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Abstract. We present a new viewpoint (namely, reproducing
kernels) and new proofs for several recent results of J. Geronimo
and H. Woerdeman on orthogonal polynomials on the two dimen-
sional torus (and related subjects). In addition, we show how their
results give a new proof of Andô’s inequality via an equivalent ver-
sion proven by Cole and Wermer. A major theme is the use of
so-called Bernstein-Szegő measures. A simple necessary and suffi-
cient condition for two variable polynomial stability is also given.

1. Introduction

1.1. Prelude. In several recent papers, J. Geronimo and H. Woerde-
man have presented a number of important generalizations of classical
theorems revolving around such topics as orthogonal polynomials on
the unit circle, Fejér-Riesz factorization, and autoregressive filter de-
sign to the context of two variables; namely, generalizations to the two
dimensional torus or just the 2-torus T2 = (∂D)2 ⊂ C2 (also known
as the distinguished boundary of the bidisk D2). See [5], [7], [6]. One
of the goals of this paper is to present and prove many of their results
from a different viewpoint1 so that a larger audience may appreciate
what they have done.

A major theme in this paper is the use of Bernstein-Szegő measures,
which are nothing more than absolutely continuous measures on the
2-torus (or even the n-torus for that matter) with weight given by the
reciprocal of the squared modulus of a polynomial. Studying such mea-
sures allows us to give a new proof of Andô’s inequality from operator
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2 GREG KNESE

theory via an equivalent version proven by B. Cole and J. Wermer. The
proof here is somewhat more elementary than other proofs (although
not necessarily shorter). As is well-known, Andô’s inequality is inti-
mately related to finite interpolation problems for bounded analytic
functions on the bidisk (Pick interpolation), and therefore this work
provides a new connection between ideas in orthogonal polynomials
and interpolation.

All of this may sound quite specialized; however, the results in this
paper have consequences that anyone can appreciate. Let us whet the
reader’s appetite with the following interesting by-product of our work
(which will also serve to introduce the terms degree (n, m), reflection,
and stable).

Theorem 1.1. Let q be a polynomial in two complex variables of de-
gree (n, m), i.e.

q
(

z
w

)
=

n∑
j=0

m∑
k=0

aj,kz
jwk

and define the reflection ~q of q to be

~q
(

z
w

)
= znwmq

(
1/z̄
1/w̄

)
=

n∑
j=0

m∑
k=0

ā(n−j),(m−k)z
jwk

The polynomial q has no zeros in the closed bidisk D2
(i.e. q is

stable) if and only if there exists a c > 0 such that

(1.1) |q
(

z
w

)
|2 − |~q

(
z
w

)
|2 ≥ c(1− |z|2)(1− |w|2),

in which case we can take

1

c
=

1

(2πi)2

∫
T2

1

|q
(

z
w

)
|2

dz

z

dw

w
.

See Section 7 for a proof. The significance of this theorem is that it
says when a polynomial has no zeros on the boundary of the bidisk. At
the same time this says something very specific about two variables:
the analogue of this theorem in three variables is probably not true,
but, while the analogue of this theorem in one variable is true, the
condition (1.1) can be weakened to remove the term |~q|2.

Interestingly enough, the one variable version of this theorem can be
used to prove the fundamental theorem of algebra. This two variable
version can be used to prove the following: any two variable polynomial

with no zeros on D2 ∪ (C \ D)2 must be constant.
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1.2. A key to notations and conventions. All of the following no-
tations will be introduced throughout the paper, but we collect them
here for the benefit of the reader.

Notations/Definitions:

C = complex plane

D = open unit disk in C
D = closed unit disk

T = ∂D = boundary of the disk in C
D2 = D× D = the bidisk

D2
= the closed bidisk

T2 = T× T = the 2-torus

~q
(

z
w

)
= znwmq

(
1/z̄
1/w̄

)
= reflection of q

V ∨W = the join or span of two vector spaces

(f · V ) = {fP : P ∈ V } for a vector space V

q is stable = q has no zeros in D2

( = span{zjwj : 0 ≤ j ≤ n, 0 ≤ k ≤ m}
= polynomials of degree (n, m)

Kρ( = reproducing kernel for ( with respect to a measure ρ

These last two somewhat strange looking notations will make more
sense later. Many other important notations are defined in Section 2
but we do not present them here.
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Conventions:
n, m are positive integers, fixed throughout the paper

p is a holomorphic polynomial in two variables of particular importance

q, P, Q are generic holomorphic polynomials of two variables

f is a typical element of H2 or L2

z, w are the typical holomorphic variables

Z,W are the typical anti-holomorphic variables

ρ is a probability measure on T2

µ is a Bernstein-Szegő measure on T2 (see (4.1))(
z
w

)
is an element of C2 and not a binomial coefficient

1

2πi

dz

z
is normalized Lebesgue measure on T

〈, 〉 is an inner product

〈, 〉ρ is an inner product given by ρ

⊥ρ is orthogonality with respect to ρ

1.3. Probability measures on T2. The story begins with a prob-
ability measure ρ on the 2-torus (∂D)2 = T2. Let 〈f, g〉ρ denote the
standard inner product on L2(ρ) given by

∫
T2 fḡdρ and let ||f || as usual

denote
√
〈f, f〉ρ. Fix positive integers m, n throughout the paper, and

define the complex polynomials of degree (n, m)

( := span{zjwk : 0 ≤ j ≤ n, 0 ≤ k ≤ m}.
The following nondegeneracy condition will often be imposed on ρ:

Definition 1.2. The measure ρ is said to be nondegenerate (at the
(n, m) level) if a polynomial P ∈ ( can have norm ||P || = 0 only if
P ≡ 0.

This is just another way of saying that the Toeplitz moment matrix
for ρ corresponding to the product index set {0, . . . , n}×{0, . . . ,m} is
positive definite.

Let us now define a particular kind of measure that will be of the
utmost importance in this paper. Recall that a polynomial in two
variables is stable if it has no zeros on the closed bidisk.

Definition 1.3. Given a stable polynomial q the Bernstein-Szegő mea-
sure corresponding to q is the following probability measure on T2:

(1.2) dµ :=
c2

(2πi)2|q
(

z
w

)
|2

dz

z

dw

w
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where c > 0 is chosen to make µ a bona fide probability measure.

To see why such measures are of interest, let us present a classical
one-variable theorem found in [9] (page 95) for instance.

Theorem 1.4 (Bernstein-Szegő Approximation). Let dν be a nontriv-
ial2 probability measure on ∂D and let p be the polynomial (in one
complex variable z) of degree n satisfying

p ⊥ν z, z2, . . . , zn

p(0) > 0

||p||ν = 1.

Then, p has no zeros in the closed disk D and the measure on T

dνn :=
1

2πi|p(z)|2
dz

z

defines the same inner product on polynomials of degree less than or
equal to n as dν.

Moreover, dνn → dν in the weak* topology.

Obvious analogues of the above theorem do not hold in two variables.
The following theorem of Geronimo and Woerdeman says exactly when
a measure on T2 has a “Bernstein-Szegő” approximation. (Actually this
is a slight weakening of their Theorem 1.1.2 in [5], but will suffice for
our purposes. In Section 6, we state a group of equivalences that help
translate between our paper and [5].)

Theorem 1.5 (Geronimo-Woerdeman). Suppose ρ is nondegenerate
(as in Definition 1.2) and consider the polynomial p ∈ ( defined by the
conditions

p ⊥ρ zjwk for 0 ≤ j ≤ n, 0 ≤ k ≤ m, (i, j) 6= (0, 0)

p
(
0
0

)
> 0

||p|| = 1.

Then, p is stable (i.e. has no zeros in the closed bidisk D2
) and the

measure on T2

dµ :=
1

(2πi)2|p
(

z
w

)
|2

dz

z

dw

w

defines the same inner product on ( as ρ if and only if ρ satisfies the
following “automatic orthogonality condition”: Every polynomial q in
the span of {ziwj : 0 ≤ i ≤ n, 0 ≤ j ≤ m− 1} satisfying

q ⊥ρ zjwk for 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1

2Meaning, not a finite number of point masses.
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is automatically orthogonal to more monomials:

q ⊥ρ zjwm for 0 ≤ j ≤ n− 1.

In Section 2 we shall introduce a new notation and in Sections 3 and
4 we present several results which we believe provide insight into this
somewhat technical sounding, yet important, theorem. Before that, we
turn to an interesting connection between this work, interpolation for
bounded analytic functions on the bidisk, and two-variable operator
theory.

1.4. Andô, Agler, and Christoffel-Darboux. An important part
of the proof of the Geronimo-Woerdeman Theorem 1.5 is a “Christoffel-
Darboux like formula” for two variables. To set the stage and for
later use, let us present the Christoffel-Darboux formula for orthogonal
polynomials on the unit circle (see [9] Theorem 2.2.7 page 124).

Theorem 1.6 (Christoffel-Darboux formula). Let ν be a nontrivial
probability measure on T, and let p be the unit norm polynomial (of one
complex variable) of degree n orthogonal to z, z2, . . . , zn with p(0) >
0. Also, let Kn−1 be the reproducing kernel (with respect to ν) for
polynomials of degree at most n− 1 with respect to ν. Then,

p(z)p(Z)− ~p(z)~p(Z) = (1− zZ̄)Kn−1(z, Z)

where ~p(z) := znp(1/z̄).

The two variable formula proven by Geronimo-Woerdeman has the
following flavor. For p and ρ as in the conclusion of Theorem 1.5, there
exist polynomials Pj ∈ (, j = 0, 1, . . . n− 1, Qk ∈ (, k = 0, . . . ,m− 1
such that

p
(

z
w

)
p
(

Z
W

)
− ~p

(
z
w

)
~p
(

Z
W

)
=(1− zZ̄)

∑
j

Pj

(
z
w

)
Pj

(
Z
W

)
+ (1− wW̄ )

∑
k

Qk

(
z
w

)
Qk

(
Z
W

)
where ~p

(
z
w

)
= znwmp

(
1/z̄
1/w̄

)
.

For the moment, we do not need to say what Pj and Qk are (although
we can and will later). It turns out this Christoffel-Darboux formula
is closely related to Andô’s theorem in operator theory and Agler’s
theorem on finite interpolation for bounded analytic functions on the
bidisk.
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Andô’s theorem [2] says given a polynomial P in two complex vari-
ables and two commuting operators S, T on a Hilbert space with oper-
ator norms ||S||, ||T || ≤ 1, the following holds:

||P
(

S
T

)
|| ≤ sup

T2

|P |.

The Pick interpolation theorem on the bidisk, namely Agler’s theorem
(see [1] page 180), says given N distinct points λ1, λ2, . . . , λN ∈ D2

(where we write λi = (zi, wi)) and N points c1, . . . , cn ∈ C, there exists
a holomorphic function f on D2 with supD2 |f | ≤ 1 which interpolates
f(λi) = ci if and only if there exist positive semidefinite N×N matrices
(Ajk) and (Bjk) so that

1− cj c̄k = (1− zj z̄k)Ajk + (1− wjw̄k)Bjk

for 1 ≤ j, k ≤ N .
It turns out that both Andô’s theorem and Agler’s theorem are equiv-

alent to a result about polynomials that looks suspiciously like the
Geronimo-Woerdeman formula.

Theorem 1.7 (Cole-Wermer [4]). Let P and Q be polynomials in two
complex variables satisfying

(1.3) |P
(

z
w

)
| ≥ |Q

(
z
w

)
| for all

(
z
w

)
∈ D2

and

(1.4) |P
(

z
w

)
| = |Q

(
z
w

)
| for all

(
z
w

)
∈ T2.

Then, there exist polynomials Aj, Bj in two variables, j = 1, . . . , N ,
such that we have

(1.5) |P
(

z
w

)
|2−|Q

(
z
w

)
|2 = (1−|z|2)

N∑
j=1

|Aj

(
z
w

)
|2+(1−|w|2)

N∑
j=1

|Bj

(
z
w

)
|2

for all
(

z
w

)
∈ C2.

The conditions (1.3) and (1.4) are just another way of saying that
Q/P is a rational inner function on the bidisk. Rational inner func-

tions on the bidisk have a quite simple form: Q as above has to equal ~P
(where we have to perform the “reflection” at the right degree). In Sec-
tion 5 we shall present the simple proof that the Geronimo-Woerdeman
formula actually proves the above theorem. More importantly, the ap-
proach of Geronimo-Woerdeman and of this paper actually gives more
information about the decomposition in (1.5) than previous proofs of
Andô’s theorem. The decomposition (1.5) is usually proven with a
finite dimensional Hahn-Banach theorem and as such is not explicit
about what Aj and Bj are. The approach here provides very specific
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information about Aj and Bj in (1.5) (at least in the case where P is
stable). The key to our proof is the study of Bernstein-Szegő measures.

2. Notation and Theorem Rephrasing

This section is devoted to a new notation which we believe will make
many of the earlier results more conceptually clear and easier to digest.
Like earlier, we shall fix a nondegenerate probability measure ρ on T2

and corresponding inner product 〈, 〉. Let V be a finite dimensional
subspace of two variable polynomials. For each

(
Z
W

)
∈ C2, evaluation

at
(

Z
W

)
is a bounded linear functional on V (bounded, of course, be-

cause V is finite dimensional), and can therefore be represented as the
inner product against the reproducing kernel for V which we denote as
KρV(

Z
W

). Specifically, if P ∈ V , then 〈P, KρV(Z
W)〉 = P

(
Z
W

)
. We define

KρV : C2 × C2 → C without the subscript
(

Z
W

)
to be

KρV
((

z
w

)
,
(

Z
W

))
:= KρV(

Z
W

)(
z
w

)
= 〈KρV(

Z
W

), KρV(
z
w

)〉,
which happens to be a holomorphic polynomial in z, w, an anti-holo-
morphic polynomial in Z,W , and conjugate symmetric in the first and
second vectors. Essentially we have defined a map depending on ρ

Kρ : {finite dimensional subspaces of (} → { reproducing kernels}
V 7→ reproducing kernel for V

which, as we shall see in Section 3, turns orthogonal direct sums into
sums, vector space shifts into multiplication shifts, and “reflection” of
subspaces into “double reflection” of reproducing kernels.

The following subspaces will be useful throughout. Once the def-
initions are digested, the use of these strange symbols will become
apparent. Essentially we are defining subspaces of polynomials based
on the support of their Fourier coefficients (and the symbols represent
the Fourier domain).

• Let ) denote the span of {zjwk : 0 ≤ j ≤ n, 0 ≤ k ≤ m, (j, k) 6=
(n, m)}
• Let * denote the span of {zjwk : 0 ≤ j ≤ n, 0 ≤ k ≤ m, (j, k) 6=

(0, 0)}.
• Let 2 denote the span of {zjwk : 0 ≤ j ≤ n, 0 ≤ k ≤ m− 1}.
• Let < denote the span of {zjwk : 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m}.
• Let Z denote the span of {zjwk : 0 ≤ j ≤ n−1, 0 ≤ k ≤ m−1}.

We hope now the definitions of the subspaces P and F will be clear.
Next, we define many more subspaces in terms of orthogonal comple-
ments using the inner product 〈, 〉.
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Define
5 := (	P
6 := (	<
- := )	<
[ := (	)

and again we hope the definitions of many other such symbols will be
intuitively clear (in fact, that is the prime reason for this new notation).
When there is more than one measure present, we will add an additional
subscript to make it clear which measure we are referring to; e.g. 5ρ

refers to the subspace defined above using the inner product 〈, 〉ρ defined
by ρ. However, if we are looking at a reproducing kernel Kρ5ρ we will
leave off the second ρ and just write Kρ5.

Since the subspace \ is one dimensional, it is not difficult to see that
the corresponding reproducing kernel can be identified with

(2.1) Kρ\
((

z
w

)
,
(

Z
W

))
= p

(
z
w

)
p
(

Z
W

)
for some unit norm polynomial p (which is unique up to multiplication
by a unimodular constant).

With all of this notation in place let us restate the Geronimo-Wo-
erdeman Theorem.

Theorem 2.1 (Geronimo-Woerdeman). Given a nondegenerate prob-
ability measure ρ on T2, any unit norm polynomial p in \ is stable and
the measure on T2

dµ :=
1

(2πi)2|p
(

z
w

)
|2

dz

z

dw

w

has reproducing kernel Kµ( equal to Kρ( if and only if

-ρ = 3ρ.

3. Reproducing Kernel Calculus

There are several advantages to working with various reproducing
kernels when studying polynomials with respect to a measure on T2.
One advantage is the interface between subspaces and algebraic op-
erations on kernels demonstrated in the following three fundamental
propositions. Another advantage is that Bergman identity (below)
provides an interface between orthogonal polynomials and reproducing
kernels. In this way, choices of ordering polynomials and orthogonal
bases are avoided and absorbed into reproducing kernels.

Like before we fix a nondegenerate probability measure ρ on T2 and
corresponding inner product 〈, 〉.
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Proposition 3.1. If V, W are finite dimensional subspaces of polyno-
mials, then V and W are orthogonal if and only if the join of V and
W , denoted (V ∨ W ), satisfies the following formula for reproducing
kernels

Kρ(V ∨W ) = KρV + KρW

Proof. Suppose V and W are orthogonal. Then, for any P ∈ V ⊕W =
V ∨W , which we may write as P = Q + R for Q ∈ V and R ∈ W , we
have

〈P, KρV(
z
w

) + KρW(
z
w

)〉 = 〈Q, KρV(
z
w

)〉+ 〈R,KρW(
z
w

)〉
= Q

(
z
w

)
+ R

(
z
w

)
= P

(
z
w

)
and therefore, Kρ(V ⊕W ) = KρV + KρW .

For the other direction, first note that the reproducing kernels KρV(
z
w

)
span V , since any polynomial in V orthogonal to all reproducing ker-
nels is identically zero. So, if Kρ(V ∨W ) = KρV +KρW as reproducing
kernels, then Q ∈ V implies

〈Q, KρW(
z
w

)〉 = 〈Q,Kρ(V ∨W )(z
w

) −KρV(
z
w

)〉 = Q
(

z
w

)
−Q

(
z
w

)
= 0

i.e. Q is orthogonal to the reproducing kernel for W and hence all of
W . �

For example, Kρ( = Kρ(<⊕ρ 6) = Kρ<+ Kρ6.

Proposition 3.2. Let V be a finite dimensional subspace of two vari-
able polynomials and define (z · V ) := {zP : P ∈ V } and likewise for
(w · V ). Then,3

Kρ(z · V )
((

z
w

)
,
(

Z
W

))
= zZ̄KρV

((
z
w

)
,
(

Z
W

))
and likewise for (w · V ).

Proof. Observe that for any Q ∈ V

〈zQ, zZ̄KρV(
Z
W

)〉 = 〈Q, Z̄KρV(
Z
W

)〉 = ZQ
(

Z
W

)
since multiplication by z is a unitary. So, zZ̄KρV reproduces a generic
element zQ of (z · V ). The claim follows by uniqueness of reproducing
kernels. �

For example, KρP = Kρ(z ·<) = zZ̄Kρ< and KρG = Kρ(w ·3) =
wW̄Kρ3.

For the third proposition, we recall one definition and introduce an-
other related one.

3We warn the reader not to confuse the function z and the variable z in the
following formula.
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Definition 3.3. Given any P ∈ (, the reflection of P (at the (n,m)

level) is another polynomial ~P ∈ ( which is defined by

~P
(

z
w

)
:= znwmP

(
1/z̄
1/w̄

)
Remark 3.4. The map P 7→ ~P is anti-unitary; i.e.

〈~P , ~Q〉 = 〈Q,P 〉

and can be described in concrete terms as the anti-linear map which
sends a monomial zjwk 7→ zn−jwm−k.

Definition 3.5. Given ∆ : C2 × C2 → C a holomorphic polynomial
in the first two variables of degree (n, m) and an anti-holomorphic
polynomial in the second two variables of degree (n, m), the double

reflection of ∆ shall be denoted
←→
∆ and defined by

←→
∆

((
z
w

)
,
(

Z
W

))
:= (zZ̄)n(wW̄ )m∆

((
1/Z̄

1/W̄

)
,
(

1/z̄
1/w̄

))
Remark 3.6. If ∆ is conjugate symmetric, then

←→
∆

((
z
w

)
,
(

Z
W

))
= Z̄nW̄m−−−−−→∆(

1/Z̄

1/W̄

)(
z
w

)
where ∆(

1/Z̄

1/W̄

)(
z
w

)
= ∆

((
z
w

)
,
(

1/Z̄

1/W̄

))
.

Proposition 3.7. Let V be a subspace of ( and define ~V := {~P : P ∈
V }. Then,

Kρ
~V =

←−→
KρV

Proof. Let P ∈ V . Then, ~P ∈ ~V and by Remarks 3.4 and 3.6

〈~P ,
←−→
KρV (

Z
W

)〉 = 〈~P , Z̄nW̄m−−−−−−→KρV(
1/Z̄

1/W̄

)〉 = ZnWm〈KρV(
1/Z̄

1/W̄

), P 〉 = ~P
(

Z
W

)
and the claim follows, again by uniqueness. �

Proposition 3.8 (Bergman Identity). Let V be a finite dimensional
subspace of two variable polynomials and let q1, q2, . . . , qN be an or-
thonormal basis for V . Then,

KρV
((

z
w

)
,
(

Z
W

))
=

N∑
j=1

qj

(
z
w

)
qj

(
Z
W

)
Proof. The expression on the right reproduces each orthonormal basis
element and hence everything in V . �
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With the fundamental properties of these reproducing kernels out of
the way let us present a formula that holds in complete generality and
sheds some light on the Geronimo-Woerdeman theorem.

Since \ is one dimensional, the Bergman identity tells us there is a
unit norm polynomial p, unique up to multiplication by a unimodular
constant, such that

Kρ\
((

z
w

)
,
(

Z
W

))
= p

(
z
w

)
p
(

Z
W

)
.

Allow us to abbreviate this as Kρ\ = pp̄. By Proposition 3.7 above
Kρ[ = ~p~̄p.

Theorem 3.9. Let ρ be a nondegenerate probability measure on T2,
and let p be any unit norm polynomial in \. Then, suppressing the
argument

((
z
w

)
,
(

Z
W

))
we have

pp̄− ~p~̄p =(1− zZ̄)Kρ=+ (1− wW̄ )Kρ3+ (1− zZ̄)(1− wW̄ )KρZ

+
[(

Kρ-−Kρ3
)
−

(
Kρ+−KρH

)]
.

Proof. Throughout the proof we will suppress Kρ and the argument((
z
w

)
,
(

Z
W

))
. Observe that

5−6 =
(
(−P

)
−

(
(−<

)
= −zZ̄<+<

= (1− zZ̄)<

and similarly

(3.1) 4−3 = (1− zZ̄)Z

from which we can write

(1− zZ̄)= =
(
5−6

)
−

(
4−3

)
=

(
5−H

)
− (1− wW̄ )4−

(
6−3

)
.

Therefore,(
5−H

)
−

(
6−3

)
= (1− zZ̄)= +(1− wW̄ )4(3.2)

= (1− zZ̄)= +(1− wW̄ )3

+(1− zZ̄)(1− wW̄ )Z

where the last equality follows from (3.1). Finally, if we note that

5 = \++ = pp̄ ++

and
6 = ~p~̄p +-

the theorem follows from (3.2) after a little rearrangement. �
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This easily yields the following corollary.

Corollary 3.10. With the same setup as Theorem 3.9, if - = 3, then

|p
(

z
w

)
|2 − |~p

(
z
w

)
|2 ≥ (1− |z|2)(1− |w|2)

Proof. When - = 3, it is also true that + = H by reflection. There-
fore, on the diagonal z = Z, w = W

|p
(

z
w

)
|2 − |~p

(
z
w

)
|2 ≥ (1− |z|2)(1− |w|2)KρZ ≥ (1− |z|2)(1− |w|2)

since ρ is a probability measure (and Z can be split into 1 and the
polynomials orthogonal to 1). �

This corollary combines with the following lemma about polynomials
in two variables to yield one part of the Geronimo-Woerdeman theorem.

Lemma 3.11. Let q ∈ ( and suppose there is a c > 0 such that

|q
(

z
w

)
|2 − |~q

(
z
w

)
|2 ≥ c(1− |z|2)(1− |w|2).

Then, q is stable.

Remark 3.12. The significance of this lemma is that it tells us when
q has no zeros on the boundary of the bidisk (as it is obvious that
the above inequality implies q has no zeros on the open bidisk). Also,
compare this proof to the “fifth proof of theorem 1.7.1” on page 103 in
[9].

Proof. First, suppose q has a zero, say
(

z0

w0

)
, on T×D. Then, |q

(
rz0

w0

)
|2 =

O(1− r)2 but

|q
(

rz0

w0

)
|2 ≥ c(1− |w0|2)(1− r2)

which fails as r ↗ 1. Similarly, q has no zeros on D× T.
Second, suppose q has a zero,

(
z0

w0

)
, on T2. Writing q

(
rz0

rw0

)
= a(1 −

r) + O(1− r)2 we have

~q
(

rz0

rw0

)
= rn+mzn

0 wm
0 q

(
z0/r
w0/r

)
= rn+mzn

0 wm
0

(
ā(1− 1

r
) + O(1− r)2

)
.

Therefore,

|q
(

rz0

rw0

)
|2 − |~q

(
rz0

rw0

)
|2 =|a(1− r) + O(1− r)2|2

− r2(n+m−1)|a(1− r) + O(1− r)2|2

=|a|2(1− r)2(1− r2(n+m−1)) + O(1− r)3

=O(1− r)3 ≥ c(1− r2)2

which also fails as r ↗ 1. �
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Corollary 3.13. With the setup of Theorem 3.9, if - = 3, then p is
stable.

This proves one part of the reverse implication of Theorem 2.1. For
the rest, we refer the reader to the original paper [5].

4. Bernstein-Szegő Measures on T2

Next, we would like to indicate why the forward implication of the
Geronimo-Woerdeman theorem holds. This involves studying Bern-
stein-Szegő measures:

(4.1) dµ :=
c2

(2πi)2|q
(

z
w

)
|2

dz

z

dw

w

where q is a polynomial in ( with no zeros in the closed bidisk and
c > 0 is chosen to make µ a probability measure.

The first thing to notice about such a measure is that the norm it pro-
vides for L2(T2, µ) is equivalent to the norm on L2(T2) with Lebesgue
measure (because q is bounded above and below on T2). So, all closures
taken with respect to Lebesgue measure are equal to closures taken with
respect to the norm determined by µ. For instance, H2(T2, µ), the clo-
sure of the polynomials in L2(T2, µ), is equal to the usual Hardy space
H2(T2).

Another important fact about Bernstein-Szegő measures is given in
the following proposition.

Proposition 4.1. For µ and q as in (4.1),

q ∈ \ and Kµ\
((

z
w

)
,
(

Z
W

))
=

1

c2
q
(

z
w

)
q
(

Z
W

)
Proof. Observe that

〈zjwk, q〉 =
c2

(2πi)2

∫
T2

zjwkq
(

z
w

)
|q

(
z
w

)
|2

dz

z

dw

w

=
c2

(2πi)2

∫
T2

zjwk

q
(

z
w

) dz

z

dw

w

and this equals zero when j > 0 or k > 0. So, q ∈ \ and since

||q|| = c, it follows that Kµ\
((

z
w

)
,
(

Z
W

))
= 1

c2
q
(

z
w

)
q
(

Z
W

)
by the Bergman

identity. �

Let us define several important closed subspaces of H2(T2).

Definition 4.2. All closed spans below are taken with respect to
H2(T2).
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(1) The border subspace B is defined to be

B := span{zjwk : j, k ≥ 0 and either j ≤ n− 1 or k ≤ m− 1}.
(2) The bottom border subspace BB is defined to be

BB := span{zjwk : j ≥ 0 and 0 ≤ k ≤ m− 1}.
(3) The left border subspace LB is defined to be

LB := span{zjwk : k ≥ 0 and 0 ≤ j ≤ n− 1}.

Lemma 4.3. Define

L(
Z
W

)(
z
w

)
:=

(zZ̄)n[q
(

z
w

)
q
(
1/z̄
W

)
− ~q

(
z
w

)
~q
(
1/z̄
W

)
]

(1− zZ̄)(1− wW̄ )

The functions L(
Z
W

) for Z,W ∈ D have the following properties.

(1) L(
Z
W

) is orthogonal (with respect to µ) to LB.

(2) L(
Z
W

) is an element of BB.

(3) L(
Z
W

) reproduces (zn ·BB); i.e. f
(

z
w

)
= 〈f, L(

z
w

)〉µ for f in the

closed span of {zjwk : j ≥ n, 0 ≤ k ≤ m− 1}.

Remark 4.4. In essence, the proposition says that L(
z
w

) reproduces the

H2(T2) projection of f ∈ B to (zn ·BB).

Before proving this let us show how it proves the following important
fact for Bernstein-Szegő measures.

Theorem 4.5. Let q be a polynomial with no zeros on D2
and define

its Bernstein-Szegő measure µ as in (4.1). Then,

B	µ BB = LB	µ Z,

B	µ LB = BB	µ Z

and
.µ = =µ and -µ = 3µ

Proof. If f ∈ B	µBB then by Remark 4.4, f ∈ LB because f ⊥µ L(
z
w

)
for all

(
z
w

)
∈ D2. So, B 	µ BB ⊆ LB 	µ Z. On the other hand, if

f ∈ LB	µ Z and if f ⊥µ B	µ BB, then f ∈ Z yet at the same time
f ⊥µ Z; i.e. f ≡ 0. Hence, B	µBB = LB	µZ. It follows easily from
this that .µ = =µ. The rest of the theorem follows by symmetry. �

Now, we prove Lemma 4.3 via a series of propositions, which are
interesting in their own right.
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Proposition 4.6. Define F(
Z
W

) ∈ H2(T2) by

F(
Z
W

)(
z
w

)
=

(zZ̄)nq
(

z
w

)
q
(
1/z̄
W

)
c2(1− zZ̄)(1− wW̄ )

Then, for any f ∈ H2(T2), the function

g
(

z
w

)
:= 〈f, F(

z
w

)〉µ
is the H2(T2)-orthogonal projection of f to the subspace (zn ·H2(T2)).
(So, a projection in H2 with Lebesgue measure is achieved via the µ-
inner product.)

Proof. Observe that

g
(

Z
W

)
=

1

(2πi)2

∫
T2

f
(

z
w

) (z̄Z)nq
(

z
w

)
q
(

z
W

)
(1− z̄Z)(1− w̄W )|q

(
z
w

)
|2

dw

w

dz

z

=
1

2πi

∫
T
f
(

z
W

) (z̄Z)n

1− z̄Z

dz

z

and the last line does indeed equal the projection of f to the subspace
(zn ·H2(T2)). �

Proposition 4.7. The closed subspace (~q ·H2(T2)) equals H2(T2)	µB.

Proof. If f ∈ H2(T2) then

〈f~q, zjwk〉µ = 〈fzn−jwm−j, q〉µ

=
c

(2πi)2

∫
T2

f
(

z
w

)zn−jwm−k

q
(

z
w

) dz

z

dw

w

equals zero if j < n or k < m. So, (~q · H2(T2)) ⊆ H2(T2) 	µ B. On
the other hand, if f ∈ H2(T2)	µ B and f ⊥µ (~q ·H2(T2)), then since
~q ∈ ( and the coefficient of znwm in ~q is necessarily nonzero, it follows
that f ⊥µ znwm. But, since f ⊥µ w~q, this implies f ⊥µ znwm+1.
Continuing like this we see that f ⊥µ zjwk for all j, k ≥ 0; i.e. f ≡ 0.
So, (~q ·H2(T2)) = H2(T2)	µ B. �

Proposition 4.8. The function

G
((

z
w

)
,
(

Z
W

))
:=

q
(

z
w

)
q
(

Z
W

)
− (zZ̄)n~q

(
1/Z̄
w

)
~q
(
1/z̄
W

)
1− wW̄

is a polynomial of degree m− 1 in w and W̄ .
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Proof. The proposition follows for algebraic reasons, but we can actu-
ally give meaning to G so we provide the following more explicit proof.

First, notice that if the claim is true when z = Z then it is true in
general. This is because of the polarization theorem for holomorphic
functions (i.e. f(z, z̄) ≡ 0 implies f ≡ 0) applied to coefficients of
wjW̄ k in the expansion of G above.

To prove the result for z = Z we can appeal to the one variable
Christoffel-Darboux formula. Namely, for each z ∈ D let

dσz(w) :=
c2
z

2πi|q
(

z
w

)
|2

dw

w

where cz > 0 is chosen to make σz a probability measure on T. Then,
it is not difficult to check the polynomial in w given by q

(
z
w

)
/cz satisfies

the conditions of the Christoffel-Darboux theorem (up to multiplication
by a unimodular which does not matter). Therefore, if we denote the
reproducing kernel for σz for polynomials in w with degree up to m−1
by Kz

m−1, then

c2
z(1− wW̄ )Kz

m−1(w, W ) = q
(

z
w

)
q
(

z
W

)
− (wW̄ )mq

(
z

1/w̄

)
q
(

z
1/W̄

)
= q

(
z
w

)
q
(

z
W

)
− (zZ̄)n~q

(
1/z̄
w

)
~q
(
1/z̄
W

)
and this proves G is a polynomial in w and W̄ of degree m − 1 for
z = Z ∈ D. �

These three propositions allow us to prove Lemma 4.3 with ease.

Proof of Lemma 4.3. (1) The functions L(
z
w

) equal a sum of a func-

tions orthogonal to LB by Propositions 4.6 and 4.7.
(2) The function L(

Z
W

) belongs to BB by Proposition 4.8 because

L(
Z
W

)(
z
w

)
=

(zZ̄)n

(1− zZ̄)
G

((
z
w

)
,
(
1/z̄
W

))
is holomorphic in z, Z̄, w, W̄ and a polynomial of degree m− 1
in w, W̄ .

(3) Finally, L(
z
w

) is the sum of a function that reproduces (zn ·

H2(T2)) and a function orthogonal to (zn · BB). So, L(
z
w

)
reproduces functions in (zn ·BB).

�

Finally, Theorem 4.5 allows us to prove the forward implication of
Theorem 2.1, which we state as a corollary.
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Corollary 4.9. Given a nondegenerate probability measure ρ on T2, if
a unit norm polynomial p ∈ \ is stable and the measure on T2

dµ :=
1

(2πi)2|p
(

z
w

)
|2

dz

z

dw

w

has reproducing kernel Kµ( equal to Kρ(, then

-ρ = 3ρ.

Proof. If Kρ( equals Kµ(, then Theorem 4.5 proves

-ρ = -µ = 3µ = 3ρ.

�

5. Andô, Agler, and Christoffel-Darboux Redux

Let us present and prove the Geronimo-Woerdeman Christoffel-Dar-
boux formula (plus another identity) in our own language.

Theorem 5.1. If ρ is a nondegenerate probability measure on T2 and
- = 3, then writing, as usual, pp̄ = Kρ\ and suppressing

((
z
w

)
,
(

Z
W

))
pp̄− ~p~̄p = (1− zZ̄)Kρ=+ (1− wW̄ )Kρ3+ (1− zZ̄)(1− wW̄ )KρZ

= (1− zZ̄)Kρ=+ (1− wW̄ )Kρ4

= (1− zZ̄)Kρ>+ (1− wW̄ )Kρ3.

Proof. These all follow from Theorem 3.9 using the fact that - = 3

implies + = H (by reflection) and the identities

Kρ4−Kρ3 = (1− zZ̄)KρZ

Kρ>−Kρ= = (1− wW̄ )KρZ.

�

Let us now prove the Cole-Wermer equivalent of Andô’s theorem.

Proof of Theorem 1.7. Let us recall the setup. We have two-variable
polynomials P and Q satisfying

|P | = |Q| on T2

and
|P | ≥ |Q| on D2

There is no loss in assuming P and Q are relatively prime (just multiply
the formula we prove by any common factors if necessary). Then, Q/P
is holomorphic on D2 because it is bounded by 1 wherever it is defined.
In fact, P has no zeros on D2 because otherwise any zeros of P in
D2 necessarily coincide with zeros of Q, in which case P and Q would



BERNSTEIN-SZEGŐ MEASURES ON THE TWO DIMENSIONAL TORUS 19

have a common factor. This implies Q/P is a rational inner function.

It is a fact that Q = ~P where we have to perform the “reflection” at
the appropriate level, which we assume to be (n, m) (see [8] Theorem
5.2.5).

If it were the case that P had no zeros on D2
, then the theorem

would be proved by defining a Bernstein-Szegő measure using P and
applying the above Christoffel-Darboux formula. To handle the case
where P might have zeros on T2 we look at Pr

(
z
w

)
:= P

(
rz
rw

)
and let

r ↗ 1.
Define µr to be the Bernstein-Szegő measure for Pr, i.e.

dµr :=
c2
r

(2πi)2|Pr

(
z
w

)
)|2

dz

z

dw

w

where cr is chosen to make µr a probability measure. Then, by Propo-
sition 4.1 and the Christoffel-Darboux formula on the diagonal z = Z,
w = W

|Pr|2 − | ~Pr|2 = c2
r(1− |z|2)Kµr=+ c2

r(1− |w|2)Kµr4.

Also, by the Bergman identity (evaluating Kµr= at
((

z
w

)
,
(

z
w

))
)

c2
r

(2πi)2

∫
T2

Kµr=
dz

z

dw

w
≤

(
sup
T2

|Pr|2
)

c2
r

(2πi)2

∫
T2

Kµr=

|Pr|2
dz

z

dw

w

≤ n sup
T2

|P |2

since the dimension of = is n. Similarly,

c2
r

(2πi)2

∫
T2

Kµr4
dz

z

dw

w
≤ m sup

T2

|P |2.

Hence, the polynomials forming c2
rKµr= as in the Bergman identity

are bounded in L2 norm and are all of bounded degree (likewise for
c2
rKµr4). Taking subsequences if necessary, said polynomials will con-

verge to polynomials as r ↗ 1. Also, ~Pr tends to ~P , and that proves
the theorem: i.e.

|P |2 − |~P |2 = (1− |z|2)
n−1∑
j=0

|Aj|2 + (1− |w|2)
m−1∑
k=0

|Bk|2

for some polynomials Aj of degree (n− 1, m) and Bk of degree (n, m−
1). �
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6. Equivalences

For those interested in referring back to the original paper of Geron-
imo and Woerdeman [5] we have included this section devoted to demon-
strating equivalences between their theorem statements and ours. As
usual, we let ρ be a probability measure on the 2-torus.

Let Λ+ = {0, . . . , n} × {0, . . . ,m} and define the doubly Toeplitz
matrix corresponding to ρ by

cρ
u−v = 〈zu1wu2 , zv1wv2〉ρ

where u = (u1, u2) and v = (v1, v2) are elements of Λ+.
First, let us explicitly mention that our nondegeneracy condition is

the same as the one in [5].

Proposition 6.1. The following are equivalent.

(1) ρ is nondegenerate (at the (n,m) level).
(2) The doubly Toeplitz matrix corresponding to ρ is positive defi-

nite:
(cρ

u−v)u,v∈Λ+ > 0.

Proof. Both conditions are just another way of saying that for any
complex numbers ajk, j = 0, . . . , n, k = 0, . . . ,m

〈
n∑

j=0

m∑
k=0

ajkz
jwk,

n∑
j=0

m∑
k=0

ajkz
jwk〉ρ > 0

as long as some ajk is nonzero. �

Next, our “automatic orthogonality condition” is equivalent to a
couple of different conditions on Toeplitz matrices that are used in [5].
The automatic orthogonality condition is also used in [7].

Proposition 6.2. The following are equivalent.

(1) Automatic orthogonality:

-ρ = 3ρ

(2) A low rank condition on the doubly Toeplitz matrix:

rank(cρ
u−v)u ∈ {1, . . . , n} × {0, . . . ,m}

v ∈ {0, . . . , n} × {1, . . . ,m}
= nm

(3) The vanishing of certain blocks of the inverse of the doubly
Toeplitz matrix:[

(cρ
u−v)u,v∈Λ+\{(0,0)}

]−1

{1, . . . , n} × {0}
{0} × {1, . . . ,m}

= 0
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Proof. The equivalence of the second and third statements follows from
Theorem 2.4.1 in [5]. We shall prove (1) is equivalent to (3). Let bu,v

be the (u, v) entry of the inverse of the matrix

(cρ
u−v)u,v∈Λ+\{(0,0)}.

Warning: the rows and columns of (bu,v) and (cρ
u−v) are each indexed

by the set Λ+ \ {(0, 0)}. For each u ∈ Λ+ \ {(0, 0)} define

Φu

(
z
w

)
:=

∑
v∈Λ+\{(0,0)}

bu,vz
v1wv2

where we write v = (v1, v2). The set {Φu}u∈Λ+\{(0,0)} is a dual basis for
the monomials in *, because for t = (t1, t2) ∈ Λ+ \ {(0, 0)}

〈Φu, z
t1wt2〉ρ =

∑
v∈Λ+\{(0,0)}

bu,vc
ρ
v−t = δu,t.

Therefore, the set {Φ(j,0)}j=1,...,n forms a basis for the subspace ,. The
condition b(j,0),(0,k) = 0 for j = 1, . . . , n and k = 1, . . . ,m is equivalent
to saying each Φ(j,0) ∈ R and since these polynomials are linearly in-
dependent, this is equivalent to saying , = R. By reflection, this is
equivalent to = = .. It is not difficult to see that in general we have

=⊕ρ - = 3⊕ρ .

and so = = . if and only if 3 = - by taking orthogonal complements.
Hence, conditions (1) and (3) are equivalent.

We conclude by remarking that the above proof shows that the con-
ditions obtained by switching the roles of z and w are equivalent to the
conditions (1)-(3). �

The following is probably too easy to be a proposition, but we state
it for emphasis.

Proposition 6.3. Let ρ and σ be two probability measures on T2. The
following are equivalent.

(1) The Toeplitz matrices agree:

cρ
u−v = cσ

u−v for u, v ∈ Λ+.

(2) The inner products agree on (:

〈P, Q〉ρ = 〈P, Q〉σ for P, Q ∈ (

(3) The reproducing kernels agree:

Kρ(
((

z
w

)
,
(

Z
W

))
= Kσ(

((
z
w

)
,
(

Z
W

))
.
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Proof. The first two equivalences are easy. It is also clear that (2) im-
plies (3). If the reproducing kernels agree then the inner products agree
on linear combinations of kernel functions. Since the kernel functions
span (, it follows that the inner products must agree on all of (. �

With all of this out of the way, let us state the important theorem
(namely Theorem 2.1) in this paper in its original language. As men-
tioned earlier, this theorem is a slight weakening of Theorem 1.1.2 in
[5].

Theorem 6.4 (Geronimo-Woerdeman). Given is a probability measure
ρ on T2 with

(cρ
u−v)u,v∈Λ+ > 0

A unit norm polynomial p in \ is stable and the measure on T2

dµ :=
1

(2πi)2|p
(

z
w

)
|2

dz

z

dw

w

has Fourier coefficients cµ
u = cρ

u for u ∈ {−n, . . . , n} × {−m, . . . , m} if
and only if

rank(cρ
u−v)u ∈ {1, . . . , n} × {0, . . . ,m}

v ∈ {0, . . . , n} × {1, . . . ,m}
= nm.

7. Conclusions and Commentary

7.1. Three Variables? There are several proofs of Andô’s inequality
(see [2] and [3] for instance). The work of Geronimo and Woerdeman
and this paper provide two more. Such a simple looking inequality has
garnered our interest partially because of its connection to bounded
analytic functions and interpolation. It is also interesting because the
analogous statement for three commuting contractions fails. This phe-
nomenon is not well understood. We hope that the notation and ap-
proach of this paper can play some small part in addressing this prob-
lem. Admittedly, our notation has certain drawbacks for generaliza-
tions to three variables, but we do not think they are insurmountable.

7.2. Formulas for reproducing kernels. It would be interesting to
have explicit formulas for the reproducing kernels involved in the two
variable Christoffel-Darboux formula in the case of Bernstein-Szegő
measures. This might allow for a slicker proof of the Cole-Wermer
theorem (i.e. passing to subsequences might be avoided). It would also
be interesting to study the probability measures µr in our proof of the
Cole-Wermer theorem.
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7.3. Proof of the stability result. Let us conclude the paper with
a proof of the stability result from the introduction.

Proof of Theorem 1.1. The reverse implication is given by Lemma 3.11.
To prove the forward implication, define a Bernstein-Szegő measure
using q. The constant c is defined by

1

c2
=

1

(2πi)2

∫
T2

1

|q
(

z
w

)
|2

dz

z

dw

w
.

By Theorem 4.5, Corollary 3.10, and Proposition 4.1, it follows that

|q
(

z
w

)
|2 − |~q

(
z
w

)
|2 ≥ c2(1− |z|2)(1− |w|2).

�

Symbols and acknowledgments

The special symbols such as \ used in this article will be made avail-
able on the author’s website. Thanks to Dror Bar-Natan for making
his method of producing new LATEX symbols available on his website.
The author would also like to thank John E. McCarthy for his advice
at all stages of this research.

References

[1] Jim Agler and John E. McCarthy. Pick interpolation and Hilbert function spaces,
volume 44 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2002.
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