HWK #3

- 1) Find the distance between the parallel planes 3x + 6y 9z = 4 and x + 2y 3z = 1
- 2) a) Find the traces of the surface $z^2 = x^2 + y^2$ in the planes x = k, y = k and z = k.
 - b) Use those traces to sketch the graph of the two functions $f(x,y) = \sqrt{x^2 + y^2}$ and $f(x,y) = -\sqrt{x^2 + y^2}$
- 3) Suppose we have the plane curve r(t) = sec(t) i + tan(t) j.
 - a) Sketch the curve.
 - b) Find $\mathbf{r}'(t)$.
 - c) Sketch the tangent vector $\mathbf{r}'(t)$ at the point of the curve reached when $t = \frac{\pi}{4}$
- 4) Find the points of intersection of the tangent lines to the curve $\mathbf{r}(t) = \sin(\pi t) \mathbf{i} + 2\sin(\pi t) \mathbf{j} + \cos(\pi t) \mathbf{k}$ at the points where t = 0 & $t = \frac{1}{2}$.
- 5) Reparametrize the curve $\mathbf{r}(t) = \langle \cos(t), \sin(t), 1 \rangle$ with respect to the arc length measurement from the point t = 0 in the direction of increasing t.
- 6) Given $\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + \ln(t) \mathbf{k}$.
 - a) Find T(t).
 - b) Find N(t).
 - c) Use formula 9 to find curvature.