Homework 5: Due 10/05/2017

1. Let X, Y be independent standard normal random variables, and (R, Θ) be the polar coordinates for (X, Y) :

$$
R=\sqrt{X^{2}+Y^{2}}, \quad \Theta=\arctan 2(Y, X)
$$

where

$$
\arctan 2(y, x)= \begin{cases}\arctan (y / x), & x>0 \\ \arctan (y / x)+\pi, & x<0, y \geq 0 \\ \arctan (y / x)-\pi, & x<0, y<0 \\ \pi / 2, & x=0, y>0 \\ -\pi / 2, & x=0, y<0\end{cases}
$$

(a) Show that $R \Perp \Theta$, and R^{2} given Θ follows χ_{2}^{2}.
(b) Show that R^{2} given $X-Y$ follows χ_{1}^{2} translated by $(X-Y)^{2} / 2$. (Hint: $R^{2}=\left[(X+Y)^{2}+(X-Y)^{2}\right] / 2$ and $X+Y$ is independent of $\left.X-Y.\right)$
(c) From part (b), given $X-Y=0, R^{2}$ follows χ_{1}^{2}. And from part (a), given $\Theta=\pi / 4$ or $\Theta=5 \pi / 4, R^{2}$ follows χ_{2}^{2}. But $\{X-Y=0\}$ and $\{\Theta=\pi / 4\} \cup\{\Theta=5 \pi / 4\}$ are the same. Explain the paradox. What is the distribution of R^{2} given $X=Y$?
2. Poisson process.

Let $\left\{X_{i}: i=1,2, \cdots\right\}$ be a sequence of positive random variables on (Ω, \mathcal{F}, P). Image X_{1} as the waiting time for the occurrence of the first event such as the arrival of customer in a bank, and X_{k} as the waiting time from the $k-1$ th event to the k-th event. Consider the partial sum

$$
Y_{k}=\sum_{i=1}^{k} X_{i}
$$

which represents waiting time for the k-th event. Let $N_{t}=0$ and for a given $t>0$, let

$$
N_{t}=\max _{k}\left\{k: Y_{k} \leq t\right\}
$$

Then $\left\{N_{t}: t \geq 0\right\}$ is called a counting process. Assume no two events are to occur simultaneously ($X_{i}>0, \forall i$), and only finitely many of the events are to occur in each finite interval of time $\left(\lim _{n} \sum_{i=1}^{n} X_{i}=\infty\right)$.
(a) If $X_{i} \sim E(0, \theta)$ (Exponential distribution), then X_{i} is memoryless in the sense that

$$
P\left(X_{i}>s+t \mid X_{i}>s\right)=P(X>t), \quad \forall s, t>0 .
$$

(b) Let Z be a positive continuous random variable with memoryless property. Show that Z follows exponential distribution. (So memoryless waiting time has to be exponential.)
(c) Assume $X_{i} \stackrel{\mathrm{iid}}{\sim} E(0, \theta)$, for $i=1,2, \cdots$. Derive the distribution of N_{t} for any fixed t.
(d) Assume $\left\{N_{t}: t \geq 0\right\}$ has independent Poisson increment. That is
(i) For any $0<t_{1}<\cdots<t_{n}$, the increments $N_{t_{1}}, N_{t_{2}}-N_{t_{1}}, \cdots, N_{t_{n}}-N_{t_{n-1}}$ are independent;
(ii) The individual increment follows Poisson distribution with

$$
P\left(N_{t}-N_{s}=m\right)=\frac{(\theta(t-s))^{m} e^{-(\theta(t-s))}}{m!}, \quad m=0,1,2,
$$

for $0 \leq s<t$. Then this stochastic process $\left\{N_{t}: t \geq 0\right\}$ is called a Poisson process. Show that $X_{i} \stackrel{\text { iid }}{\sim} E\left(0, \theta^{-1}\right)$.
Remark: Under some regularity conditions, (ii) can be relaxed. Prékopà's Theorem shows that if the independent increment has distribution only depends on $t-s$, then the $\left\{N_{t}: t \geq 0\right\}$ has to be a Poisson process too.
(e) Show that a Poisson process $\left\{N_{t}: t \geq 0\right\}$ is a Markov process (satisfying Markov property).
(f) Let $\left\{N_{t}: t \geq 0\right\}$ be a Poisson process (or $X_{i} \stackrel{\text { iid }}{\sim} E\left(0, \theta^{-1}\right)$). Prove that the conditional distribution N_{s} given N_{t} for $0<s<t$ is $\operatorname{Bin}\left(s / t, N_{t}\right)$.
3. Problem 106 on Page 85 Shao 2003.

Show martingales.
4. Problem 116 on Page 86 Shao 2003.

Examples to show the relationship between different convergence modes.

