Homework 4: Due 09/28/2017

- 1. Let (Ω, \mathcal{F}, P) be the unit interval [0, 1] with Lebesgue measure P on the Borel σ -field restricted on [0, 1]. Let X be r.v. on (Ω, \mathcal{F}, P) . Consider $\mathcal{G} = \sigma(\{G : G \in \Omega, G \text{ is countable or } G^c \text{ is countable}\}).$
 - (a) What is the conditional probability, $P(A|\mathcal{G}), A \in \mathcal{F}$?
 - (b) What is $E(X|\mathcal{G})$?
 - (c) Prove that X is independent of \mathcal{G} .

2. Consider the example 1.23 on page 44 of Shao (2003).

(a) If the number of customers who respond follows Poisson distribution with parameter θ ($EY = \theta$), what is the distribution of X? (This is the case if one consider infinite sample size N and fixed response rate $\theta = N\pi$.)

(b) Assume each customer behave independently and has same tendency (probability) π to respond. If one stops the survey when the number of non-response reaches $r, r \in \mathbb{N}$, then what is the distribution of Y and what is the distribution of X?

3. (a) Let $\mathcal{G}_1 \subset \mathcal{G}_2$ and $EX^2 < \infty$. Show that

$$E\left[X - E(X|\mathcal{G}_2)\right]^2 \le E\left[X - E(X|\mathcal{G}_1)\right]^2$$

The dispersion of X about its conditional mean becomes smaller as σ -field grows. (b) As a special case of part (a), if $\mathcal{G}_2 = \sigma(Y)$ and $\mathcal{G}_1 = \sigma(Z)$, where Z = h(Y) for some measurable function h, then show that

$$E(Var(X|Y)) \le E(Var(X|Z)).$$

(b) Prove that

$$Var(X) = E[Var(X|Y)] + Var[E(X|Y)]$$

4. Problem 82 on page 80 of Shao (2003). Let $(X_1, X_2)^T$ be a multivariate normal random vector.,

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix})$$

Derive the conditional distribution of X_1 given X_2 .