Homework #2

- 1) Find the angle (in radians) between the vectors $\mathbf{a} = 6\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
- 2) Suppose a and b are nonzero vectors.
 - a) Under what conditions would $comp_a \mathbf{b} = comp_b \mathbf{a}$?
 - b) Under what conditions would $\operatorname{proj}_a b = \operatorname{proj}_b a$?
- 3) Write the vector $\mathbf{b} = 3\mathbf{j} + 4\mathbf{k}$ as the sum of two vectors, $\mathbf{a}_1 + \mathbf{a}_2$, where \mathbf{a}_1 is parallel to the vector $\mathbf{i} + \mathbf{j}$ and \mathbf{a}_2 is orthogonal to $\mathbf{i} + \mathbf{j}$.
- 4) Find two unit vectors which are orthogonal to both $\mathbf{a} = \langle 1, 1, 0 \rangle$ and $\mathbf{b} = \langle 1, -1, 1 \rangle$.
- 5) a) Find a vector orthogonal to the plane containing the points P(2,0,-3) , Q(3,1,0) and R(5,2,2) .
 - b) Find the area of the triangle PQR.
- 6) Find the volume of the parallelepiped determined by the vectors $\mathbf{a} = \langle 2,3,-2 \rangle$, $\mathbf{b} = \langle 1,-1,0 \rangle$ and $\mathbf{c} = \langle 2,0,3 \rangle$.