Rational inner functions in the Schur-Agler class

Greg Knese
University of Alabama

November 6, 2010

Rational inner functions in the Schur-Agler class

Goal is to understand:

- Function theory on the polydisk \mathbb{D}^{n}.
- von Neumann inequalities
- Positive polynomials and sums of squares decompositions.

Rational inner functions

Rational inner functions are generalizations of finite Blaschke products.

$$
\phi(z)=\frac{\prod_{j=1}^{d} z-a_{j}}{\prod_{j=1}^{d} 1-\bar{a}_{j} z}=\frac{\tilde{p}(z)}{p(z)}
$$

where $p \in \mathbb{C}[z]$ has no zeros on $\overline{\mathbb{D}}$, degree d, and

$$
\tilde{p}(z)=z^{d} \overline{p(1 / \bar{z})}
$$

The same works in several variables:

$$
\phi\left(z_{1}, \ldots, z_{n}\right)=\frac{\tilde{p}\left(z_{1}, \ldots, z_{n}\right)}{p\left(z_{1}, \ldots, z_{n}\right)}
$$

where $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ has no zeros on $\overline{\mathbb{D}}^{n}$, multidegree $d=\left(d_{1}, \ldots, d_{n}\right)$, and

$$
\tilde{p}\left(z_{1}, \ldots, z_{n}\right)=z^{d} \overline{p\left(1 / \bar{z}_{1}, \ldots, 1 / \bar{z}_{n}\right)}
$$

von Neumann inequalities and the Schur-Agler class

- (von Neumann) For any holomorphic $f: \mathbb{D} \rightarrow \mathbb{D}$ and any contractive operator T

$$
\|f(T)\| \leq 1
$$

- Schur class: Holomorphic $f: \mathbb{D}^{n} \rightarrow \mathbb{D}$
- Schur-Agler class: f in Schur class satisfying

$$
\left\|f\left(T_{1}, \ldots, T_{n}\right)\right\| \leq 1
$$

for all commuting, contractive n-tuples $\left(T_{1}, \ldots, T_{n}\right)$.

- Schur-Agler class \subset Schur class, with equality for $n=1,2$.

Sums of squares

Let $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ have no zeros in $\overline{\mathbb{D}}^{n}$, assume p has multidegree $d=\left(d_{1}, \ldots, d_{n}\right)$. Define

$$
\tilde{p}(z)=z^{d} \overline{p\left(1 / \bar{z}_{1}, 1 / \bar{z}_{2}, \ldots, 1 / \bar{z}_{n}\right)}
$$

$$
\left|\frac{\tilde{p}(z)}{p(z)}\right|=1 \text { on } \mathbb{T}^{n}, \quad \leq 1 \text { on } \overline{\mathbb{D}}^{n}
$$

So,

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2} \geq 0 \text { on } \overline{\mathbb{D}}^{n}
$$

Does the left hand side equal

$$
\sum_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right) \text { SOS }_{j} ?
$$

Rational inner functions and the Schur-Agler class

Answer:

$$
\frac{\tilde{p}}{p} \text { is in the Schur-Agler class }
$$

if and only if

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2}=\sum_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right) S O S_{j}
$$

Why? Possible to plug in $T=\left(T_{1}, \ldots, T_{n}\right)$

$$
I-\frac{\tilde{p}}{p}(T) \frac{\tilde{p}}{p}(T)^{*}=\sum A_{j, k}(T)\left(I-T_{j} T_{j}^{*}\right) A_{j, k}(T)^{*}
$$

References

䡒 Agler，J．（1988）．
Some interpolation theorems of Nevanlinna－Pick type．
unpublished manuscript．
E Cole，B．J．and Wermer，J．（1999）．
Andô＇s theorem and sums of squares．
Indiana Univ．Math．J．，48（3）：767－791．
圊 Ball，J．A．and Trent，T．T．（1998）．
Unitary colligations，reproducing kernel Hilbert spaces，and Nevanlinna－Pick interpolation in several variables．
J．Funct．Anal．，157（1）：1－61．
击 Knese，G．（2010b）．
Rational inner functions in the Schur－Agler class of the polydisk．
to appear in Publicacions Matemàtiques．

Philosophy

- Rational inner functions form a natural (dense) subclass of the Schur class. (More natural than normalized polynomials?)
- Try to understand the Schur-Agler class (and hence von Neumann inequalities) by understanding rational inner functions in the Schur-Agler class.

Questions

- How do you tell if \tilde{p} / p is in the Schur-Agler class?
- If \tilde{p} / p is in the Schur-Agler class, how do you write down a sums of squares decomposition?
- How many squares are required in the sums of squares?

Two variables $z=\left(z_{1}, z_{2}\right)$

Suppose $p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ has no zeros on \mathbb{D}^{2} and degree (d_{1}, d_{2}). There exist 2 canonical sums of squares decompositions.

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2}=\left(1-\left|z_{1}\right|^{2}\right) \operatorname{SOS}_{1}+\left(1-\left|z_{2}\right|^{2}\right) \text { SOS }_{2}
$$

It is possible to...

- choose $S O S_{1}$ and $S O S_{2}$ to have d_{1} and d_{2} squares.
- choose $S O S_{1}$ maximal and $S O S_{2}$ minimal (or vice versa).
- express $S O S_{1}, S O S_{2}$ using orthonormal bases of certain subspaces of polynomials obtained using the measure $\frac{1}{|p|^{2}}\left|d z_{1}\right|\left|d z_{2}\right|$.
- construct $S O S_{1}, S O S_{2}$ using the one variable matrix Fejér-Riesz decomposition.
- characterize when $S O S_{1}$ and $S O S_{2}$ are unique.

References

囯 Geronimo，J．S．and Woerdeman，H．J．（2004）． Positive extensions，Fejér－Riesz factorization and autoregressive filters in two variables．
Ann．of Math．（2），160（3）：839－906．
睩 Knese，G．（2010）．
Polynomials with no zeros on the bidisk．
Anal．PDE，3（2）：109－149．
R Ball，J．A．，Sadosky，C．，and Vinnikov，V．（2005）．
Scattering systems with several evolutions and multidimensional input／state／output systems．
Integral Equations Operator Theory，52（3）：323－393．
围 Kummert，A．（1989）．
Synthesis of two－dimensional lossless m－ports with prescribed scattering matrix．
Circuits Systems Signal Process．，8（1）：97－119．

Recent work for more than two variables

- General facts
- Multi-affine symmetric polynomials
- Three variables

General facts

Take $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, degree $d=\left(d_{1}, \ldots, d_{n}\right)$.
Suppose

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2}=\sum_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right) \operatorname{SOS}_{j} .
$$

- Cannot choose $S O S_{j}$ to be a sum of d_{j} squares.
- Example: $p(z)=3-z_{1}-z_{2}-z_{3}$.
- Can choose $S O S_{j}$ to be sum of at most $d_{j} \prod_{k \neq j}\left(d_{k}+1\right)$ squares.

Multi-affine symmetric case

Take $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, no zeros on $\overline{\mathbb{D}}^{n}$, symmetric, degree $d=(1, \ldots, 1)$.

- Can give a concrete necessary and sufficient condition for

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2}=\sum_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right) S O S_{j}
$$

and can construct SOS $_{j}$ explicitly.

- Holds for $p_{r}(z):=p(r z)$ for $0<r<1$ small enough.
- Question:is \tilde{p} / p automatically in the Schur-Agler class? Have found no counterexamples!

Three variables

Take $p \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$, no zeros on $\overline{\mathbb{D}}^{3}$, degree $d=\left(d_{1}, d_{2}, d_{3}\right)$. When is \tilde{p} / p in the Schur-Agler class? i.e.

$$
|p(z)|^{2}-|\tilde{p}(z)|^{2}=\sum_{j=1}^{3}\left(1-\left|z_{j}\right|^{2}\right) \text { SOS }_{j} ?
$$

- A. Kummert 1989: if $d=(1,1,1)$.
- GK: if $d=\left(d_{1}, 1,1\right)$.
- GK: if $d=\left(d_{1}, d_{2}, 1\right)$, for large enough r, s

$$
z_{1}^{r} z_{2}^{s} \frac{\tilde{p}(z)}{p(z)}
$$

is in the Schur-Agler class.

- Closely related to positive trig polynomials and sums of squares decompositions.

References

嗇 Kummert，A．（1989）．
Synthesis of 3－D lossless first－order one ports with lumped elements．
IEEE Trans．Circuits and Systems，36（11）：1445－1449．
䍰 Knese，G．（2010）．
Rational inner functions in the Schur－Agler class of the polydisk．
to appear in Publicacions Matemàtiques．
睩 Knese，G．（2010）．
Stable symmetric polynomials and the Schur－Agler class． preprint．

䍰 Knese，G．（2010）．
Schur－Agler class rational inner functions on the tridisk． preprint．

Final questions

- Is "the multiplication by a monomial" property on previous page more general?
- The orthogonal polynomials viewpoint is very useful in two variables. Not as useful yet in three or more variables.
- Can one characterize p with \tilde{p} / p Schur-Agler in terms of orthogonality relations in $L^{2}\left(\frac{1}{|p|^{2}} d \sigma\right)$?
- If so, can one build "canonical" sums of squares decompositions using subspaces of polynomials in $L^{2}\left(\frac{1}{|p|^{2}} d \sigma\right)$?

FIN

