Homework 3: Due 09/21/2017

- 1. Uniform distribution.
 - (a) Consider an arbitrary random variable X with c.d.f F. Show that $Y = F(X) \sim U(0, 1)$.
 - (b) Consider a random variable $U \sim U(0, 1)$ and an arbitrary c.d.f F. Show that $Y = F^{-1}(U)$ is a random variable and has c.d.f F. (Here $F^{-1}(t) = \inf\{x : F(x) \ge t\}$.)

Remark: The first result can be used to show p-value in most of statistical tests is a U(0, 1) random variable. The second result are often used to generate random variable with known distribution function.

- 2. Problem 43 + 65 + 81(a) on page 78 of Shao (2003). Properties of Normal.
- 3. Show Cochran's Theorem.

Let $X \sim N(0, I_n)$ and $Q_i = X^T A_i X$ for a nonnegative definite $n \times n$ matrix A_i with $rank(A_i) = r_i, i = 1, \dots, k$. Suppose $X^T X = \sum_{i=1}^k Q_i$.

- (a) Prove that $Q_i \sim \chi_r^2$ iff A_i has r eigenvalues being 1 and all the other eigenvalues 0. (A_i is idempotent.)
- (b) Prove that $Q_i \perp Q_j$ iff $A_i A_j = 0$.
- (c) Prove if $Q_i \sim \chi^2_{r_i}$, for $i = 1, \dots, k$, then Q_i are independent and $\sum_{i=1}^k r_i = n$.
- (d) Prove if $Q_i, i = 1, \dots, k$ are independent, then $Q_i \sim \chi^2_{r_i}$ and $\sum_{i=1}^k r_i = n$.
- 4. Let $X \sim N(\mu, \sigma^2 I_k)$, where μ is a constant in \mathbb{R}^k . Consider

$$\bar{X} = \mathbf{1}^T X / k$$

and

$$S^{2} = (X - \bar{X}\mathbf{1})^{T}(X - \bar{X}\mathbf{1})/(k - 1).$$

- (d) Show that $(k-1)S^2/\sigma^2 \sim \chi^2_{k-1}$.
- (e) Show that \overline{X} and S^2 are independent.
- (f) Show that $T_0 = (\bar{X} \mu) / \sqrt{S^2 / k} \sim T_{k-1}$.

(g) Let $\delta = \mu - \mu_0$ for some hypothetical μ_0 and $T_1 = (\bar{X} - \mu_0) / \sqrt{S^2/k}$. Derive the distribution of T_1 .

Problem 78 on page 82 of Shao (2003).
Distribution of sum of independent random variables.