\alpha_n} > = \pi_{\alpha_1}^{-1}[U_{\alpha_1}] \cap \ldots \cap \pi_{\alpha_n}^{-1}[U_{\alpha_n}]
\]

\[
= \{ x \in \prod X_\alpha : x_{\alpha_i} \in U_{\alpha_i} \text{ for each } i = 1, \ldots, n \}
\]

\[
= \prod_{\alpha \in A} U_\alpha \text{ where } U_\alpha = X_\alpha \text{ for } \alpha \neq \alpha_1, \alpha_2, \ldots, \alpha_n \quad (*)
\]

(It is sufficient to use only \(U_\alpha \)'s which are basic (or even subbasic) open sets in \(X_\alpha \). Why?)

A basic open set in \(\prod X_\alpha \) “depends on only finitely many coordinates” in the following sense:

\[x \in \langle U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} > \text{ iff } x \text{ satisfies the finitely many restrictions } x_{\alpha_i} \in U_{\alpha_i} \text{ for each } i = 1, \ldots, n. \]

Since (basic) open sets containing \(x \) are the “standard” for measuring closeness to \(x \), we can say, roughly, that in the product topology “closeness depends on only finitely many coordinates.”

For a **finite** index set \(A = \{1, 2, \ldots, n\} \), the product topology on \(\prod_{\alpha \in A} X_\alpha \) is just the one for which the basic open sets are the open boxes \(\prod_{\alpha \in A} U_\alpha \):

\[
\prod_{\alpha \in A} U_\alpha = \prod_{i=1}^n U_i = \langle U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} > = U_1 \times U_2 \times \ldots \times U_n
\]

Then condition (*) that “\(U_\alpha = X_\alpha \) for all but finitely many \(\alpha \)'s” is satisfied automatically so, for finite products the product topology is exactly as we defined it in Chapter III.

Definition 2.7 is probably not what was expected. Someone's “first guess” would more likely be to use all “boxes” \(\prod_{\alpha \in A} U_\alpha \) (\(U_\alpha \) open in \(X_\alpha \)) as a base in defining the product topology. But in Definition 2.7, a “box” of the form \(\prod_{\alpha \in A} U_\alpha \) might not be open because (*) may not hold. It is perfectly possible, of course, to define a different topology on the set \(\prod_{\alpha \in A} X_\alpha \) using **all** boxes of the form \(\prod_{\alpha \in A} U_\alpha \) as a base. This alternate topology on \(\prod_{\alpha \in A} X_\alpha \) is called the **box topology**. But we will see that our definition of the product topology is the “right” definition to use. *(Of course, the box topology and the product topology coincide for finite products.)*

Theorem 2.8 Each projection map \(\pi_\alpha : \prod \{ X_\alpha : \alpha \in A \} \to X_\alpha \) is continuous and open. If \(\prod \{ X_\alpha : \alpha \in A \} \neq \emptyset \), each \(\pi_\alpha \) is onto. A function \(f : Z \to \prod X_\alpha \) is continuous iff \(\pi_\alpha \circ f : Z \to X_\alpha \) is continuous for every \(\alpha \).

Proof By definition, the product topology is one that makes all the \(\pi_\alpha \)'s continuous. and clearly, each \(\pi_\alpha \) is onto if the product is nonempty. To show that \(\pi_\alpha \) is open, it is sufficient to show that the image of a **basic** open set \(U = \langle U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} > \) is open. This is clearly true if \(U = \emptyset \).
For $U \neq \emptyset$, we get \(\pi_\alpha[U] = \pi_\alpha[<U_{\alpha_i}, U_{\alpha_2}, ..., U_{\alpha_n}>] = \begin{cases} U_{\alpha_i} & \text{if } \alpha = \alpha_i \\ X_\alpha & \text{if } \alpha \neq \alpha_1, ..., \alpha_n \end{cases} \). Either way, \(\pi_\alpha[<U_{\alpha_i}, U_{\alpha_2}, ..., U_{\alpha_n}>] \) is open.

Because the product has the weak topology generated by the projections, Theorem 2.6 gives that \(f \) is continuous iff each composition \(\pi_\alpha \circ f \) is continuous.

Generally, projection maps are not closed. For example, if \(F = \{(x, y) \in \mathbb{R}^2 : y = \frac{1}{x}, x > 0\} \), then \(\pi_1[F] \) is the projection of \(F \) on the x-axis \(\mathbb{R} \) is not closed in \(\mathbb{R} \).

Example 2.9

1) A subbasic open set in \(\mathbb{R} \times \mathbb{R} \) has form \(\pi_1^{-1}[U] = U \times \mathbb{R} \) or \(\pi_2^{-1}[V] = \mathbb{R} \times V \), where \(U \) and \(V \) are open in \(\mathbb{R} \). (We get a subbase even if we restrict ourselves just to using basic open intervals \(U, V \) in \(\mathbb{R} \).) So basic open sets have form \((U \times \mathbb{R}) \cap (\mathbb{R} \times V) = U \times V \). Therefore the product topology on \(\mathbb{R} \times \mathbb{R} \) is the usual topology on \(\mathbb{R}^2 \).

The function \(f : \mathbb{R} \to \mathbb{R} \times \mathbb{R} \) given by \(f(t) = (t^2, \sin t^2) \) is continuous because the compositions \((\pi_1 \circ f)(t) = t^2 \) and \((\pi_2 \circ f)(t) = \sin t^2 \) are both continuous functions from \(\mathbb{R} \) to \(\mathbb{R} \).

2) Let \(X = \mathbb{N}^\infty = \text{“the product of countably many copies of } \mathbb{N} \text{”} \). A base for the product topology consists of all sets \(U = \prod U_n \) where finitely many \(U_n \)'s are singletons and all the others are equal to \(\mathbb{N} \). Each \(U \) is infinite (in fact \(|U| = c \) — why?), so every nonempty open set is infinite. In particular, \(X \) has no isolated points. More generally, an infinite product of (nonempty) discrete spaces is not discrete.

The box topology on \(X \) is the discrete topology. For each point \(x = (k_1, k_2, ..., k_n, ...) \in X \), the set \(\{x\} = \prod_{n=1}^{\infty} \{k_n\} \) is open in the box topology. (For a finite product, the box and product topologies care the same: a finite product of discrete spaces is discrete.)

3) Let \(\mathbb{R}^\infty = \prod \{X_r : r \in \mathbb{R}\} \), where \(X_r = \mathbb{R} \). Each point \(f \in \mathbb{R}^\infty \) is a function \(f : \mathbb{R} \to \mathbb{R} \) and \(\pi_r(f) = f(r) \). A basic open set containing \(f \) is \(U = <U_{r_1}, U_{r_2}, ..., U_{r_n}> \), where the \(U_r \)'s are basic open in \(\mathbb{R} \) and \(f(r_i) \in U_{r_i} \). If each \(U_{r_i} \) is an open interval \((f(r_i) - \epsilon_i, f(r_i) + \epsilon_i) \), then \(U = \{g \in \mathbb{R}^\infty : |g(r_i) - f(r_i)| < \epsilon_i, i = 1, ..., n\} \). In other words, \(g \in U \) iff the vertical distance in \(\mathbb{R}^2 \) between the graphs of \(g \) and \(f \) is \(< \epsilon_i \) at each of the finitely many points \(r_i \).

Why is the product topology the “correct” topology for set \(\prod X_\alpha \)? Of course there is no “right” answer, but a few examples should make it seem a good choice.

Example 2.10

1) Our intuition can completely comprehend only finite objects; we always run risks when we apply it to infinite collections. For finite products, the product and box topologies are exactly the same, and our intuition gives us no solid reason to prefer one over the other in the infinite case.

2) (See Example II.2.6.6 and Exercise II.E10) Let \(H \) be the “Hilbert cube” \(\prod_{n=1}^{\infty} [0, \frac{1}{n}] = [0, 1] \times [0, \frac{1}{2}] \times ... \times [0, \frac{1}{n}] \times ... \subseteq \ell_2 \), where \(\ell_2 \) has its usual metric, \(d \).

Suppose \(x, y \in H \) and let \(\epsilon > 0 \). What condition on \(y \) will guarantee that \(d(y, x) < \epsilon \)?
Pick \(N \) so that \(\sum_{i=N+1}^{\infty} \frac{1}{i^2} < \frac{\varepsilon^2}{2^N} \). If \((x_i - y_i)^2 < \frac{\varepsilon^2}{2^N} \) for each \(i = 1, \ldots, N \), then we have
\[
d(x, y) = \left(\sum_{i=1}^{N} (x_i - y_i)^2 \right) + \sum_{i=N+1}^{\infty} (x_i - y_i)^2)^{1/2} < (N \cdot \frac{\varepsilon^2}{2^N} + \frac{\varepsilon^2}{2})^{1/2} = \varepsilon.
\]
This is the natural metric topology on the product \(H \), and we see here that we can make “\(y \) close to \(x \)” by requiring “closeness” in just finitely many coordinates \(1, \ldots, N \). This is just what the product topology does and, in fact, the product topology on \(H \) turns out to be the topology \(T_d \).

In \((0, 1)\) we can see a similar phenomenon quite clearly: for two points \(x = 0.x_1x_2 \ldots x_n \ldots \) and \(y = 0.y_1y_2y_3 \ldots \), “\(y \) will be close to \(x \)” if \(y \) and \(x \) agree in, say, the first \(n \) decimal places. Roughly speaking, “closeness” depends on only “finitely many coordinates.”

A handy “rule of thumb” that has proved true every time I’ve used it is that if a topology on a product set makes “closeness” depend on only a finite number of coordinates, then that topology is the product topology.

3) The bottom line: a mathematical definition justifies itself by the fruit it bears. The definition of the product topology will lead to some beautiful theorems. For example, we will see that compact Hausdorff spaces are (topologically) nothing other than the closed subspaces of cubes \([0, 1]^m\) with the product topology \((m\) may be infinite\). For the time being, you will need to accept that things work out nicely down the road, and that by contrast, the box topology turns out to be rather ill-behaved. (See Exercise E11.)

As a simple example of nice behavior, the following theorem is exactly what one would hope for—and the proof depends on having the “correct” definition for the product topology. The theorem says that convergence of sequences in a product is “coordinatewise convergence”: that is, in a product, \((x_n) \to x\) iff for all \(\alpha \), the \(\alpha^{th} \) coordinate of \(x_n \) converges (in \(X_\alpha \)) to the \(\alpha^{th} \) coordinate of \(x \). The product topology is sometimes called the “topology of coordinatewise convergence.”

Theorem 2.11 Suppose \((x_n)\) is a sequence in \(X = \prod X_\alpha: \alpha \in A \). Then \((x_n) \to x \in X\) iff \((\pi_\alpha(x_n)) \to \pi_\alpha(x)\) in \(X_\alpha \) for all \(\alpha \in A \).

Proof If \((x_n) \to x\), then \((\pi_\alpha(x_n)) \to \pi_\alpha(x)\) because each \(\pi_\alpha \) is continuous.

Conversely, suppose \((\pi_\alpha(x_n)) \to \pi_\alpha(x)\) in \(X_\alpha \) for each \(\alpha \) and consider any basic open set \(U = \cup U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_k} \) that contains \(x = (x_\alpha) \). For each \(i = 1, \ldots, k \), we have \(x_{\alpha_i} \in U_{\alpha_i} \). Since \((\pi_{\alpha_i}(x_n)) \to \pi_{\alpha_i}(x)\), we have \(\pi_{\alpha_i}(x_n) \in U_{\alpha_i} \) for \(n \geq N_{\alpha_i} \). If \(N = \max \{ N_{\alpha_1}, \ldots, N_{\alpha_k} \} \), then for \(n \geq N \) we have \(\pi_{\alpha_i}(x_n) \in U_{\alpha_i} \) for every \(i = 1, \ldots, k \). This means that \(x_n \in U \) for \(n \geq N \), so \((x_n) \to x\).

In the proof, \(N \) is the max of a finite set. If \(X \) has the box topology, the basic open set \(U = \bigcap U_{\alpha} \) might involve infinitely many open sets \(U_{\alpha} \neq X_\alpha \). For each such \(\alpha \), we could pick \(N_\alpha \), just as in the proof. But the set of all \(N_\alpha \)'s might not have a max \(N \) so the proof would collapse. Can you create a specific example with the box topology where this happens?

Example 2.12 Consider \(\mathbb{R}^\mathbb{R} = \prod \{ X_r : r \in \mathbb{R} \} \), where \(X_r = \mathbb{R} \). Each point \(f \) in the product is a function \(f: \mathbb{R} \to \mathbb{R} \). Suppose that \((f_n)\) is a sequence of points in \(\mathbb{R}^\mathbb{R} \). By Theorem 2.11, \((f_n) \to f\) iff \((f_n(r)) \to f(r)\) for each \(r \in \mathbb{R} \). With the product topology, convergence of a sequence of functions in \(\mathbb{R}^\mathbb{R} \) is called (in analysis) pointwise convergence.
Question: if \(\mathbb{R}^k \) is given the box topology, is convergence of a sequence \((f_n)\) simply uniform convergence (as defined in analysis)?

The following “theorem” is stated loosely. You can easily create variations. Any reasonable version of the statement is probably true.

Theorem 2.13 Topological products are associative in any “reasonable” sense: for example, if \(A = B \cup C \) where \(B \) and \(C \) are disjoint indexing sets, then

\[
\prod \{ X_\alpha : \alpha \in A \} \simeq \prod \{ X_\beta : \beta \in B \} \times \prod \{ X_\gamma : \gamma \in C \}
\]

Proof A point \(x \in \prod \{ X_\alpha : \alpha \in A \} \) is a function \(x : A \to \bigcup_{\alpha \in A} X_\alpha \). Define \(f : \prod \{ X_\alpha : \alpha \in A \} \to \prod \{ X_\beta : \beta \in B \} \times \prod \{ X_\gamma : \gamma \in C \} \) by \(f(x) = (x|B, x|C) \). Clearly \(f \) is one-to-one and onto.

For convenience, let \(Y = \prod \{ X_\beta : \beta \in B \} \) and \(Z = \prod \{ X_\gamma : \gamma \in C \} \) so that

\[
\pi_1 \circ f : \prod \{ X_\alpha : \alpha \in A \} \to Y \quad \text{and} \quad \pi_2 \circ f : \prod \{ X_\alpha : \alpha \in A \} \to Z.
\]

\(f \) is a mapping into a product \(Y \times Z \), so \(f \) is continuous iff \(\pi_1 \circ f \) and \(\pi_2 \circ f \) are both continuous. But \(\pi_1 \circ f : \prod \{ X_\alpha : \alpha \in A \} \to Y = \prod \{ X_\beta : \beta \in B \} \) is also a map into a product, so \(\pi_1 \circ f \) is continuous iff \(\pi_\beta \circ \pi_1 \circ f : \prod \{ X_\alpha : \alpha \in A \} \to X_\beta \) is continuous for all \(\beta \in B \).

But \(\pi_\beta \circ \pi_1 \circ f = \pi_\beta : \prod \{ X_\alpha : \alpha \in A \} \to X_\beta \) which is continuous.

The proof that \(\pi_2 \circ f \) is continuous is completely similar.

\(f^{-1} : Y \times Z \to \prod \{ X_\alpha : \alpha \in A \} \) is given by \(x = f^{-1}(y, z) = y \cup z \) (the union of two functions) and \(f^{-1} \) is continuous iff \(\pi_\alpha \circ f^{-1} : Y \times Z \to X_\alpha \) is continuous for each \(\alpha \in A = B \cup C \).

Suppose \(\alpha \in B \); then \(\pi_\alpha \circ f^{-1}(y, z) = \pi_\alpha(x) \), where \(x = y \cup z \). Since \(\alpha \in B \), \(x_\alpha = (\pi_\alpha \circ \pi_1)(y, z) \), so \(\pi_\alpha \circ f^{-1} = \pi_\alpha \circ \pi_1 \), which is continuous. The case where \(\alpha \in C \) is completely similar.

Therefore \(f \) is a homeomorphism. \(\bullet \)

The question of topological commutativity for products only makes sense when the index set \(A \) is ordered in some way. Even in that case, if we view a product as a collection of functions, the question of commutativity is irrelevant – the question reduces to the fact that set theoretic unions are commutative. For example, \(X_1 \times X_2 = \{ x \in (X_1 \cup X_2)^{1,2} : x(i) \in X_i \text{ for } i = 1, 2 \} \)

\[
= \{ x \in (X_2 \cup X_1)^{1,2} : x(i) \in X_i \text{ for } i = 1, 2 \} = X_2 \times X_1.
\]

So viewed as sets of functions, \(X_1 \times X_2 \) and \(X_2 \times X_1 \) are exactly the same set! The same observation applies to any product viewed as a collection of functions.

But we might look at an ordered product in another way: for example, thinking of \(X_1 \times X_2 \) and \(X_2 \times X_1 \) as sets of ordered pairs. Then generally \(X_1 \times X_2 \neq X_2 \times X_1 \). From that point of view, the topological spaces \(X_1 \times X_2 \) and \(X_2 \times X_1 \) are not literally identical, but there is a homeomorphism between them: \(f(x_1, x_2) = (x_2, x_1) \). So the products are still topologically identical. We can make a similar argument whenever any ordered product is “commuted” by permuting the index set.

The general rule of thumb is that “whenever it makes sense, topological products are commutative.”
Exercise 2.14 Recall that for a space X and cardinal m, X^m denotes the product of m copies of the space X. Prove that $(X^m)^n$ is homeomorphic to X^{mn}. (Hint: Look at the proof of Theorem I.14.7; the bijection ϕ given there is a homeomorphism.)

Notice that “cancellation properties” may not be true. For example, $\mathbb{N} \times \{0\}$ and $\mathbb{N} \times \{0,1\}$ are homeomorphic (both are countable discrete spaces) but topologically you can't “cancel the \mathbb{N}” : $\{0\}$ is not homeomorphic to $\{0,1\}$!

Here are a few results which are quite simple but very handy to remember. The first states that singleton factors are topologically irrelevant in a product.

Lemma 2.15 \[\prod_{\alpha \in A} X_\alpha \times \prod_{\beta \in B} \{p_\beta\} \simeq \prod_{\alpha \in A} X_\alpha \]

Proof \(\prod_{\beta \in B} \{p_\beta\} \) is itself a one-point space $\{p\}$, so we only need to prove that $\prod_{\alpha \in A} X_\alpha \times \{p\} \simeq \prod_{\alpha \in A} X_\alpha$. The map $f(x,p) = x$ is clearly a homeomorphism.

Lemma 2.16 Suppose $\prod_{\alpha \in A} X_\alpha \neq \emptyset$. For any $B \subseteq A$, $\prod_{\alpha \in B} X_\alpha$ is homeomorphic to a subspace Z of $\prod_{\alpha \in A} X_\alpha$ — that is, $\prod_{\alpha \in B} X_\alpha$ can be embedded in $\prod_{\alpha \in A} X_\alpha$. In fact, if all the X_α's are T_1-spaces, then $\prod_{\alpha \in B} X_\alpha$ is homeomorphic to a closed subspace Z of $\prod_{\alpha \in A} X_\alpha$.

Proof Pick a point $p = (p_\alpha) \in \prod_{\alpha \in A} X_\alpha$. Then by Lemma 2.15,

\[\prod_{\alpha \in B} X_\alpha \simeq \prod_{\alpha \in B} X_\alpha \times \prod_{\alpha \in A-B} \{p_\alpha\} = Z \subseteq \prod_{\alpha \in A} X_\alpha \]

Now suppose all the X_α's are T_1. If $y \in (\prod_{\alpha \in A} X_\alpha) - Z$, then for some $\gamma \in A - B$, $y_\gamma \neq p_\gamma$. Since X_γ is a T_1 space, there is an open set U_γ in X_γ that contains y_γ but not p_γ. Then $y \in < U_\gamma >$ and

\[< U_\gamma > \cap (\prod_{\alpha \in B} X_\alpha \times \prod_{\alpha \in A-B} \{p_\alpha\}) = \emptyset. \]

Therefore Z is closed in $\prod_{\alpha \in A} X_\alpha$.

Note: 1) Assume all the X_α's $= \mathbb{R}$. Go through the preceding proof step-by-step when $A = \{1, \ldots, k\}$ and when $A = \mathbb{N}$ and

2) In the case $B = \{\alpha_0\}$, Lemma 2.16 says that each factor X_{α_0} is homeomorphic to subspace of $\prod_{\alpha \in A} X_\alpha$ (a closed subspace if all the X_α's are T_1).

3) But Lemma 2.16 does not say that if all the X_α's are T_1, then every embedded copy of X_{α_0} in $\prod_{\alpha \in A} X_\alpha$ is closed: only that there exists a closed homeomorphic copy. (It is very easy to show a copy of \mathbb{R} embedded in \mathbb{R}^2 that is not closed in \mathbb{R}^2, for example ... ?)

Lemma 2.17 Suppose $X = \prod \{X_\alpha : \alpha \in A\} \neq \emptyset$. Then X is a T_1 space (or, T_2 space) iff every factor X_α is T_1 (or, T_2).
Proof for Hausdorff Suppose all the X_α's are Hausdorff. If $x \neq y \in X$, then $x_{\alpha_0} \neq y_{\alpha_0}$ for some α_0. Pick disjoint open sets U_{α_0} and V_{α_0} in X_{α_0} containing x_{α_0} and y_{α_0}. Then $< U_{\alpha_0} >$ and $< V_{\alpha_0} >$ are disjoint (basic) open sets in $\prod_{\alpha} X_\alpha$ that contain x and y.

Conversely, suppose $X \neq \emptyset$. By Lemma 2.16, any factor X_α is homeomorphic to a subspace of X. Since a subspace of a Hausdorff space is Hausdorff (why?), X_α is Hausdorff. •

Exercise 2.18 Prove Lemma 2.17 if “Hausdorff” is replaced by “T_1.” (The proof is similar but easier.)

Theorem 2.19 The product of countably many 2-point discrete spaces is homeomorphic to the Cantor set C.

Proof We show that if $X_\alpha = \{0, 2\}$, then $\prod_{\alpha=1}^{\infty} X_\alpha \simeq C$.

To construct C we defined, for each sequence $(x_1, x_2, \ldots, x_n, \ldots) \in \{0, 2\}^\mathbb{N}$, a descending sequence of closed sets $F_{x_1} \supseteq F_{x_1x_2} \supseteq \cdots \supseteq F_{x_1x_2\ldots x_n} \supseteq \cdots$ in $[0, 1]$ whose intersection gave a unique point $p \in C$: $\{p\} = \bigcap_{n=1}^{\infty} F_{x_1x_2\ldots x_n}$ (see Section IV.10). For each n, we can write C as a union of 2^n disjoint clopen sets: $C = \bigcup_{(x_1,\ldots,x_n) \in \{0,2\}^n} (C \cap F_{x_1x_2\ldots x_n})$.

Define $f : C \to \prod_{\alpha=1}^{\infty} X_\alpha$ by $f(p) = x = (x_1, x_2, \ldots, x_n, \ldots)$. Clearly f is one-to-one and onto. To show that f is continuous at $p \in C$, it is sufficient to show that for each n, the function $\pi_n \circ f : C \to \{0, 2\}$ is continuous at p, so pick any n. One of the clopen sets $C \cap F_{x_1x_2\ldots x_n}$ contains p (call it U) and $(\pi_n \circ f)|U = x_n$. Thus, $\pi_n \circ f$ is constant on a neighborhood of p in C, so $\pi_n \circ f$ is continuous at p.

By Lemma 2.17, $\prod_{\alpha=1}^{\infty} X_\alpha$ is Hausdorff. Since f is a continuous bijection of a compact space onto a Hausdorff space, f is a homeomorphism (why?). •

Corollary 2.20 $\{0, 2\}^{\aleph_0}$ is compact.

This corollary is a very special case of the Tychonoff Product Theorem which states that any product of compact spaces is compact. The Tychonoff Product Theorem is much harder and will be proved in Chapter IX.

Corollary 2.21 The Cantor set is homeomorphic to a product of countably many copies of itself.

Proof By Exercise 2.14 above, $C^{\aleph_0} \simeq (\{0, 2\}^{\aleph_0})^{\aleph_0} \simeq \{0, 2\}^{\aleph_0 \cdot \aleph_0} \simeq \{0, 2\}^{\aleph_0} \simeq C$. The case of $C^n \simeq C$ for $n \in \mathbb{N}$ is similar. •

Example 2.22 Convince yourself that each assertion is true:

1) If X is the Sorgenfrey line, then $X \times X$ is the Sorgenfrey plane (see Examples III.5.3 and III.5.4).

2) Let S^1 be the unit circle in \mathbb{R}^2. Then $S^1 \times [0, 1]$ is homeomorphic to the cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z \in [0, 1]\}$.

3) $S^1 \times S^1$ is homeomorphic to a torus ("the surface of a doughnut").
Exercises

E1. Does it ever happen that $X \times \{0\}$ open in $X \times \mathbb{R}$? If so, what is a necessary and sufficient condition on X for this to happen?

E2. a) Suppose X and Y are topological spaces and that $A \subseteq X$, $B \subseteq Y$. Prove that $\text{int}_{X \times Y}(A \times B) = \text{int}_X A \times \text{int}_Y B$: that is, “the interior of the product is the product of the interiors.” (By induction, the same result holds for any finite product.) Give an example to show that the statement may be false for infinite products.

b) Suppose $A_\alpha \subseteq X_\alpha$ for all $\alpha \in A$. Prove that in the product $X = \prod X_\alpha$,

$$\text{cl}(\prod A_\alpha) = \prod \text{cl} A_\alpha.$$

Note: When the A_α’s are closed, this shows that $\prod A_\alpha$ is closed: so “any product of closed sets is closed.” Can you see any plausible reason why products of closures are better behaved than products of interiors?

c) Suppose $X = \prod X_\alpha \neq \emptyset$ and that $A_\alpha \subseteq X_\alpha$. Prove that $\prod A_\alpha$ is dense in X iff A_α is dense in X_α for each α. Note: Part c) implies that a finite product of separable spaces is separable. Part c) doesn’t tell us whether or not an infinite product of separable spaces is separable: why not?

d) For each α, let $q_\alpha \in X_\alpha$. Prove that $B = \{x \in \prod X_\alpha : x_\alpha = q_\alpha \text{ for all but at most finitely many } \alpha\}$ is dense in $\prod X_\alpha$. (Note: Suppose $X = \mathbb{R}^\mathbb{N} = \prod_{\alpha \in \mathbb{N}} X_\alpha$ where each $X_\alpha = \mathbb{R}$. Suppose each q_α is chosen to be a rational – say $q_\alpha = 0$. What does d) say about $\mathbb{R}^\mathbb{N}$?)

e) Let $\alpha_0 \in A$. Prove that $Y_{\alpha_0} = \{x \in \prod X_\alpha : x_\alpha = p_\alpha \text{ for all } \alpha \neq \alpha_0\}$ is homeomorphic to X_{α_0}. Note: So any factor of a product has a “copy” of itself inside the product in a “natural” way. For example, in $\mathbb{R}^\mathbb{N}$, the set of points where all coordinates except the first are 0 is homeomorphic to the first factor, \mathbb{R}.

f) Give an example of infinite spaces X, Y, Z such that $X \times Y$ is homeomorphic to $X \times Z$ but Y is not homeomorphic to Z.

E3. Let X be a topological space and consider the “diagonal” set

$$\Delta = \{(x, x) : x \in X\} \subseteq X \times X.$$

a) Prove that Δ is closed in $X \times X$ iff X is Hausdorff.

b) Prove that Δ is open in $X \times X$ iff X is discrete.

E4. Suppose X is a Hausdorff space and that $X_\alpha \subseteq X$ for each $\alpha \in A$. Show that $Y = \bigcap\{X_\alpha : \alpha \in A\}$ is homeomorphic to a closed subspace of the product $\prod\{X_\alpha : \alpha \in A\}$.
E5. For each \(n \in \mathbb{N} \), suppose \(D_n \) is a countable dense set in \((X_n, \mathcal{T}_n)\).

a) Prove that \(D = \prod D_n \) is dense in \(\prod X_n \).

b) Prove that \(\prod X_n \) is separable. (Caution: \(D \) may not be countable (when is \(D \) countable? Hint: In a product “closeness depends on only finitely many coordinates.”)

E6. a) Suppose \(a_{i,j} \in \{0, 2\} \) for all \(i, j \in \mathbb{N} \). Prove that there exists a sequence \((n_k)\) in \(\mathbb{N} \) such that, for each \(i \), \(\lim_{k \to \infty} a_{i,n_k} \) exists.

 Hint: “picture” the \(a_{i,j} \) in an infinite matrix. For each fixed \(j \), the “\(j \)-th column” of the matrix is a point in the Cantor set \(C = \{0, 2\}^{\mathbb{N}} \), and \(C \) is a compact metric space.

b) Let \(\sum_{n=1}^{\infty} a_n \) be an absolutely convergent sequence of real numbers. A series \(\sum_{n=1}^{\infty} a'_n \) where each \(a'_n = a_n \) or \(a'_n = 0 \) is called a subseries of \(\sum_{n=1}^{\infty} a_n \).

Prove that \(S = \{ s \in \mathbb{R} : s \text{ is the sum of a subseries of } \sum_{n=1}^{\infty} a_n \} \) is closed in \(\mathbb{R} \).

Hint: “Absolute convergence” just guarantees that every subseries converges. Each subseries \(\sum_{n=1}^{\infty} a'_n \) can be associated in a natural way with a point \(x \in \{0, 1\}^{\mathbb{N}} \). Consider the mapping \(f : \{0, 1\}^{\mathbb{N}} \to \mathbb{R} \) given by \(f(x) = \sum_{n=1}^{\infty} a'_n \in \mathbb{R} \). Must \(f \) be a homeomorphism?

c) Suppose \(G \) is an open dense subset of the Cantor set \(C \). Must \(\text{Fr } G \) be countable?

Hint: Consider \(\{(a, b) \in C 	imes C : b \neq 0\} \).

E7. Let \(\mathbb{N} \) have the cofinite topology.

a) Does the product \(\mathbb{N}^m \) have the cofinite topology? Does the answer depend on \(m \)?

b) Prove \(\mathbb{N}^m \) is separable (Hint: When \(m \) is infinite, consider the simplest possible points in the product.)

Part b) implies that an arbitrarily large product of \(T_1 \) spaces with more than one point can be separable. According to Theorem 3.8, this statement is false for \(T_2 \) spaces.
E8. In any set X, we can define a topology by choosing a nonempty family of subsets \mathcal{F} and defining closed sets to be all sets which can be written as an intersection of finite unions of sets from \mathcal{F}. \mathcal{F} is called a subbase for the closed sets of X. (This construction is “complementary” to generating a topology on X by using a collection of sets as a subbase for the open sets.)

a) Verify that this procedure does give a topology on X.

b) Suppose X_α is a topological space. Give $\prod X_\alpha$ the topology for which collection of “closed boxes” $\mathcal{F} = \{\prod F_\alpha : F_\alpha \text{ closed in } X_\alpha\}$ is a subbase for the closed sets. Is this topology the product topology?

E9. Prove or disprove:

There exists a bijection $f : X = \{0, 1\}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} = Y$ such that for all $x \in X$ and for all n, the first n coordinates of $y = f(x)$ are determined by the first m coordinates of x.

Here, m depends on n and x. More formally, we are asking whether there exists a bijection f such that:

$$\forall x \in X \forall n \in \mathbb{N} \exists m \in \mathbb{N} \text{ such that changing } x_j \text{ for any } j > m \text{ does not change } y_k$$

for $k \leq n$.

(Hint: Think about continuity and the definition of the product topology.)
3. Productive Properties

We want to consider how some familiar topological properties behave with respect to products.

Definition 3.1 Suppose that, for each \(\alpha \in A \), the space \(X_\alpha \) has a certain property \(P \). We say that the property \(P \) is

- productive if \(\prod X_\alpha \) must have property \(P \)
- countably productive if \(\prod X_\alpha \) must have property \(P \) when \(A \) is countable
- finitely productive if \(\prod X_\alpha \) must have property \(P \) when \(A \) is finite

For example, Lemma 2.17 shows that the \(T_1 \) and \(T_2 \) properties are productive.

Some topological properties behave very badly with respect to products. For example, the Lindelöf property is a “countability property” of spaces, and we might expect the Lindelöf property to be countably productive. Unfortunately, this is not the case.

Example 3.2 The Lindelöf property is not finitely productive; in fact if \(X \) is a Lindelöf space, then \(X \times X \) may not be Lindelöf. Let \(X \) be the set of real numbers with the topology for which a neighborhood base at \(a \) is \(B_a = \{(a, b) : a, b \in S, \ b > a\} \). (Recall that \(X \) is called the Sorgenfrey Line: see Example III.5.3.) We begin by showing that \(S \) is Lindelöf.

It is sufficient to show that a collection \(\mathcal{U} \) of basic open sets covering \(X \) has a countable subcover. Given such a cover \(\mathcal{U} \), Let \(\mathcal{V} = \{(a, b) : (a, b) \in \mathcal{U}\} \) and define \(A = \bigcup \mathcal{V} \). For a moment, we can think of \(A \) as a subspace of \(\mathbb{R} \) with its usual topology. Then \(A \) is Lindelöf (why?), and \(\mathcal{V} \) is a covering of \(A \) by usual open sets, so there is a countable subfamily \(\mathcal{V}' \) with \(\bigcup \mathcal{V}' = A \).

Replace the left endpoints of the intervals in \(\mathcal{V}' \) to get \(\mathcal{U}' = \{[a, b) : (a, b) \in \mathcal{V}'\} \subseteq \mathcal{U} \). If \(\mathcal{U}' \) covers \(X \) we are done, so suppose \(X - \bigcup \mathcal{U}' \neq \emptyset \). For each \(x \in X - \bigcup \mathcal{U}' \), pick a set \([a, b)\) in \(\mathcal{U} \) that contains \(x \). In fact, \(x \) must be the left endpoint of \([a, b)\) — for if \(x \in [a, b) \in \mathcal{U} \) and \(x \neq a \), then \(x \in \bigcup \mathcal{V} = \bigcup \mathcal{V}' \subseteq \bigcup \mathcal{U}' \). So, for each \(x \notin \mathcal{U}' \) we can pick a set \([x, b_x)\) in \(\mathcal{U} \).

If \(x \) and \(y \) are distinct points not in \(\bigcup \mathcal{U}' \), then \([x, b_x)\) and \([y, b_y)\) must be disjoint (why?). But there can be at most countably many disjoint intervals \([x, b_x)\). So \(\mathcal{U}' \cup \{[x, b_x) : x \notin \bigcup \mathcal{U}'\} \) is a countable subcollection of \(\mathcal{U} \) that covers \(S \).

However the Sorgenfrey plane \(S \times S \) is not Lindelöf. If it were, then its closed subspace \(D = \{(x, y) : x + y = 1\} \) would also be Lindelöf (Theorem III.7.10). But that is impossible since \(D \) is uncountable and discrete in the subspace topology. (See the figure on the following page.)
Fortunately, many other topological properties interact more nicely with products. Here are several topological properties P to which the “same” theorem applies. We combine these into one large theorem for efficiency.

Theorem 3.3 Suppose $X = \prod \{X_\alpha : \alpha \in A\} \neq \emptyset$. Let P be any one of the properties “first countable,” “second countable,” “metrizable,” or “completely metrizable.” Then X has property P iff

1) all the X_α’s have property P, and
2) there are only countably many X_α’s that do not have the trivial topology.

This theorem “essentially” is a statement about countable products because:

1) The nontrivial X_α’s are the “interesting” factors, and 2) says there are only countably many of them. In practice, one hardly ever works with trivial spaces; and if we completely exclude trivial spaces from the discussion, then the theorem just states that X has property P iff X is a countable product of spaces with property P.

2) A nonempty T_1 space X_α has the trivial topology iff $|X_\alpha| = 1$. So, if we deal only with T_1 spaces (as is most often the case) the theorem says that X has property P iff all the X_α’s have property P and all but countably many of the X_α’s are “topologically irrelevant” singletons. Of course, in the case of metrizability (or complete metrizability), the T_1 condition is automatically satisfied.

Proof Throughout, let B be the set of “interesting” indices $\{\alpha \in A : X_\alpha$ is a nontrivial space\}.

We begin with the case P = “first countable.”

Suppose 1) and 2) hold and $x \in X$. We need to produce a countable neighborhood base at x. For each $\alpha \in B$, let $\{U_\alpha^n : n \in \mathbb{N}\}$ be a countable open neighborhood base at $x_\alpha \in X_\alpha$. Let

$$B_x = \{U : U \text{ is a finite intersection of sets of the form } U_\alpha^n, \alpha \in B, n \in \mathbb{N}\}$$

Since B is countable, B_x is a countable collection of open sets containing x and we claim that B_x is a neighborhood base at $x \in X$. To see this, suppose $V = \langle V_{\alpha_1}, \ldots, V_{\alpha_k} \rangle$ is a basic open set containing x. (We may assume that all α_i’s are in B: why?). For each $i = 1, \ldots, k$, pick $U_{\alpha_i}^{n_i}$ so that $x_{\alpha_i} \in U_{\alpha_i}^{n_i} \subseteq V_{\alpha_i}$. Then $U = \langle U_{\alpha_1}^{n_1}, U_{\alpha_2}^{n_2}, \ldots, U_{\alpha_k}^{n_k} \rangle \in B_x$ and $x \in U \subseteq V$. 252
Conversely, suppose X is first countable. We need to prove that 1) and 2) hold.

Since $X \neq \emptyset$, Lemma 2.16 gives that each X_α is homeomorphic to a subspace of X. Therefore each X_α is first countable, so 1) holds.

We prove the contrapositive for 2): assuming B is uncountable, we find a point $x \in X$ at which there cannot be a countable neighborhood base. Pick a point $p = (p_\alpha) \in X$

For each $\beta \in B$, pick an open set $O_\beta \subseteq X_\beta$ for which $\emptyset \neq O_\beta \neq X_\beta$. Choose $x_\beta \in O_\beta$ and $y_\beta \notin O_\beta$. Define $x = (x_\alpha) \in X$ using the coordinates

$$x_\alpha = \begin{cases} x_\beta & \text{if } \alpha = \beta \\ p_\alpha \in X_\alpha & \text{if } \alpha \notin B \end{cases}$$

Suppose B_x is a countable collection of neighborhoods of x. For each $N \in B_x$ choose a basic open set U with $x \in U = \langle U_{\alpha_1}, ..., U_{\alpha_n} \rangle \subseteq N$. There are only finitely many α_i's involved in the expression for the chosen U, and there are only countably many N's in B_x. So, since B is uncountable, we can pick a $\beta \in B$ that is not one of the α_i's involved in the expression for any of the chosen sets U. Then

i) $\langle O_\beta \rangle$ is an open set that contains x because $x_\beta \in O_\beta$

ii) for all $N \in B_x$, $N \notin \langle O_\beta \rangle$: to see this, consider the point $w = (w_\alpha)$ which is the same as x except in the β coordinate:

$$w_\alpha = \begin{cases} x_\alpha & \text{if } \alpha \neq \beta \\ y_\beta & \text{if } \alpha = \beta \end{cases}$$

For each $N \in B_x$, we chose $U = \langle U_{\alpha_1}, ..., U_{\alpha_n} \rangle \subseteq N$. Since $x \in U$ and w has the same $\alpha_1, ..., \alpha_n$ coordinates as x, we have $w \in U$ also. But $w \notin \langle O_\beta \rangle$ because $w_\beta = y_\beta \notin O_\beta$. Since $U \notin \langle O_\beta \rangle$, certainly $N \notin \langle O_\beta \rangle$. So B_x is not a neighborhood base at x.

We are now able to see immediately that if the product $X = \prod X_\alpha$ has any of the other properties P, then conditions 1) and 2) must hold.

If X is second countable, metrizable or completely metrizable, then X is first countable and, by the first part of the proof, condition 2) must hold.

If X is second countable or metrizable then every subspace has these same properties – in particular each X_α is second countable or metrizable respectively. If X is completely metrizable, then X and all the subspaces X_α are T_1. By Lemma 2.16, X_α is homeomorphic to a closed – therefore complete – subspace of X. Therefore X_α is completely metrizable.

It remains to show that if $P =$ “second countable,” “metrizable,” or “completely metrizable” and conditions 1) and 2) hold, then $X = \prod X_\alpha$ also has property P.

253
Suppose \(P = \text{“second countable.”} \)

For each \(\alpha \) in the countable set \(B \), let \(\mathcal{B}_\alpha = \{ O^1_\alpha, O^2_\alpha, ..., O^n_\alpha, ... \} \) be a countable base for the open sets in \(X_\alpha \) and let

\[
\mathcal{B} = \{ O : O \text{ is a finite intersection of sets of form } < O^n_\alpha > \text{, where } \alpha \in B \text{ and } n \in \mathbb{N} \}
\]

\(\mathcal{B} \) is countable and we claim \(\mathcal{B} \) is a base for the product topology on \(X \).

Suppose \(x \in V = < V_{\alpha_1}, ..., V_{\alpha_k} > \), a basic open set in \(X \). For each \(i = 1, ..., k \), \(x_{\alpha_i} \in V_{\alpha_i} \), so we can choose a basic open set in \(X_{\alpha_i} \) such that \(x_{\alpha_i} \in O^n_{\alpha_i} \subseteq V_{\alpha_i} \). Then \(x \in < O^n_{\alpha_1}, O^n_{\alpha_2}, ..., O^n_{\alpha_k} > \subseteq V \) and \(< O^n_{\alpha_1}, O^n_{\alpha_2}, ..., O^n_{\alpha_k} > \in \mathcal{B} \). Therefore \(V \) can be written as a union of sets from \(\mathcal{B} \), so \(\mathcal{B} \) is a base for \(X \).

Suppose \(P = \text{“metrizable.”} \)

Since all the \(X_\alpha \)'s are \(T_1 \), condition 2) implies that all but countably many \(X_\alpha \)'s are singletons and dropping the singleton factors from the product does not change \(X \) topologically. Therefore it is sufficient to prove that if each space \(X_1, X_2, ..., X_n, ... \) is metrizable, then \(X = \prod_{n=1}^{\infty} X_n \) is metrizable.

Let \(d_n \) be a metric for \(X_n \), where without loss of generality, we can assume each \(d_n \leq 1 \) (why?). For points \(x = (x_n), \ y = (y_n) \in X \), define

\[
d(x, y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}
\]

Then \(d \) is a metric on \(X \) (check), and we claim that \(T_d \) is the product topology \(T \). Because \(X \) is a countable product of first countable spaces, \(T \) is first countable, so \(T \) can be described using sequences: so it is sufficient to show that \((z_k) \to z \) in \((X, T) \) iff \((z_k) \to z \) in \((X, T_d) \). But \((z_k) \to z \) in \((X, T) \) iff the \((z_k) \) converges “coordinatewise.” Therefore it is sufficient to show that:

\[
(z_k) \to z \text{ in } (X, T_d) \quad \text{iff} \quad \forall n \ (z_k(n)) \to z(n) \text{ in } (X_n, d_n), \quad \text{that is,} \quad \forall n \ d_n(z_k(n), z(n)) \to 0
\]

i) Suppose \(d(z_k, z) \to 0 \). Let \(\epsilon > 0 \) and consider a particular \(n_0 \). We can choose \(K \) so that \(k \geq K \) implies \(d(z_k, z) = \sum_{n=1}^{\infty} \frac{d_n(z_k(n), z(n))}{2^n} < \frac{\epsilon}{2^n} \). Therefore, if \(k \geq K \) certainly \(d_{n_0}(z_k(n_0), z(n_0)) < \frac{\epsilon}{2^{n_0}} \), and therefore so \(d_{n_0}(z_k(n_0), z(n_0)) < \epsilon \).

So \(d_{n_0}(z_k(n_0), z(n_0)) \to 0 \).

ii) On the other hand, suppose \(d_n(z_k(n), z(n)) \to 0 \) for every \(n \). Let \(\epsilon > 0 \). Choose \(N \) so that \(\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \frac{\epsilon}{2} \) and then choose \(K \) so that if \(k \geq K \)

\[
d_1(z_k(1), z(1))/2^1 < \frac{\epsilon}{2N}
\]
\[
d_2(z_k(2), z(2))/2^2 < \frac{\epsilon}{2N}
\]
\[
... \]
\[
d_N(z_k(N), z(N))/2^N < \frac{\epsilon}{2N}
\]

Then for \(k \geq K \) we have \(d(z_k, z) = \sum_{n=1}^{\infty} \frac{d_n(z_k(n), z(n))}{2^n} \)
\[
\sum_{n=1}^{N} \frac{d_n(z_i(n), z(n))}{2^n} + \sum_{n=N+1}^{\infty} \frac{d_n(z_i(n), z(n))}{2^n} < N \cdot \frac{\epsilon}{2^N} + \frac{\epsilon}{2} = \epsilon.
\]

Therefore \(d(z_k, z) \to 0\).

Suppose \(P = \text{“completely metrizable.”}\)

Just as for \(P = \text{“metrizable,”}\) we can assume \(X = \prod_{n=1}^{\infty} X_n\) and that \(d_n\) is a complete metric on \(X_n\) with \(d_n \leq 1\). Using these \(d_n\)'s, we define \(d\) in the same way. Then \(T_d\) is the product topology on \(X\). We only need to show that \((X, d)\) is complete.

Suppose \((z_k)\) is a Cauchy sequence in \((X, d)\). From the definition of \(d\) it is easy to see that \((z_k(n))\) is Cauchy in \((X_n, d_n)\) for each \(n\), so that \((z_k(n)) \to a_n\) for each \(n\). Let \(a = (a_n) \in X\). Since \((z_k(n)) \to a_n\) for each \(n\), we have \((z_k) \to a\) in the product topology \(= T_d\). Therefore \((X, d)\) is complete. ●

What is the correct formulation and proof of the theorem for \(P = \text{“pseudometrizable”}\)?

We might wonder why \(P = \text{“separable”}\) is not included with Theorem 3.3. Since separability is a “countability property,” we might hope that separability is preserved in countable products — although our experience Lindelöf spaces could make us hesitate. The reason for the omission is that separability is better behaved for products than the other properties. (You should try to prove directly that a countable product of separable spaces is separable — remembering that in the product topology, “closeness depends on finitely many coordinates.” If necessary, first look at finite products.) But surprisingly, the product of as many as \(c\) separable spaces must be separable, and the product of more than \(c\) nontrivial separable spaces can sometimes be separable.

We begin the treatment of separability and products with a simple lemma which is really nothing but set theory.

Lemma 3.4 Suppose \(|A| \leq c\). There exists a countable collection \(\mathcal{R}\) of subsets of \(A\) with the following property: given distinct \(\alpha_1, \alpha_2, ..., \alpha_n \in A\), there are disjoint sets \(A_1, A_2, ..., A_n \in \mathcal{R}\) such that \(\alpha_i \in A_i\) for each \(i\).

Proof (Think about how you would prove the theorem when \(A = \mathbb{R}\). The general case is just a “carry over” on the same idea.)

Since \(|A| \leq c\), there is a one-to-one \(\phi : A \to \mathbb{R}\). Let \(\mathcal{R} = \{\phi^{-1}[(a, b)] : a, b \in \mathbb{Q}\}\). For distinct \(\alpha_1, \alpha_2, ..., \alpha_n \in A\), \(\phi(\alpha_1), \phi(\alpha_2), ..., \phi(\alpha_n)\) are distinct real numbers; we can choose \(a_i, b_i \in \mathbb{Q}\) so that \(\phi(\alpha_i) \in (a_i, b_i)\) and so that the intervals \((a_i, b_i)\) are pairwise disjoint. Then the sets \(A_i = \phi^{-1}[(a_i, b_i)] \in \mathcal{R}\) are the ones we need. ●

Theorem 3.5

1) Suppose \(X = \prod_{\alpha \in A} X_\alpha \neq \emptyset\). If \(X\) is separable, then each \(X_\alpha\) is separable.

2) If each \(X_\alpha\) is separable and \(|A| \leq c\), then \(X = \prod_{\alpha \in A} X_\alpha\) is separable.

Part 2) of Theorem 3.5 is attributed (independently) to several people. In a slightly more general version, it is sometimes called the “Hewitt-Marczewski-Pondiczery Theorem.” Here is an amusing
Most topologists are familiar with the Hewitt-Marczewski-Pondiczery theorem. It states that if \(m \) is an infinite cardinal, then a product of \(2^m \) topological spaces, each of which has a dense set of cardinality \(\leq m \), also has a dense set with \(\leq m \) points. In particular, the product of \(c \) separable spaces is separable (where \(c \) is the cardinal number of the continuum). Hewitt's proof appeared in [Bull. Amer. Math. Soc. 52 (1946), 641-643], Marczewski's proof in [Fund. Math. 34 (1947), 127-143], and Pondiczery's in [Duke Math. 11 (1944), 835-837]. A proof and a few historical remarks appear in Chapter 2 of Engelking's General Topology. The spread in the publication dates is due to dislocations caused by the Second World War; there is no doubt that these discoveries were made independently.

Hewitt and Marczewski are well-known as contributors to general topology, but who was (or is) Pondiczery? The answer may be found in Lion Hunting & Other Mathematical Pursuits, edited by G. Alexanderson and D. Mugler, Mathematical Association of America, 1995. It is a collection of memorabilia about Ralph P. Boas Jr. (1912-1992), whose accomplishments included writing many papers in mathematical analysis as well as several books, making a lot of expository contributions to the American Mathematical Monthly, being an accomplished administrator (e.g., he was the first editor of Mathematical Reviews (MR) who set the tone for this vitally important publication, and was the chairman for the Mathematics Department at Northwestern University for many years and helped to improve its already high quality), and helping us all to see that there is a lot of humor in what we do. He wrote many humorous articles under pseudonyms, sometimes jointly with others. The most famous is “A Contribution to the Mathematical Theory of Big Game Hunting” by H. Petard that appeared in the Monthly in 1938. This book is a delight to read.

In this book, Ralph Boas confesses that he concocted the name from Pondicherry (a place in India fought over by the Dutch, English and French), changed the spelling to make it sound Slavic, and added the initials E.S. because he contemplated writing spoofs on extra-sensory perception under the name E.S. Pondiczery. Instead, Pondiczery wrote notes in the Monthly, reviews for MR, and the paper that is the subject of this article. It is the only one reviewed in MR credited to this pseudonymous author.

One mystery remains. Did Ralph Boas have a collaborator in writing this paper? He certainly had the talent to write it himself, but facts cannot be established by deduction alone. His son Harold (also a mathematician) does not know the answer to this question...

Proof 1) Let \(D \) be a countable dense set in \(X \). For each \(\alpha \), \(\pi_\alpha[D] \) is countable and dense in \(X_\alpha \) (because \(X_\alpha = \pi_\alpha[X] = \pi_\alpha[\text{cl } D] \subseteq \text{cl } \pi_\alpha[D] \)). Therefore each \(X_\alpha \) is separable.

2) Choose a family \(\mathcal{R} \) as in Lemma 3.4 and for each \(\alpha \), let \(D_\alpha = \{ x_1^\alpha, x_2^\alpha, ..., x_n^\alpha, ... \} \) be a countable dense set in \(X_\alpha \). Define a countable set \(S \) by

\[
S = \{ (A_1, ..., A_n, l_1, ..., l_n) : n \in \mathbb{N}, l_i \in \mathbb{N}, A_i \in \mathcal{R} \text{ with the } A_i's \text{ pairwise disjoint} \}.
\]

Pick a point \(p_\alpha \in X_\alpha \) for each \(\alpha \). For each \(2n \)-tuple \(s = (A_1, ..., A_n, l_1, ..., l_n) \in S \), define a point \(x_s \in X \) with coordinates...
Let \(D = \{ x_s : s \in S \} \). \(D \) is countable and we claim that \(D \) is dense in \(X \). To see this, consider any nonempty basic open set \(U = \langle U_{\alpha_1}, ..., U_{\alpha_k} \rangle \): we will show that \(U \cap D \neq \emptyset \).

For \(U = \langle U_{\alpha_1}, ..., U_{\alpha_k} \rangle \neq \emptyset \),

i) Choose disjoint sets \(A_1, ..., A_k \) in \(R \) so that \(\alpha_1 \in A_1, ..., \alpha_k \in A_k \)

ii) For each \(i = 1, ..., k \), \(D_{\alpha_i} \) is dense in \(X_{\alpha_i} \) and we can pick a point \(x^{n_i}_{\alpha_i} \) in \(D_{\alpha_i} \cap U_{\alpha_i} = \{ x^1_{\alpha_i}, x^2_{\alpha_i}, ..., x^{n_i}_{\alpha_i}, ... \} \cap U_{\alpha_i} \).

Let \(s = (A_1, ..., A_i, ..., A_k, n_1, ..., n_i, ..., n_k) \in S \). Because \(\alpha_i \in A_i \), we have \(x_s(\alpha_i) = x^{n_i}_{\alpha_i} \in U_{\alpha_i} \). Therefore \(x_s \in U \cap D \). \(\bullet \)

Example 3.6: The rather abstract construction of a dense set \(D \) in the proof of Theorem 3.5 can be nicely illustrated with a concrete example. Consider \(R^R = \prod_{r \in R} X_r \), where each \(X_r = R \). Choose \(R \) to be the collection of all open intervals \((a, b)\) with rational endpoints, and make a list these intervals as \(A_1, ..., A_i, ..., A_k \). In each \(X_r \), choose \(D_r = Q = \{ q^1, q^2, ..., q^n, ... \} \). (Since all the \(D_r \)'s are identical, we can omit the subscript “\(r \)” on the points; but just to stay consistent with the notation in the proof, we still index the \(q \)'s using superscripts.) For each \(r \), (arbitrarily) pick \(p_r = 0 \in X_r \).

One example of a 6-tuple in the collection \(S \) is \(s = (A_6, A_2, A_5, 2, 7, 4) \), where \(A_1, A_2, A_3 \) are disjoint open intervals with rational endpoints. The corresponding point \(x_s \in R^R \) is the function \(x_s : R \to R \) with

\[
x_s(r) = \begin{cases}
q^2 & \text{for } r \in A_6 \\
q^7 & \text{for } r \in A_2 \\
q^4 & \text{for } r \in A_5 \\
0 & \text{for } r \notin A_6 \cup A_5 \cup A_2
\end{cases}
\]

The dense set \(D \) consists of all step functions (such as \(x_s \)) that are 0 outside a finite union \(A_{n_1} \cup A_{n_2} \cup ... \cup A_{n_k} \) of disjoint open intervals with rational endpoints and which have a constant rational value on each \(A_i \).

Caution: In Example 2.12 we saw that the product topology on \(R^R \) is the topology of pointwise convergence — that is, \((f_n) \to f \) in \(R^R \) iff \((f_n(r)) \to f(r) \) for each \(r \in R \). But \(R^R \) is not first countable (why?) so we cannot say that sequences are sufficient to describe the topology. In particular, if \(f \in R^R \), then \(f \in \text{cl} \ D \) but we cannot say that there must be sequence of step functions from \(D \) that converges pointwise to \(f \).

Since \(R^R \) is not first countable, \(R^R \) is an example of a separable space that is neither second countable nor metrizable.

In contrast to the properties discussed in Theorem 3.3, an arbitrarily large product of nontrivial separable spaces can sometimes turn out to be separable, as the next example shows. However,
Theorem 3.8 shows that for Hausdorff spaces, a nonempty product with more than one factor cannot be separable.

Example 3.7 For each \(\alpha \in A \), let \(X_\alpha \) be a set with \(|X_\alpha| > 1 \). Choose \(p_\alpha \in X_\alpha \) and let \(T_\alpha = \{ O \subseteq X_\alpha : p_\alpha \in O \cup \{ \emptyset \} \} \). The singleton set \(\{p_\alpha\} \) is dense in \((X_\alpha, T_\alpha) \), so \(X_\alpha \) is separable.

If \(p = (p_\alpha) \in X = \prod_{\alpha \in A} X_\alpha \), then singleton set \(\{p\} \) is dense (why? look at a nonempty basic open set \(U \)). So \(X \) is separable, no matter how large the index set \(A \) is.

The \(X_\alpha \)'s in this example are not \(T_1 \). But Exercise E7 shows that an arbitrarily large product of separable \(T_1 \) spaces can turn out to be separable.

Theorem 3.8 Suppose \(X = \prod_{\alpha \in A} X_\alpha \neq \emptyset \) where each \(X_\alpha \) is a \(T_2 \) space with more than one point. If \(X \) is separable, then \(|A| \leq c\).

Proof For each \(\alpha \), we can pick a pair of disjoint, nonempty open sets \(U_\alpha \) and \(V_\alpha \) in \(X_\alpha \). Let \(D \) be a countable dense set in \(X \) and let \(D_\alpha = \langle U_\alpha \rangle \cap D \) for each \(\alpha \). If \(\alpha \neq \beta \in A \), there is a point \(p \in \langle U_\alpha, V_\beta \rangle \cap D \) because \(D \) is dense. Then \(p \in D_\alpha \) but \(p \notin D_\beta = \langle U_\beta \rangle \cap D \) since \(x_\beta \notin U_\beta \); therefore \(D_\alpha \neq D_\beta \). Therefore the map \(\phi : A \to \mathcal{P}(D) \) given by \(\phi(\alpha) = D_\alpha \) is one-to-one, so \(|A| \leq |\mathcal{P}(D)| = 2^c = c \). \(\bullet \)

We saw in Corollary V.2.19 that a finite product of connected spaces is connected. In fact, the following theorem shows that connectedness behaves very nicely with respect to any product. The proof of the theorem is interesting because, unlike our previous proofs about products, this proof uses the theorem about finite products to prove the general case.

Theorem 3.9 Suppose \(X = \prod_{\alpha \in A} X_\alpha \neq \emptyset \). \(X \) is connected iff each \(X_\alpha \) is connected.

Proof \(X \) is nonempty so each map \(\pi_\alpha : X \to X_\alpha \) is onto. If \(X \) is connected, then each \(X_\alpha \) is a continuous image of a connected space so \(X_\alpha \) is connected (see Example V.2.6).

Conversely, suppose each \(X_\alpha \) is connected. For each \(\alpha \), pick a point \(p_\alpha \in X_\alpha \). For each finite set \(F \subseteq A \), let \(X_F = \prod_{\alpha \in F} X_\alpha \times \prod_{\alpha \notin F} \{p_\alpha\} \). \(X_F \) is homeomorphic to the finite product \(\prod_{\alpha \in F} X_\alpha \), so each \(X_F \) is connected. Let \(D = \bigcup \{ X_F : F \text{ is a finite subset of } A \} \). Each \(X_F \) contains the point \(p = (p_\alpha) \), so Corollary V.2.10 tells us that \(D \) is connected. Unfortunately, \(D \neq X \) (except in trivial cases; why?).

But we claim that \(D \) is dense in \(X \). If \(U = \langle U_{\alpha_1}, ..., U_{\alpha_n} \rangle \) is any nonempty basic open set in \(X \), we need to show that \(D \cap U \neq \emptyset \). Choose a point \(x_{\alpha_i} \in U_{\alpha_i} \) for each \(i = 1, ..., n \), and define \(x \in X \) having coordinates

\[
x(\alpha) = \begin{cases} x_{\alpha_i} & \text{if } \alpha = \alpha_i \\
p_\alpha & \text{if } \alpha \neq \alpha_1, \alpha_2, ..., \alpha_n
\end{cases}
\]

If we let \(F = \{ \alpha_1, \alpha_2, ..., \alpha_n \} \), then \(x \in X_F \cap U \subseteq D \cap U \), so \(D \cap U \neq \emptyset \).

Therefore \(X = \text{cl} \ D \) is connected (Corollary V.2.20). \(\bullet \)

Question: is the analogue of Theorem 3.9 true for path connected spaces?

Just for reference, we state one more theorem here. We will not prove Theorem 3.10 until Chapter IX, but we may use it in examples. *(Of course, the proof in Chapter IX will not depend on any of these)*
Theorem 3.10 (Tychonoff Product Theorem) Suppose $X = \prod_{\alpha \in A} X_\alpha \neq \emptyset$. Then X is compact iff each X_α is compact.

The proof “\Rightarrow” in Tychonoff's Theorem is quite easy (why?). And the easy theorem that a finite product of compact spaces is compact was in Exercise IV.E.26.
Exercises

E10. Let $X = [0, 1]^{[0,1]}$ have the product topology.

(a) Prove that the set of all functions in X with finite range (sometimes called step functions) is dense in X.

(b) By Theorem 3.5, X is separable. Describe a countable set of step functions which is dense in X.

(c) Let $A = \{ x \in X : f$ is the characteristic function of a singleton set $\{ r \} \}$. Prove that A, with the subspace topology, is discrete and not separable. Is A closed?

(d) Prove that A has exactly one limit point, z, in X and that if N is a neighborhood of z, then $A - N$ is finite.

E11. “Boxes” of the form $\prod \{ U_\alpha : \alpha \in A \}$, where U_α is open in X_α, are a base for the box topology on $\prod_{\alpha \in A} X_\alpha$. Throughout this problem, we assume that products have the box topology rather than the usual product topology.

(a) Show that the “diagonal map” $f: \mathbb{R} \to \mathbb{R}^{\aleph_0}$ given by $f(x) = (x, x, x, ...)$ is not continuous, but that its composition with each projection map is continuous.

(b) Show that $[0, 1]^{\aleph_0}$ is not compact.

Hint: let $A_0 = [0, 1)$ and $A_1 = (0, 1]$. Consider the collection \mathcal{U} of all sets of the form $A_{\epsilon_1} \times A_{\epsilon_2} \times ... \times A_{\epsilon_n} \times ...$, where $(\epsilon_1, \epsilon_2, ..., \epsilon_n, ...) \in \{0, 1\}^{\aleph_0}$.

Note: With the product topology, in contrast, $[0, 1]^m$ is compact for any cardinal m – by the Tychonoff Product Theorem (3.10) which we will prove later.

(c) Show that \mathbb{R}^{\aleph_0} is not connected by showing that the set $A = \{ x \in \mathbb{R}^{\aleph_0} : x$ is an unbounded sequence in $\mathbb{R} \}$ is clopen.

(d) Suppose (X, d) and (X_α, d_α) $(\alpha \in A)$ are metric spaces. Prove that a function $f: X \to \prod X_\alpha$ (with the box topology) is continuous iff each coordinate function $f_\alpha = \pi_\alpha \circ f$ is continuous and each $x \in X$ has a neighborhood on which all but a finite number of the f_α's are constant.

E12. State and prove a theorem that gives a necessary and sufficient condition for a product of spaces to be path connected.

E13. Prove the following more general version of Theorem 3.8:

Suppose $X = \prod_{\alpha \in A} X_\alpha \neq \emptyset$, and that, for each $\alpha \in A$, there exist disjoint nonempty open sets U_α and V_α in X_α. If X is separable, then $|A| \leq c$.

260
4. Embedding Spaces in Products

It is often possible to embed a space X in a product $\prod X_\alpha$. Such embeddings will give us some nice theorems — for example, we will see that there is a separable metric space X that contains all other separable metric spaces topologically — a “universal” separable metric space.

To illustrate the general method we will use, consider two maps $f_1 : [0, 1] \to \mathbb{R}$ and $f_2 : [0, 1] \to \mathbb{R}$ given by $f_1(x) = x^2$ and $f_2(x) = e^x$. Using these maps we can define $e : [0, 1] \to \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ by using f_1 and f_2 as “coordinate functions”: $e(x) = (f_1(x), f_2(x)) = (x^2, e^x)$. This map e is called the evaluation map defined by the set of functions $\{f_1, f_2\}$. In this example, e is an embedding — that is, e is a homeomorphism of $[0, 1]$ into \mathbb{R}^2 so that $[0, 1] \simeq \text{ran}(e) \subseteq \mathbb{R}^2$ (see the figure).

![Diagram](https://example.com/diagram.png)

An evaluation map does not always give an embedding: for example, the evaluation map $e : [0, 1] \to \mathbb{R}^2$ defined by the family $\{\cos 2\pi x, \sin 2\pi x\}$ is not a homeomorphism between $[0, 1]$ and $\text{ran}(e) \subseteq \mathbb{R}^2$ (why? what is $\text{ran}(e)$?)

We want to generalize the idea of an evaluation map e into a product and to find some conditions under which e will be an embedding.

Definition 4.1 Suppose X and $X_\alpha (\alpha \in A)$ are topological spaces and that $f_\alpha : X \to X_\alpha$ for each α. The evaluation map defined by the family $\{f_\alpha : \alpha \in A\}$ is the function $e : X \to \prod_{\alpha \in A} X_\alpha$ given by

$$e(x)(\alpha) = f_\alpha(x)$$

Then $e(x)$ is the point in the product $\prod X_\alpha$ whose α^{th} coordinate function is $f_\alpha(x)$.

In more informal coordinate notation, $e(x) = (f_\alpha(x))$.

Exercise 4.2 Suppose $X = \prod_{\alpha \in A} X_\alpha$. For each α there is a projection map $\pi_\alpha : X \to X_\alpha$. What is the evaluation map defined by the family $\{\pi_\alpha : \alpha \in A\}$?
Definition 4.3 Suppose X and X_α ($\alpha \in A$) are topological spaces and that $f_\alpha : X \to X_\alpha$. We say that the family $\{f_\alpha : \alpha \in A\}$ separates points if, for each pair of points $x \neq y \in X$, there exists an $\alpha \in A$ for which $f_\alpha(x) \neq f_\alpha(y)$.

Clearly, the evaluation map $e : X \to \prod_{\alpha \in A} X_\alpha$ is one-to-one \iff for all $x \neq y \in X$, $e(x) \neq e(y)$ \iff for all $x \neq y \in X$ there is an $\alpha \in A$ for which $e(x)(\alpha) = f_\alpha(x) \neq f_\alpha(y) = e(y)(\alpha)$ \iff the family $\{f_\alpha : \alpha \in A\}$ separates points.

Theorem 4.4 Suppose X has the weak topology generated by the maps $f_\alpha : X \to (X_\alpha, \mathcal{T}_\alpha)$ and that the family $\{f_\alpha : \alpha \in A\}$ separates points. Then e is an embedding — that is, e a homeomorphism between X and $e[X] \subseteq \prod X_\alpha$.

Proof Since $\{f_\alpha\}$ separates points, e is one-to-one and e is continuous because each composition $\pi_\alpha \circ e = f_\alpha$ is continuous. e preserves unions and (since e is one-to-one) intersections. So to check that e is an open map from X to $e[X]$, it is sufficient to show that e takes subbasic open sets in X to open sets in $e[X]$. Because X has the weak topology, a subbasic open set has the form $U = f_\alpha^{-1}[V]$, where V is open in X_α. But then $e[U] = e[f_\alpha^{-1}[V]] = \pi_\alpha^{-1}[V] \cap e[X]$ is an open set in $e[X]$.

(Note: $e[U]$ might not be open in $\prod X_\alpha$, but that is irrelevant. See the earlier example where $e(x) = (x^2, e^x)$.)

The converse of Theorem 4.4 is also true: if e is an embedding, then the f_α’s separate points and X has the weak topology generated by the f_α’s. However, we do not need this fact and will omit the proof (which is not very hard).

Example 4.5

Let (X, d) be a separable metric space. We can assume, without loss of generality, that $d \leq 1$. X is second countable so there is a countable base $\mathcal{B} = \{U_1, \ldots, U_n, \ldots\}$ for the open sets. For each n, let $f_n(x) = d(x, X - U_n)$. Then $f_n : X \to [0, 1]$ is continuous and, since $X - U_n$ is closed, we have $f_n(x) > 0$ iff $x \in U_n$. If $x \neq y \in X$, there is an n such that $x \in U_n$ and $y \notin U_n$. Then $f_n(y) = 0 \neq f_n(x)$, so f_n’s separate points.

We claim that the topology \mathcal{T}_d on X is actually just the weak topology \mathcal{T}_w generated by the f_n’s. Because the functions f_n are continuous if X has the topology \mathcal{T}_d, we know that $\mathcal{T}_d \supseteq \mathcal{T}_w$. To show $\mathcal{T}_d \subseteq \mathcal{T}_w$, suppose $x \in U \in \mathcal{T}_d$. For some n, we have $x \in U_n \subseteq U$ and therefore $f_n(x) = e > 0$. But $V_n = f_n^{-1}([\frac{e}{2}, 1])$ is a subbasic open set in the weak topology and $x \in V_n \subseteq U_n \subseteq U$. Therefore $U \in \mathcal{T}_w$.

By Theorem 4.4, $e : X \to [0, 1]^\mathbb{N}_0$ is an embedding, so $X \simeq e[X] \subseteq [0, 1]^\mathbb{N}_0$. We sometimes write this as $X \subseteq [0, 1]^\mathbb{N}_0$. From Theorems 3.3 and 3.5, we know that $[0, 1]^\mathbb{N}_0$ is itself a separable metrizable space — and therefore all its subspaces are separable and metrizable. Putting all this together, we get that topologically, the separable metrizable spaces are nothing more and nothing less than the subspaces of $[0, 1]^\mathbb{N}_0$.

We can view this fact with a “half-full” or “half-empty” attitude:
i) separable metric spaces must not be very complicated since topologically they are nothing more than the subspaces of a single very nice space: the “cube” $[0, 1]^\mathbb{N}_0$

ii) separable metric spaces can get quite complicated, so the subspaces of a cube $[0, 1]^\mathbb{N}_0$ are more complicated than we imagined.

Since $[0, 1]^\mathbb{N}_0 \approx \prod_{n=1}^{\infty} [0, \frac{1}{n}] = H$ (the “Hilbert cube”) $\subseteq \ell_2$, we can also say that topologically the separable metrizable spaces are precisely the subspaces of ℓ_2. This is particularly amusing because of the almost “Euclidean” metric d on ℓ_2:

$$d(x, y) = \left(\sum_{n=1}^{\infty} (x_n - y_n)^2 \right)^{\frac{1}{2}}$$

In some sense, this elegant “Euclidean-like” metric is adequate to describe the topology of any separable metric space.

We can summarize by saying that each of H and ℓ_2 is a “universal separable metric space” (But they are not homeomorphic: H is compact but ℓ_2 is not.)

Example 4.6

Suppose (X, d) is a metric space, not necessarily separable, and that $\{U_\alpha : \alpha \in A\}$ is a base for the topology T_d, where $m = |A|$. An argument completely analogous to the reasoning in Example 4.5 (just replace “n” everywhere with “α”) shows that $X \subseteq [0, 1]^m$. Therefore topologically every metric space is a subspace of some sufficiently large “cube.” Of course, if $m > \aleph_0$, the cube $[0, 1]^m$ is not itself metrizable (why?); in general this cube will have many subspaces that are nonmetrizable. So the result is not quite as dramatic as in the separable case.

The weight $w(X)$ of a topological space (X, T) is defined as $\min\{|B| : B$ is a base for $T\} + \aleph_0$.

We are assuming here that the “min” in the definition exists: see Example 5.22 in Chapter VIII. For some very simple spaces, the “min” could be finite – in which case the “$+ \aleph_0$” guarantees that $w(X) \geq \aleph_0$ (convenient for purely technical reasons that don’t matter in these notes).

The density $\delta(X)$ is defined as $\min\{|D| : D$ is dense in $(X, T)\} + \aleph_0$. For a metrizable space, it is not hard to prove that $w(X) = \delta(X)$. The proof is just like our earlier proof (in Theorem III.6.5) that separability and second countability are equivalent in metrizable spaces. Therefore we have that for any metric space (X, d),

$$X^{\text{top}} \subseteq [0, 1]^{w(X)} = [0, 1]^\delta(X) \quad (*)$$

Notice that, for a given space (X, d), the exponents in this statement are not necessarily the smallest possible. For example, $(*)$ says that $\mathbb{R}^{\text{top}} \subseteq [0, 1]^{w(\mathbb{R})} = [0, 1]^{\aleph_0}$, but in fact we can do much better than the exponent \aleph_0:

$\mathbb{R} \simeq (0, 1) \subseteq [0, 1] = [0, 1]^{\aleph_0}$

We add one additional comment, without proof: For a given infinite cardinal m, it is possible to define a metrizable space H_m with weight m such that every metric space X with weight m can be embedded in $H_m^{\aleph_0}$. In other words, $H_m^{\aleph_0}$ is a metrizable space which is “universal for all metric spaces with $w(X) = m$.” The price of metrizability, here, is that we need to replace $[0, 1]$ by a more complicated space H_m.

263
Without going into all the details, you can think of H_m as a “star” with m different copies of $[0, 1]$ (“rays”) all placed with 0 at the center of the star. For two points x, y on the same “ray” of the star, $d(x, y) = |x - y|$; if x, y are on different rays, the distance between them is measured “via the origin”: $d(x, y) = |x| + |y|$.

The condition in Theorem 4.4 that “X has the weak topology generated by a collection of maps $f_\alpha : X \to X_\alpha$” is sometimes not so easy to check. The following definition and theorem can sometimes help.

Definition 4.7 Suppose X and X_α ($\alpha \in A$) are topological spaces and that, for each α, $f_\alpha : X \to X_\alpha$. We say that the collection $F = \{f_\alpha : \alpha \in A\}$ separates points from closed sets if whenever F is a closed set in X and $x \notin F$, there is an α such that $f_\alpha(x) \notin \text{cl } f_\alpha[F]$.

Example 4.8 Let $X = \mathbb{R}$ and $F = C(\mathbb{R})$. Suppose F is a closed set in \mathbb{R} and $r \notin F$. There is an open interval (a, b) for which $r \in (a, b) \subseteq \mathbb{R} - F$. Define $f \in C(\mathbb{R})$ with a graph like the one shown in the figure:

![Graph example](image)

Then $0 = f(r) \notin \text{cl } f[F]$. Therefore $C(\mathbb{R})$ separates points and closed sets.

The same notation continues in the following lemma.

Lemma 4.9 The family $B = \{f_\alpha^{-1}[V] : \alpha \in A, V \text{ open in } X_\alpha\}$ is a base for the topology in X iff

- i) the f_α's are continuous, and
- ii) $\{f_\alpha : \alpha \in A\}$ separates points and closed sets.

In particular, i) + ii) imply that B is a subbase for the topology on X — so that X has the weak topology generated by the f_α's.
Note: the more open (closed) sets there are in \(X \), the harder it is for a given family \(\{ f_\alpha : \alpha \in A \} \) to succeed in separating points and closed sets. In fact, the lemma shows that a family of continuous functions \(\{ f_\alpha : \alpha \in A \} \) succeeds in separating points and closed sets only if \(T \) is the smallest topology that makes the \(f_\alpha \)'s continuous.

Proof Suppose \(B \) is a base. Then the sets \(f_\alpha^{-1}[V] \) in \(B \) are open, so the \(f_\alpha \)'s are continuous and i) holds.

To prove ii), suppose \(F \) is closed in \(X \) and \(x \notin F \). For some \(\alpha \) and some \(V \) open in \(X_\alpha \), we have \(x \in f_\alpha^{-1}[V] \subseteq X - F \). Then \(f_\alpha(x) \in V \) and \(V \cap f_\alpha[F] = \emptyset \) (since \(f_\alpha^{-1}[V] \cap F = \emptyset \)). Therefore \(f_\alpha(x) \notin \text{cl} f_\alpha[F] \) so ii) also holds.

Conversely, suppose i) and ii) hold. If \(x \in O \) and \(O \) is open in \(X \), we need to find a set \(f_\alpha^{-1}[V] \in B \) such that \(x \in f_\alpha^{-1}[V] \subseteq O \). Since \(x \notin F = X - O \), condition ii) gives us an \(\alpha \) for which \(f_\alpha(x) \notin \text{cl} f_\alpha[F] \). Then \(f_\alpha(x) \in V = X_\alpha - \text{cl} f_\alpha[F] \). Then \(x \in f_\alpha^{-1}[V] \) and we claim \(f_\alpha^{-1}[V] \subseteq O \):

Suppose \(z \in f_\alpha^{-1}[V] \) so \(f_\alpha(z) \in V = X_\alpha - \text{cl} f_\alpha[F] \).

But if \(z \in F \), then \(f_\alpha(z) \in f_\alpha[F] = f_\alpha[\text{cl} F] \subseteq \text{cl} f_\alpha[F] \).

Therefore \(z \in X - F = O \). ●

Theorem 4.10 Suppose \(f_\alpha : X \rightarrow X_\alpha \) is continuous for each \(\alpha \in A \). If the collection \(\{ f_\alpha : \alpha \in A \} \)

\[
\begin{align*}
\text{i) & separates points and closed sets, and} \\
\text{ii) & separates points}
\end{align*}
\]

then the evaluation map \(e : X \rightarrow \prod X_\alpha \) is an embedding.

Proof Since the \(f_\alpha \)'s are continuous, Lemma 4.9 gives us that \(X \) has the weak topology. Then Theorem 4.4 implies that \(e \) is an embedding. ●

If the space \(X \) we are trying to embed is a \(T_1 \)-space (as is most often the case), then i) \(\Rightarrow \) ii) in Theorem 4.10, so we have the simpler statement given in the following corollary.

Corollary 4.11 Suppose \(f_\alpha : X \rightarrow X_\alpha \) is continuous for each \(\alpha \in A \). If \(X \) is a \(T_1 \)-space and \(\{ f_\alpha : \alpha \in A \} \) separates points and closed sets, then evaluation map \(e : X \rightarrow \prod X_\alpha \) is an embedding.

Proof By Theorem 4.10, it is sufficient to show that the \(f_\alpha \)'s separate points, so suppose \(x \neq y \in X \).

Since \(x \notin \) the closed set \(\{ y \} \), there is an \(\alpha \) for which \(f_\alpha(x) \notin \text{cl} f_\alpha[\{ y \}] \). Therefore \(f_\alpha(x) \neq f_\alpha(y) \), so \(\{ f_\alpha : \alpha \in A \} \) separates points. ●
Exercises

E14. A space \((X, \mathcal{T})\) is called a \(T_0\) space if whenever \(x \neq y \in X\), then \(N_x \neq N_y\) (equivalently, either there is an open set \(U\) containing \(x\) but not \(y\), or vice-versa). Notice that the \(T_0\) condition is weaker than \(T_1\) (see example III.2.6.4). Clearly, a subspace of a \(T_0\)-space is \(T_0\).

a) Prove that a nonempty product \(X = \prod \{X_\alpha : \alpha \in A\}\) is \(T_0\) iff each \(X_\alpha\) is \(T_0\).

b) Let \(S\) be “Sierpinski space” — that is, \(S = \{0, 1\}\) with the topology \(\mathcal{T} = \{\emptyset, \{1\}, \{0, 1\}\}\). Use the embedding theorems to prove that a space \(X\) is \(T_0\) iff \(X\) is homeomorphic to a subspace of \(S^m\) for some cardinal \(m\). (Nearly all interesting spaces are \(T_0\), so nearly all interesting spaces are (topologically) just subspaces of \(S^m\) for some cardinal \(m\).

Hint \(\Rightarrow\): for each open set \(U\) in \(X\), let \(\chi_U\) be the characteristic function of \(U\). Use an embedding theorem.

E15. a) Let \((X, d)\) be a metric space. Prove that \(C(X)\) (= the collection of continuous real-valued functions on \(X\)) separates points from closed sets. (Since \(X\) is \(T_1\), \(C(X)\) therefore also separates points).

b) Suppose \(X\) is any \(T_0\) topological space for which \(C(X)\) separates points and closed sets. Prove that \(X\) can be embedded in a product of copies of \(\mathbb{R}\).

E16. A space \(X\) satisfies the countable chain condition (CCC) if every collection of nonempty pairwise disjoint open sets must be countable. (For example, every separable space satisfies CCC.)

Suppose that \(X_\alpha\) is separable for each \(\alpha \in A\). Prove that \(X = \prod \{X_\alpha : \alpha \in A\}\) satisfies CCC. (There isn't much to prove when \(|A| \leq c\); why?)

Hint: Let \(\{U_t : t \in T\}\) be any such collection. We can assume all the \(U_t\)'s are basic open sets (why?). Prove that if \(S \subseteq T\) and \(|S| \leq c\), then \(|S| \leq \aleph_0\) and hence \(T\) must be countable.)

E17. There are several ways to define dimension for topological spaces. One classical method is the following inductive definition.

Define \(\dim(\emptyset) = -1\).

For \(p \in X\), we say that \(X\) has dimension \(\leq 0\) at \(p\) if there is a neighborhood base at \(p\) consisting of sets with \(-1\) dimensional (that is, empty) frontiers. Since a set has empty frontier iff it is clopen, \(X\) has dimension \(\leq 0\) at \(p\) iff \(p\) has a neighborhood base consisting of clopen sets.

We say \(X\) has dimension \(\leq n\) at \(p\) if \(p\) has a neighborhood base consisting of sets with \(n-1\) dimensional frontiers.

We say \(X\) has dimension \(\leq n\), and write \(\dim(X) \leq n\), if \(X\) has dimension \(\leq n\) at \(p\) for each \(p \in X\) and that \(\dim(X) = n\) if \(\dim(X) \leq n\) but \(\dim(X) \neq n-1\). We say \(\dim(X) = \infty\) if \(\dim(X) \leq n\) is false for every \(n \in \mathbb{N}\).

While this definition of \(\dim(X)\) makes sense for any topological space \(X\), it turns out that “\(\dim\)” produces a nicely behaved dimension theory only for separable metric spaces. The dimension function “\(\dim\)” is sometimes called small inductive dimension to distinguish it from other more general definitions of dimension. The classic discussion of small inductive dimension is in Dimension Theory (Hurewicz and Wallman).
It is clear that “dim(X) = n” is a topological property of X. There is a theorem stating that dim(\(\mathbb{R}^n \)) = n, from which it follows that \(\mathbb{R}^n \) is not homeomorphic to \(\mathbb{R}^m \) if m \(\neq \) n. In proving the theorem, showing dim(\(\mathbb{R}^n \)) \(\leq \) n is easy; the hard part is showing that dim(\(\mathbb{R}^n \)) \(\neq \) n - 1.

a) Prove that dim(\(\mathbb{R} \)) = 1.

b) Let C be the Cantor set. Prove that dim(C) = 0.

c) Suppose \((X, d)\) is a 0-dimensional separable metric space. Prove that X is homeomorphic to a subspace of C. (Hint: Show that X has a countable base of clopen sets. View C as \(\{0, 2\}^{\mathbb{N}} \) and apply the embedding theorems.)

E18. Suppose X and Y are \(T_0 \)-spaces. Part a) outlines a sufficient condition enabling Y to be topologically embedded in a product of X’s, i.e., that Y \(\subseteq \) \(X^m \) for some cardinal m. Parts b) and c) look at some corollaries.

a) **Theorem** Let X and Y be \(T_0 \) spaces. Then Y can be topologically embedded in \(X^m \) for some cardinal m if, for every closed set F \(\subseteq \) Y and every point y \(\notin \) F, there exists a continuous function \(f : Y \rightarrow X^n \) such that \(f(y) \notin \text{cl}[F] \) (here, n is finite and depends on f).

Proof Let \(T = \{t = (y, F) : F \text{ is closed in } Y \text{ and } y \notin F\} \) and, for each such pair t = (y, F), let \(f_t \) be the function given in the hypothesis. Let \(X_t = X^n \) (the space containing the values of \(f_t \)). Then clearly \(\prod\{X_t : t \in T\} \) is homeomorphic to \(X^m \) for some m, so it suffices to show Y can be embedded in \(\prod\{X_t : t \in T\} \). Let \(h : Y \rightarrow \prod\{X_t : t \in T\} \) be defined as follows: for \(y \in Y \), \(h(t) \) has for its t-th coordinate \(f_t(y) \), i.e., \(h(y)(t) = f_t(y) \).

i) Show h is continuous.

ii) Show h is one-to-one.

iii) Show that h is a closed mapping onto its range h[Y] to complete the proof that h is a homeomorphism between Y and h[Y] \(\subseteq \prod\{X_t : t \in T\} \). (Note: the converse of the theorem is also true. Both the theorem and converse are due to S. Mrowka.)

b) Let F denote Sierpinski space \(\{\{0, 1\}, \emptyset, \{0\}, \{0, 1\}\} \). Use the theorem to show that every \(T_0 \) space Y can be embedded in \(F^m \) for some m.

c) Let D denote the discrete space \(\{0, 1\} \). Use the theorem to show that every \(T_1 \)-space Y satisfying dim(Y) = 0 (see Exercise E14) can be embedded in \(D^m \) for some m.

Parts b) and c) are due to Alexandroff.

Mrowka also proved that there is no \(T_1 \)-space X such that every \(T_1 \)-space Y can be embedded in \(X^m \) for some m.

E19. Let X = \(\{0, 1\} \) and consider the product space \(X^m \), where m is an infinite cardinal.
a) Show that X^m contains a discrete subspace of cardinality m.

b) Show that $w(X^m) = m$ (see Example 4.6).

E20. A space X is called totally disconnected if every connected subset A satisfies $|A| \leq 1$. Prove that a totally disconnected compact Hausdorff space is homeomorphic to a closed subspace of $\{0, 1\}^m$ for some m. (Hint: see Lemma V.5.6.)

E21. Suppose X is a countable space that does not have a countable neighborhood base at the point $a \in X$. (For instance, let $a = (0, 0)$ in the space L, Example III.9.8.)

Let $A_j = \{x \in X^{\aleph_0} : x_i = a$ for $i > j\}$ and $A = \bigcup_{j=0}^{\infty} A_j \subseteq X^{\aleph_0}$. Prove that no point in the (countable) space A has a countable neighborhood base. (Note: it is not necessary that X be countable. That condition simply forces A to be countable and makes the example more dramatic.)
5. The Quotient Topology

Suppose that for each \(\alpha \in A \) we have a map \(g_\alpha : X_\alpha \to Y \), where \(X_\alpha \) is a topological space and \(Y \) is a set. Certainly there is a topology for \(Y \) that will make all the \(g_\alpha \)'s continuous: for example, the trivial topology on \(Y \). But what is the largest topology on \(Y \) that will do this? Let

\[
T = \{ O \subseteq Y : \text{for all } \alpha \in A, g_\alpha^{-1}[O] \text{ is open in } X_\alpha \}
\]

It is easy to check that \(T \) is a topology on \(Y \). For each \(\alpha \), by definition, each set \(g_\alpha^{-1}[O] \) is open in \(X_\alpha \) — so \(T \) makes all the \(g_\alpha \)'s continuous. Moreover, if \(B \subseteq Y \) and \(B \notin T \), then for at least one \(\alpha \), \(g_\alpha^{-1}[B] \) is not open in \(X_\alpha \) — so adding \(B \) to \(T \) would “destroy” the continuity of at least one \(g_\alpha \). Therefore \(T \) is the largest possible topology on \(Y \) making all the \(g_\alpha \)'s continuous.

Definition 5.1 Suppose \(g_\alpha : X_\alpha \to Y \) for each \(\alpha \in A \). The strong topology \(T \) on \(Y \) generated by the maps \(g_\alpha \) is the largest topology on \(Y \) making all the maps \(g_\alpha \) continuous, and \(O \in T \) iff \(g_\alpha^{-1}[O] \) is open in \(X_\alpha \) for every \(\alpha \).

The strong topology generated by a collection of maps \(\{ g_\alpha : \alpha \in A \} \) is “dual” to the weak topology in the sense that it involves essentially the same notation but with “all the arrows pointing in the opposite direction.” For example, the following theorem states that a map \(f \) out of a space with the strong topology is continuous iff each map \(f \circ g_\alpha \) is continuous; but a map \(f \) into a space with the weak topology generated by mappings \(f_\alpha \) is continuous iff all the compositions \(f_\alpha \circ f \) are continuous (see Theorem 2.6).

Theorem 5.2 Suppose \(Y \) has the strong topology generated by a collection of maps \(\{ g_\alpha : \alpha \in A \} \). If \(Z \) is a topological space and \(f : Y \to Z \), then \(f \) is continuous iff \(f \circ g_\alpha : X_\alpha \to Z \) is continuous for each \(\alpha \in A \).

Proof For each \(\alpha \in A \), we have \(X_\alpha \xrightarrow{g_\alpha} Y \xrightarrow{f} Z \), and the \(g_\alpha \)'s are continuous since \(Y \) has the strong topology.

If \(f \) is continuous, so is each composition \(f \circ g_\alpha \).

Suppose each \(f \circ g_\alpha \) is continuous and that \(U \) is open in \(Z \). We want to show that \(f^{-1}[U] \) is open in \(Y \). But \(Y \) has the strong topology, so \(f^{-1}[U] \) is open in \(Y \) iff each \(g_\alpha^{-1}[f^{-1}[U]] \) is open in \(X_\alpha \). But \(g_\alpha^{-1}[f^{-1}[U]] = (f \circ g_\alpha)^{-1}[U] \) which is open because \(f \circ g_\alpha \) is continuous.

We introduced the idea of the strong topology as a parallel to the definition of weak topology. However, we are going to use the strong topology only in a special case: when there is only one map \(g_\alpha = g \) and \(g \) is onto.

Definition 5.3 Suppose \((X, T) \) is a topological space and \(g : X \to Y \) is onto. The strong topology on \(Y \) generated by \(g \) is also called the quotient topology on \(Y \). If \(Y \) has the quotient topology from \(g \), we
say that \(g : X \to Y \) is a **quotient mapping** and we say \(Y \) is a **quotient of** \(X \) and sometimes as \(Y = X/g \).

From our earlier discussion we know that if \(X \) is a topological space and \(g : X \to Y \), then the quotient topology on \(Y \) is \(T = \{ U : g^{-1}[U] \text{ is open in } X \} \). Thus \(U \in T \) if and only if \(g^{-1}[U] \) is open in \(X \): notice in this description that

- **“only if”** guarantees that \(g \) is continuous and
- **“if”** guarantees that \(T \) is the largest topology on \(Y \) making \(g \) continuous.

Quotients of \(X \) are used to create new spaces \(Y \) by “pasting together” (“identifying”) several points of \(X \) to become a single new point. Here are two intuitive examples:

i) Begin with \(X = [0, 1] \) and identify \(0 \) with \(1 \) (that is, “paste” \(0 \) and \(1 \) together to become a single point). The result is a circle, \(S^1 \). This identification is exactly what the map \(g : [0, 1] \to S^1 \) given by \(g(x) = (\cos 2\pi x, \sin 2\pi x) \) accomplishes. It turns out (see below) that the usual topology on \(S^1 \) is the same as quotient topology generated by the map \(g \). Therefore we can say that \(g \) is a quotient map and that \(S^1 \) is a quotient of \([0, 1] \).

ii) If we take the space \(X = S^1 \) and use a mapping \(g \) to “identify” the north and south poles together, the result is a “figure-eight” space \(Y \). The usual topology on \(Y \) (from \(\mathbb{R}^2 \)) turns out to be the same as quotient topology generated by \(g \) (see below). Therefore we can say that \(g \) is a quotient mapping and the the “figure-eight” is a quotient of \(S^1 \).

Suppose we are given an onto map \(g : (X, T) \to (Y, T') \). How can we tell whether \(g \) is a quotient map — that is, how can we tell whether \(T' \) is the quotient topology? By definition, we must check that \(U \in T' \) iff \(g^{-1}[U] \in T \). Sometimes it is fairly straightforward to do this. But the following theorem can sometimes make things much easier.

Theorem 5.4 Suppose \(g : (X, T) \to (Y, T') \) is continuous and onto. If \(g \) is open (or closed), then \(T' \) is the quotient topology, so \(g \) is a quotient map. In particular, if \(X \) is compact and \(Y \) is Hausdorff, \(g \) is a quotient mapping.

Note: Whether the map \(g : X \to Y \) is continuous depends, of course, on the topology \(T' \), but if \(T' \) makes \(g \) continuous, then so would any smaller topology on \(Y \). The theorem tells us that if \(g \) is both continuous and open (or closed), then \(T' \) is completely determined by \(g \): \(T' \) is the largest topology making \(g \) continuous.

Proof Suppose \(U \subseteq Y \). We must show \(U \in T' \) iff \(g^{-1}[U] \in T \). If \(U \in T' \), then \(g^{-1}[U] \in T \) because \(g \) is continuous. On the other hand, suppose \(g^{-1}[U] \in T \). Since \(g \) is onto, \(g[g^{-1}[U]] = U \) and so, if \(g \) is open, \(U = g[g^{-1}[U]] \in T' \).

For \(F \subseteq Y \), \(g^{-1}[Y - F] = X - g^{-1}[F] \). It follows easily that \(F \) is closed in the quotient space if and only if \(g^{-1}[F] \) is closed in \(X \). With that observation, the proof that a continuous, closed, onto map \(g \) is a quotient mapping is exactly parallel to the proof when \(g \) is open.

If \(X \) is compact and \(Y \) is \(T_2 \), then \(g \) must be closed, so \(g \) is a quotient mapping.

Note: Theorem 5.4 implies that the map \(g(x) = (\cos 2\pi x, \sin 2\pi x) \) from \([0, 1] \) to \(S^1 \) is a quotient map, but \(g \) is not open. The same formula \(g \) can be used to define a quotient map \(g : \mathbb{R} \to S^1 \) which is not closed (why?). Exercise E25 gives examples of quotient maps \(g \) that are neither...
open nor closed.

Suppose \sim is an equivalence relation on a space X. For each $x \in X$, the equivalence class of x is $[x] = \{ z \in X : z \sim x \}$. The equivalence classes partition X into a collection of nonempty pairwise disjoint sets. (Conversely, it is easy to see that any partition of X is the collection of equivalence classes for some equivalence relation — namely, $x \sim z$ iff x and z are in the same set of the partition.)

The set of equivalence classes, $Y = \{ [x] : x \in X \}$, is sometimes denoted X/\sim. There is a natural onto map $g : X \to Y$ given by $g(x) = [x]$. We can think of the elements of Y as “new points” which arise from “identifying together as one” all the members of each equivalence class in X. If X is a topological space, we can give the set of equivalence classes Y the quotient topology. Conversely, whenever $g : X \to Y$ is any onto mapping, we can think of Y as the set of equivalence classes for some equivalence relation on X — namely $x \sim y \iff y \in g^{-1}(x) \iff g(y) = g(x)$.

Example 5.5 For a, $b \in \mathbb{Z}$, define $a \sim b$ iff $b - a$ is even. There are two equivalence classes $[0] = \{ ..., -4, -2, 0, 2, 4, ... \}$ and $[1] = \{ ..., -3, -1, 1, 3, ... \}$ so $\mathbb{Z}/\sim = \{ [0], [1] \}$.

Define $g : \mathbb{Z} \to \mathbb{Z}/\sim$ by $g(a) = [a]$ and give \mathbb{Z}/\sim the quotient topology. A set U is open in \mathbb{Z}/\sim iff $g^{-1}[U]$ is open in \mathbb{Z}, and that is true for every $U \subseteq \mathbb{Z}/\sim$ because \mathbb{Z} is discrete. Therefore the quotient \mathbb{Z}/\sim is a two point discrete space.

Example 5.6 Let (X, d) be a pseudometric space and define a relation \sim in X by $x \sim z$ iff $d(x, z) = 0$. Let $Y = X/\sim$, define $g : X \to Y$ by $g(x) = [x]$. Give Y the quotient topology.

Points at distance 0 in X have been “identified with each other” to become one point (the equivalence class) in Y.

For $[x], [z] \in Y$, define $d'([x], [z]) = d(x, z)$. In order to see that d' is well-defined, we need to check that the definition is independent of the representatives chosen from the equivalence classes:

If $[x'] = [x]$ and $[z'] = [z]$, then $d(x, x') = 0$ and $d(z, z') = 0$. Therefore

\[
d(x, z) \leq d(x, x') + d(x', z') + d(z', z) = d(x', z'), \quad \text{and similarly} \quad d(x', z') \leq d(x, z).
\]

Thus $d(x', z') = d(x, z)$ so $d'([x'], [z']) = d'([x], [z])$.

It is easy to check that d' is a pseudometric on Y. In fact, d' is a metric: if $d'([x], [z]) = 0$, then $d(x, z) = 0$, which means that $x \sim z$ and $[x] = [z]$.

We now have two definitions for topologies on Y: the quotient topology T and the metric topology $T_{d'}$. We claim that $T = T_{d'}$. To see this, first notice that

\[
y \in B^d \left([x] \right) \iff d'([y], [x]) < \epsilon \iff d(y, x) < \epsilon \iff y \in B^d(x)
\]

Therefore $g^{-1} \left(B^d \left([x] \right) \right) = B^d(x)$ and $g \left(B^d(x) \right) = B^d' \left([x] \right)$. But then we have

\[
U \in T_{d'} \iff U \text{ is a union of } d'-\text{balls} \quad \iff g^{-1}[U] \text{ is a union of } d-\text{balls} \quad \iff g^{-1}[U] \text{ is open in } X \quad \iff U \in T.
\]
The metric space \((Y, d')\) is called the **metric identification** of the pseudometric space \((X, d)\). In effect, we turn the pseudometric space into a metric space by agreeing that points in \(X\) at distance 0 are “identified together” and treated as one point.

Note: In this particular example, it is easy to verify that the quotient mapping \(g : X \to Y\) is open, so \(g\) would be a homeomorphism if only \(g\) were \(1 - 1\). If the original pseudometric \(d\) is actually a metric, then \(g\) is \(1 - 1\) and a homeomorphism: the metric identification of a metric space \((X, d)\) is itself.

Example 5.7 Exactly what does it mean if we say “identify the endpoints of \([0, 1]\) and get a circle”? Of course, one could simply take this to be the definition of a (topological) “circle.” Or, it could mean that we already know what a circle is and are claiming that a certain quotient space is homeomorphic to a circle. We take the latter point of view.

Let \(g : [0, 1] \to S^1\) be given by \(g(x) = (\cos 2\pi x, \sin 2\pi x)\). This map is onto and \(1 - 1\) except that \(g(0) = g(1)\), so \(g\) corresponds to the equivalence relation on \(X\) for which \(0 \sim 1\) (and there are no other equivalences except that \(x \sim x\) for every \(x\)). We can think of the equivalence classes as corresponding in a natural way to the points of \(S^1\).

Here \(S^1\) has its usual topology and \(g\) is continuous. However, since \(X\) is compact and \(S^1\) is Hausdorff, Theorem 5.4 gives that the usual topology on \(S^1\) is the quotient topology and \(g\) is a quotient map.

When it “seems apparent” that the result of making certain identifications produces some familiar space \(Y\), we need to check that the familiar topology on \(Y\) is actually the quotient topology. Example 5.7 is reassuring: if we believed, intuitively, that the result of identifying the endpoints of \([0, 1]\) should be \(S^1\) but then found that the quotient topology on the set \(S^1\) turned out to be different from the usual topology, we would be inclined to think that we had made the “wrong” definition for a “quotient.”

Example 5.8 Suppose we take a square \([0, 1]^2\) and identify points on top and bottom edges using the equivalence relation \((x, 0) \sim (x, 1)\). We can schematically picture this identification as
The arrows indicate that the edges are to be identified as we move along the top and bottom edges in the same direction. We have an obvious map \(g \) from \([0, 1]^2\) to a cylinder in \(\mathbb{R}^3 \) which identifies points in just this way, and we can think of the equivalence classes as corresponding in a natural way to the points of the cylinder.

The cylinder has its usual topology from \(\mathbb{R}^3 \) and the map \(g \) is (clearly) continuous and onto. Again, Theorem 5.4 gives that the usual topology on the cylinder is, in fact, the quotient topology.
Example 5.9 Similarly, we can show that a torus (the “surface of a doughnut”) is the result of the following identifications in $[0, 1]^2$: $(x, 0) \sim (x, 1)$ and $(0, y) \sim (1, y)$.

Thinking in two steps, we see that the identification of the two vertical edges produces a cylinder; the circular ends of the cylinder are then identified (in the same direction) to produce the torus.

The two circles darkly shaded on the surface represent the identified edges.

We can identify the equivalence classes naturally with the points of this torus in \mathbb{R}^3 and just as before we see that the usual topology on the torus is in fact the quotient topology.
Example 5.10 Define an equivalence relation \(\sim \) in \([0, 1]^2\) by setting \((x, 0) \sim (1 - x, 1)\). Intuitively, the idea is to identify the points on the top and bottom edges with each other as we move along the edges in opposite directions. We can picture this schematically as

![Diagram](image)

Physically, we can think of a strip of paper and glue the top and bottom edges together after making a “half-twist.” The quotient space \(X/\sim\) is called a Möbius strip.

We can take the quotient \(X/\sim\) as the definition of a Möbius strip, or we can consider a “real” Möbius strip \(M\) in \(\mathbb{R}^3\) and define a map \(g: [0, 1]^2 \to M\) that accomplishes the identification we have in mind. In that case there is a natural way to associate the equivalence classes to the points of the torus in \(\mathbb{R}^3\) and again Theorem 5.4 guarantees that the usual topology on the Möbius strip is the quotient topology.
Example 5.11 If we identify the vertical edges of \([0,1]^2\) (to get a cylinder) and then identify its circular ends with a half-twist (reversing orientation): \((0,y) \sim (1,y)\) and \((x,0) \sim (1-x,1)\). We get a quotient space which is called a Klein bottle.

It turns out that a Klein bottle cannot be embedded in \(\mathbb{R}^3\) — the physical construction would require a “self-intersection” (additional points identified) which is not allowed. A pseudo-picture looks like

In these pictures, the thin “neck” of the bottle actually intersects the main body in order to re-emerge “from the inside” — in a “real” Klein bottle (in \(\mathbb{R}^4\), say), the self-intersection would not happen.

In fact, you can imagine the Klein bottle as a subset of \(\mathbb{R}^4\) using color as a 4\(^{th}\) dimension. To each point \((x,y,z)\) on the “bottle” pictured above, add a 4th coordinate to get \((x,y,z,r)\). Now color the points on the bottle in varying shades of red and let \(r\) be a number measuring the “intensity of red coloration at a point.” Do the coloring in such a way that the surface “blushes” as it intersects itself — so that the points of “intersection” seen above in \(\mathbb{R}^3\) will be different (in their 4\(^{th}\) coordinates).

Alternately, you can think of the Klein bottle as a parametrized surface traced out by a moving point \(P = (x,y,z,t)\) where \(x,y,z\) depend on time \(t\) and \(t\) is recorded as a 4\(^{th}\)-coordinate. A point on the surface then has coordinates of form \((x,y,z,t)\). At “a point” where we see a self-intersection in \(\mathbb{R}^3\), there are really two different points (with different time coordinates \(t\)).
Example 5.12

1) In S^1, identify antipodal points — that is, in vector notation, $P \sim -P$ for each $P \in S^1$. Convince yourself that the quotient S^1/\sim is S^1.

2) Let D^2 be the unit disk $\{P \in \mathbb{R}^2 : |P| \leq 1\}$. Identify antipodal points on the boundary of D^2; that is, $P \sim -P$ if $P \in S^1 \subseteq D^2$. The quotient D/\sim is called the projective plane, a space which, like the Klein bottle, cannot be embedded in \mathbb{R}^3.

3) For any space X, we can form the product $X \times [0, 1]$ and let $(x, 1) \sim (y, 1)$ for all $x, y \in X$. The quotient $(X \times [0, 1])/\sim$ is called the cone over X. (Why?)

4) For any space X, we can form the product $X \times [-1, 1]$ and define $(x, 1) \sim (y, 1)$ and $(x, -1) \sim (y, -1)$ for all $x, y \in X$. The quotient $(X \times [-1, 1])/\sim$ is called the suspension of X. (Why?)

There is one other very simple construction for combining topological spaces. It is often used in conjunction with quotients.

Definition 5.13 For each $\alpha \in A$, let (X_α, T_α) be a topological space, and assume that the sets X_α are pairwise disjoint. The topological sum (or “free sum”) of the X_α's is the space $(\bigcup_{\alpha \in A} X_\alpha, T)$ where $T = \{O \subseteq \bigcup_{\alpha \in A} X_\alpha : O \cap X_\alpha \text{ is open in } X_\alpha \text{ for every } \alpha \in A\}$. We denote the topological sum by $\sum_{\alpha \in A} X_\alpha$. In the case $|A| = 2$, we use the simpler notation $X_1 + X_2$.

In $\sum_{\alpha \in A} X_\alpha$, each X_α is a clopen subspace. Any set open (or closed) in X_α is open (or closed) in the sum. The topological sum $\sum_{\alpha \in A} X_\alpha$ can be pictured as a union of the disjoint pieces X_α, all “far apart” from each other — so that there is no topological “interaction” between the pieces.

Example 5.14 In \mathbb{R}^2, let A_1 and A_2 be open disks with radius 1 and centers at $(0, 0)$ and $(3, 0)$. Then topological sum $A_1 + A_2$ is the same as $A_1 \cup A_2$ with subspace topology

Let B_1 be an open disk with radius 1 centered at $(0, 0)$ and let B_2 be a closed disk with radius 1 centered at $(2, 0)$. Then $B_1 + B_2$ is not the same as $B_1 \cup B_2$ with the subspace topology (why?).

Exercise 5.15 Usually it is very easy to see whether properties of the X_α’s do or do not carry over to $\sum_{\alpha \in A} X_\alpha$. For example, you should convince yourself that:

1) If the X_α’s are nonempty and separable, then $\sum_{\alpha \in A} X_\alpha$ is separable iff $|A| \leq \aleph_0$.

2) If the X_α’s are nonempty and second countable, then $\sum_{\alpha \in A} X_\alpha$ is second countable iff $|A| \leq \aleph_0$.

3) A function $f : \sum_{\alpha \in A} X_\alpha \to Z$ is continuous iff each $f|X_\alpha$ is continuous.
4) If \(d_\alpha \leq 1 \) is a metric for \(X_\alpha \), then the topology on \(\sum_{\alpha \in A} X_\alpha \) is the same as \(T_\alpha \) where

\[
d(x, y) = \begin{cases}
 d_\alpha(x, y) & \text{if } x, y \in X_\alpha \\
 1 & \text{otherwise}
\end{cases}
\]

so \(\sum_{\alpha \in A} X_\alpha \) is metrizable if all the \(X_\alpha \)’s are metrizable. You should be able to find similar statements for other topological properties such as first countable, second countable, Lindelöf, compact, connected, path connected, completely metrizable, ...

Definition 5.16 Suppose \(X \) and \(Y \) are disjoint topological spaces and \(f : A \to Y \), where \(A \subseteq X \). In the sum \(X + Y \), define \(x \sim y \) iff \(y = f(x) \). If we form \((X + Y)/\sim\), we say that we have attached \(X \) to \(Y \) with \(f \) and write this space as \(X + fY \).

For each \(p \in f[A] \), its equivalence class under \(\sim \) is \(\{p\} \cup f^{-1}([p]) \). You may think of the function “attaching” the two spaces by repeatedly selecting a group of points in \(X \), identifying them together, and “sewing” them all onto a single point in \(Y \) — just as you might run a needle and thread through several points in the fabric \(X \) and then through a point in \(Y \) and pull everything tight.

Example 5.17

1) Consider disjoint cylinders \(X \) and \(Y \). Let \(A \) be the circle forming one end of \(X \) and \(B \) the circle forming one end of \(Y \). Let \(f : A \to f[A] = B \subseteq Y \) be a homeomorphism. Then \(f \) “sews together” \(X \) and \(Y \) by identifying these two circles. The result is a new cylinder.

2) Consider a sphere \(S^2 \subseteq \mathbb{R}^3 \). Excise from the surface \(S^2 \) two disjoint open disks \(D_1 \) and \(D_2 \) and let \(A_1 \cup A_2 \) be union of the two circles that bounded those disks. Let \(Y \) be a cylinder whose ends are bounded by the union of two circles, \(B_1 \cup B_2 \). Let \(f \) be a homeomorphism carrying the points of \(A_1 \) and \(A_1 \) clockwise onto the points of \(B_1 \) and \(B_2 \) respectively.

Then \(S^2 + fY \) is a “sphere with a handle.”

3) Consider a sphere \(S^2 \subseteq \mathbb{R}^3 \). Excise from the surface \(S^2 \) an open disk and let \(A \) be the circular boundary of the hole in the surface \(S^2 \). Let \(M \) be a Möbius strip and let \(B \) be the curve that bounds it. Of course, \(B \simeq S^1 \). Let \(f : A \to B \) be a homeomorphism. The we can use \(f \) to join the spaces by “sewing” the edge of the Möbius strip to the edge of the hole in \(S^2 \). The result is a “sphere with a crosscap.”

There is a very nice theorem, which we will not prove here, which uses all these ideas. It is a “classification” theorem for certain surfaces.

Definition 5.18 A Hausdorff space \(X \) is a 2-manifold if each \(x \in X \) has an open neighborhood \(U \) that is homeomorphic to \(\mathbb{R}^2 \). Thus, a 2-manifold looks “locally” just like the Euclidean plane. A surface is a Hausdorff 2-manifold.

Theorem 5.19 Let \(X \) be a compact, connected surface. The \(X \) is homeomorphic to a sphere \(S^2 \) or to \(S^2 \) with a finite number of handles and crosscaps attached.

You can read more about this theorem and its proof in *Algebraic Topology: An Introduction* (William Massey).
Exercises

E22. a) Let \(\sim \) be the equivalence relation on \(\mathbb{R}^2 \) given by \((x_1, y_1) \sim (x_2, y_2) \) iff \(y_1 = y_2 \). Prove that \(\mathbb{R}^2 / \sim \) is homeomorphic to \(\mathbb{R} \).

 b) Find a counterexample to the following assertion: if \(\sim \) is an equivalence relation on a space \(X \) and each equivalence class is homeomorphic to the same space \(Y \), then \((X/\sim) \times Y \) is homeomorphic to \(X \).

 Why might someone ever wonder whether this assertion might be true? In part a), we have \(X = \mathbb{R} \times \mathbb{R} \), each equivalence class is homeomorphic to \(\mathbb{R} \) and \((X/\sim) \times \mathbb{R} \simeq \mathbb{R} \times \mathbb{R} \simeq X \). In this example, you “divide out” equivalence classes that all look like \(\mathbb{R} \), then “multiply” by \(\mathbb{R} \), and you’re back where you started.

 c) Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be given by \(g(x, y) = x^2 + y^2 \). Then the quotient space \(\mathbb{R}^2 / g \) is homeomorphic to what familiar space?

 d) On \(\mathbb{R}^2 \), define an equivalence relation \((x_1, y_1) \sim (x_2, y_2) \) iff \(x_1 + y_1^2 = x_2 + y_2^2 \). Prove that \(\mathbb{R}^2 / \sim \) is homeomorphic to some familiar space.

E23. For \(x, y \in [0, 1] \), define \(x \sim y \) iff \(x - y \) is rational. Prove that the corresponding quotient space \([0, 1] / \sim \) is trivial.

E24. Prove that a 1-1 quotient map is a homeomorphism.

E25. a) Let \(Y_1 = [0, 1] \) with its usual topology and \(Y_2 = [0, 1] \) with the discrete topology. Define \(g : Y_1 + Y_2 \to Y \) by letting \(g \) be “the identity map” on both \(Y_1 \) and \(Y_2 \). Prove that \(g \) is a quotient map that is neither open nor closed.

 b) Let \(\mathbb{R}^2 \) have the topology \(T \) for which a subbase consists of all the usual open sets together with the singleton set \(\{(0, 0)\} \). Let \(\mathbb{R} \) have the usual topology and let \(f : \mathbb{R}^2 \to \mathbb{R} \) be the projection \(f(x, y) = x \). Prove that \(f \) is a quotient map which is neither open nor closed.

E26. State and prove a theorem of the form:

 “for two disjoint subsets \(A \) and \(B \) of \(\mathbb{R}^2 \), \(A + B \simeq A \cup B \) iff ...”

E27. Let \(\mathbb{R}^2 \) have the topology \(T \) for which a subbasis consists of all the usual open sets together with the singleton set \(\{(0, 0)\} \). Let \(\mathbb{R} \) have the usual topology and define \(f : \mathbb{R}^2 \to \mathbb{R} \) by \(f(x, y) = x \). Prove that \(f \) is a quotient map which is neither open nor closed.

E28. Let \(Y_1 = \mathbb{N} + (\mathbb{N} \times (0, 1)) \) and let \(Y_2 = Y_1 + [0, 1) \). Prove \(Y_1 \) is not homeomorphic to \(Y_2 \) but
that each is a continuous one-to-one image of the other

E29. Show that no continuous image of \(\mathbb{R} \) can be represented as a topological sum \(X + Y \), where \(X, Y \neq \emptyset \). How can this be result be strengthened?

E30. Suppose \(X_s (s \in S) \) and \(Y_t (t \in T) \) are pairwise disjoint spaces. Prove that \(\sum_{s \in S} X_s \times \sum_{t \in T} Y_t \) is homeomorphic to \(\sum_{s \in S, t \in T} (X_s \times Y_t) \).

E31. This problem outlines a proof (due to Ira Rosenholtz) that every nonempty compact metric space \(X \) is a continuous image of the Cantor set \(C \). From Example 4.5, we know that \(X \) is homeomorphic to a subspace of \([0, 1]\mathbb{R}_0 \).

a) Prove that the Cantor set \(C \subseteq \mathbb{R} \) consists of all reals of the form \(\sum_{j=0}^{\infty} \frac{a_j}{3^j} \) where each \(a_j = 0 \) or 2.

b) Prove that \([0, 1]\) is a continuous image of \(C \). \(\text{Hint: Define } g(\sum_{j=0}^{\infty} \frac{a_j}{3^j}) = \sum_{j=0}^{\infty} \frac{a_j}{2^j} \).

c) Prove that the cube \([0, 1]^{\mathbb{R}_0}\) is a continuous image of \(C \). \(\text{Hint: By Corollary 2.21, } C \simeq \{0, 2\}^{\mathbb{R}_0} \simeq C^{\mathbb{R}_0}. \) Use \(g \) from part b) to define \(f : C^{\mathbb{R}_0} \to [0, 1]^{\mathbb{R}_0} \) by \(f(x_1, x_2, \ldots) = (g(x_1), g(x_2), \ldots) \).

d) Prove that a closed set \(K \subseteq C \) is a continuous image of \(C \). \(\text{(Hint: } C \text{ is homeomorphic to the "middle two-thirds" set } C' \text{ consisting of all reals of the form } \sum_{j=0}^{\infty} \frac{b_j}{3^j}. \) \(C' \) has the property that if \(x, y \in C' \), then \(\frac{x+y}{2} \notin C' \). If \(K' \) is closed in \(C' \), we can map \(C' \to K \) by sending each point \(x \) to the point in \(K' \) nearest to \(x \).)

e) Prove that every nonempty compact metric space \(X \) is a continuous image of \(C \).
Chapter VI Review

Explain why each statement is true, or provide a counterexample.

1. \((0, 1)^\mathbb{N}\) is open in \([0, 1]^\mathbb{N}\).

2. Suppose \(F\) is a closed set in \([0, 1] \times \mathbb{R}\). Then \(\pi_2[F]\) is a closed set in \(\mathbb{R}\).

3. \(\mathbb{N}^\mathbb{N}\) is discrete

4. If \(C\) is the Cantor set, then there is a complete metric on \(C^\mathbb{N}\) which produces the product topology.

5. Let \(\mathbb{R}^\mathbb{R}\) have the box topology. A sequence \((f_n) \to f \in \mathbb{R}^\mathbb{R}\) iff \((f_n) \to f\) uniformly.

6. Let \(f_n : [0, 1] \to [0, 1]\) be given by \(f_n(x) = x^n\). The sequence \((f_n)\) has a limit in \([0, 1]\).

7. Let \(g \in \mathbb{R}^\mathbb{R}\) be defined by \(g(x) = x^2\) for all \(x \in \mathbb{R}\). Give an example of a sequence \((f_n)\) of distinct functions in \(\mathbb{R}^\mathbb{R}\) that converges to \(g\).

8. Let \(C\) be the Cantor set. Then \(C\) is homeomorphic to the topological sum \(C + C\).

9. The projection maps \(\pi_x\) and \(\pi_y\) from \(\mathbb{R}^2 \to \mathbb{R}\) separate points from closed sets.

10. The letter \(N\) is a quotient of the letter \(M\).

11. Suppose \(\sim\) is an equivalence relation on \(X\) and that for \(x \in X\), \([x]\) represents its equivalence class. If \(x\) is a cut point of \(X\), then \([x]\) is a cut point of the quotient space \(X/\sim\).

12. If \(g : X \to Y\) is a quotient map and \(Y\) is compact \(T_2\), then \(Y\) is compact \(T_2\).

13. Suppose \(A\) is infinite and, that in each space \(X_\alpha\) \((\alpha \in A)\) there is a nonempty proper open subset \(O_\alpha\). Then \(\prod O_\alpha\) is not a basic open set of the product \(X = \prod X_\alpha\), and, in fact, \(\prod O_\alpha\) cannot even be open in the product.

14. If \(X = \bigcup_{n=1}^\infty A_n\), where the \(A_n\)'s are disjoint clopen sets in \(X\), then \(X \cong \sum_{n=1}^\infty A_n\) \((= \text{the topological sum of the } A_n\text{'s})\).

15. Let \(X_n = \{0, 1\}\) and \(Y_n = \mathbb{N}\) with their usual topologies. Then \(\sum_{n=1}^\infty X_n\) is homeomorphic to \(\sum_{n=1}^\infty Y_n\).

16. Let \(X_n = \{0, 1\}\) and \(Y_n = \mathbb{N}\) with their usual topologies. Then \(\prod_{n=1}^\infty X_n\) is homeomorphic to \(\prod_{n=1}^\infty Y_n\).

17. Let \(A = \{(x, y, z) \in \mathbb{R}^3 : x - y^2 - 2yz - z^2 > |\sin(xyz)|\}\), and let \(f : \mathbb{R}^3 \to \mathbb{R}\) be given by \(f(x, y, z) = x + 2\). Then \(f[A]\) is open but not closed in \(\mathbb{R}\).
18. Suppose A_n is a connected subset of X ($\neq \emptyset$) and that $\prod_{n=1}^{\infty} A_n$ is dense in $\prod_{n=1}^{\infty} X$. Then each X_n is connected.

19. In \mathbb{R}^R, every neighborhood of the function \sin contains a step function (that is, a function with finite range).

20. Let X be an uncountable set with the cocompact topology. Then $\{(x, x) : x \in X\}$ is a closed subset of the product $X \times X$.

21. Let $A = \{ \frac{1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$, and let m be any cardinal number. A^k is a closed set in \mathbb{R}^k.

22. If C is the Cantor set, then $C \times C \times C \times C$ is homeomorphic to $C \times C$.

23. $S^1 \times S^1$ is homeomorphic to the “infinity symbol”: ∞.

24. Let P be the set of all real polynomials in one variable, with domain restricted to $[0, 1]$, for which $\text{ran}(P) \subseteq [0, 1]$. Then P is dense in $[0, 1][0,1]$.

35. Every metric space is a quotient of a pseudometric space.

37. A separable metric space with a basis of clopen sets is homeomorphic to a subspace of the Cantor set.

38. Let $\prod\{X_\alpha : \alpha \in A\}$ be a nonempty product space. Each X_α is a quotient of the product space $\prod\{X_\alpha : \alpha \in A\}$.

39. Suppose X does not have the trivial topology. Then X^ω cannot be separable.

40. Every countable space X is a quotient of \mathbb{N}.

41. $\mathbb{N} \times \mathbb{N}$ is homeomorphic to the sum of \aleph_0 disjoint copies of \mathbb{N}.

42. Suppose $x = (x_\alpha) \in \text{int} A$, where $A \subseteq \prod X_\alpha$. Then for every α, $x_\alpha \in \text{int} \pi_\alpha[A]$.

43. The unit circle, S^1, is homeomorphic to a product $\prod_{\alpha \in A} X_\alpha$, where each $X_\alpha \subseteq [0, 1]$ (i.e., S^1 can be “factored” into a product of subspaces of $[0, 1]$).

44. \mathbb{N}^{\aleph_0} is homeomorphic to \mathbb{R}.