Rational inner functions in the Schur-Agler class

Greg Knese University of Alabama

November 6, 2010

Rational inner functions in the Schur-Agler class

Goal is to understand:

- Function theory on the polydisk \mathbb{D}^n .
- von Neumann inequalities
- Positive polynomials and sums of squares decompositions.

Rational inner functions

Rational inner functions are generalizations of finite Blaschke products.

$$\phi(z) = \frac{\prod_{j=1}^d z - a_j}{\prod_{j=1}^d 1 - \bar{a}_j z} = \frac{\tilde{p}(z)}{p(z)}$$

where $p\in \mathbb{C}[z]$ has no zeros on $\overline{\mathbb{D}}$, degree d, and $\widetilde{p}(z)=z^d\overline{p(1/ar{z})}$

The same works in several variables:

$$\phi(z_1,\ldots,z_n)=\frac{\tilde{p}(z_1,\ldots,z_n)}{p(z_1,\ldots,z_n)}$$

where $p \in \mathbb{C}[z_1, \ldots, z_n]$ has no zeros on $\overline{\mathbb{D}}^n$, multidegree $d = (d_1, \ldots, d_n)$, and

$$\widetilde{p}(z_1,\ldots,z_n)=z^d\overline{p(1/\overline{z}_1,\ldots,1/\overline{z}_n)}$$

von Neumann inequalities and the Schur-Agler class

• (von Neumann) For any holomorphic $f: \mathbb{D} \to \mathbb{D}$ and any contractive operator T

$$\|f(T)\|\leq 1$$

- Schur class: Holomorphic $f : \mathbb{D}^n \to \mathbb{D}$
- Schur-Agler class: f in Schur class satisfying

$$\|f(T_1,\ldots,T_n)\|\leq 1$$

for all commuting, contractive *n*-tuples (T_1, \ldots, T_n) .

Schur-Agler class \subset Schur class, with equality for n = 1, 2.

Sums of squares

Let $p \in \mathbb{C}[z_1, \ldots, z_n]$ have no zeros in $\overline{\mathbb{D}}^n$, assume p has multidegree $d = (d_1, \ldots, d_n)$. Define

$$\check{p}(z) = z^{d} \overline{p(1/\bar{z}_1, 1/\bar{z}_2, \dots, 1/\bar{z}_n)}$$

$$\left|rac{\widetilde{p}(z)}{p(z)}
ight|=1 ext{ on } \mathbb{T}^n, \quad \leq 1 ext{ on } \overline{\mathbb{D}}^n$$

So,

$$|p(z)|^2 - |\widetilde{p}(z)|^2 \geq 0$$
 on $\overline{\mathbb{D}}^n$

Does the left hand side equal

$$\sum_{j=1}^{n} (1 - |z_j|^2) SOS_j?$$

Rational inner functions and the Schur-Agler class

$$\frac{\tilde{p}}{p}$$
 is in the Schur-Agler class

if and only if

$$|p(z)|^2 - |\tilde{p}(z)|^2 = \sum_{j=1}^n (1 - |z_j|^2) SOS_j$$

Why? Possible to plug in $T = (T_1, \ldots, T_n)$

$$I - \frac{\tilde{p}}{p}(T)\frac{\tilde{p}}{p}(T)^* = \sum A_{j,k}(T)(I - T_jT_j^*)A_{j,k}(T)^*$$

References

Agler, J. (1988).

Some interpolation theorems of Nevanlinna-Pick type. unpublished manuscript.

Cole, B. J. and Wermer, J. (1999). Andô's theorem and sums of squares. Indiana Univ. Math. J., 48(3):767–791.

Ball, J. A. and Trent, T. T. (1998).

Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables.

J. Funct. Anal., 157(1):1-61.

Knese, G. (2010b).

Rational inner functions in the Schur-Agler class of the polydisk.

to appear in Publicacions Matemàtiques.

Philosophy

- Rational inner functions form a natural (dense) subclass of the Schur class. (More natural than normalized polynomials?)
- Try to understand the Schur-Agler class (and hence von Neumann inequalities) by understanding rational inner functions in the Schur-Agler class.

Questions

- How do you tell if \tilde{p}/p is in the Schur-Agler class?
- If p̃/p is in the Schur-Agler class, how do you write down a sums of squares decomposition?
- How many squares are required in the sums of squares?

Two variables $z = (z_1, z_2)$

Suppose $p \in \mathbb{C}[z_1, z_2]$ has no zeros on \mathbb{D}^2 and degree (d_1, d_2) . There exist 2 *canonical* sums of squares decompositions.

$$|p(z)|^2 - |\tilde{p}(z)|^2 = (1 - |z_1|^2)SOS_1 + (1 - |z_2|^2)SOS_2$$

It is possible to...

- choose SOS_1 and SOS_2 to have d_1 and d_2 squares.
- choose SOS_1 maximal and SOS_2 minimal (or vice versa).
- ▶ express SOS_1 , SOS_2 using orthonormal bases of certain subspaces of polynomials obtained using the measure $\frac{1}{|p|^2}|dz_1||dz_2|$.
- construct SOS₁, SOS₂ using the one variable matrix Fejér-Riesz decomposition.
- ▶ characterize when *SOS*₁ and *SOS*₂ are unique.

References

- Geronimo, J. S. and Woerdeman, H. J. (2004). Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. *Ann. of Math. (2)*, 160(3):839–906.
- Knese, G. (2010). Polynomials with no zeros on the bidisk. Anal. PDE, 3(2):109–149.
- Ball, J. A., Sadosky, C., and Vinnikov, V. (2005). Scattering systems with several evolutions and multidimensional input/state/output systems. *Integral Equations Operator Theory*, 52(3):323–393.

Kummert, A. (1989). Synthesis of two-dimensional lossless *m*-ports with prescribed scattering matrix. *Circuits Systems Signal Process.*, 8(1):97–119. Recent work for more than two variables

- General facts
- Multi-affine symmetric polynomials
- Three variables

General facts

Take
$$p \in \mathbb{C}[z_1, \ldots, z_n]$$
, degree $d = (d_1, \ldots, d_n)$.
Suppose

$$|p(z)|^2 - |\tilde{p}(z)|^2 = \sum_{j=1}^{\infty} (1 - |z_j|^2) SOS_j.$$

- Cannot choose SOS_j to be a sum of d_j squares.
- Example: $p(z) = 3 z_1 z_2 z_3$.
- Can choose SOS_j to be sum of at most $d_j \prod_{k \neq j} (d_k + 1)$ squares.

Multi-affine symmetric case

Take $p \in \mathbb{C}[z_1, \ldots, z_n]$, no zeros on $\overline{\mathbb{D}}^n$, symmetric, degree $d = (1, \ldots, 1)$.

Can give a concrete necessary and sufficient condition for

$$|
ho(z)|^2 - | ilde{
ho}(z)|^2 = \sum_{j=1}^n (1 - |z_j|^2) SOS_j$$

and can construct SOS_j explicitly.

- Holds for $p_r(z) := p(rz)$ for 0 < r < 1 small enough.
- Question: is p̃/p automatically in the Schur-Agler class? Have found no counterexamples!

Three variables

Take $p \in \mathbb{C}[z_1, z_2, z_3]$, no zeros on $\overline{\mathbb{D}}^3$, degree $d = (d_1, d_2, d_3)$. When is \tilde{p}/p in the Schur-Agler class? i.e.

$$|p(z)|^2 - |\tilde{p}(z)|^2 = \sum_{j=1}^3 (1 - |z_j|^2) SOS_j?$$

• A. Kummert 1989: if
$$d = (1, 1, 1)$$
.

• GK: if
$$d = (d_1, 1, 1)$$
.

• GK: if $d = (d_1, d_2, 1)$, for large enough r, s

$$z_1^r z_2^s \frac{\tilde{p}(z)}{p(z)}$$

is in the Schur-Agler class.

 Closely related to positive trig polynomials and sums of squares decompositions.

References

Kummert, A. (1989).

Synthesis of 3-D lossless first-order one ports with lumped elements.

IEEE Trans. Circuits and Systems, 36(11):1445–1449.

Knese, G. (2010).

Rational inner functions in the Schur-Agler class of the polydisk.

to appear in Publicacions Matemàtiques.

Knese, G. (2010).

Stable symmetric polynomials and the Schur-Agler class. preprint.

Knese, G. (2010).

Schur-Agler class rational inner functions on the tridisk. preprint.

Final questions

- Is "the multiplication by a monomial" property on previous page more general?
- The orthogonal polynomials viewpoint is very useful in two variables. Not as useful yet in three or more variables.
- Can one characterize p with p̃/p Schur-Agler in terms of orthogonality relations in L²(¹/_{|p|²}dσ)?
- If so, can one build "canonical" sums of squares decompositions using subspaces of polynomials in L²(¹/_{|p|²}dσ)?

FIN