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We point out that inliers adversely affect performance of the spatial median and
its generalization due to Gentleman. They are most deleterious in the case of the
median itself, and in the important setting of two dimensions. There, the second
term in a stochastic expansion of the median has a component with a Cauchy limiting
distribution, and does not have any finite moments. This term is substantially
determined by a small number of extreme, inlying data values. The implications for
bootstrap methods are significant, since the bootstrap is notoriously poor in capturing
properties of extremes. Indeed, the bootstrap does not accurately approximate
second-order features of the distribution of the two-dimensional spatial median. We
suggest a Winsorizing device for alleviating the effects of inliers. The issue of outliers
is also discussed. � 1997 Academic Press

1. INTRODUCTION

It is known that the spatial median is asymptotically Normally distributed
under regularity conditions which do not include the assumption of any finite
moments. That result argues in favour of the spatial median being viewed,
like its scalar counterpart, as a robust estimator of location. In this paper we
provide numerical and theoretical evidence that the spatial median is adver-
sely affected by inliers, or data values that are too close to the population
value of the median. They produce a particularly erratic second-order term
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in a stochastic expansion of the median, having a multivariate Cauchy
limiting distribution and not possessing any finite moments. This is enough
to inhibit second-order properties of the bootstrap, for example. A multi-
variate, percentile-t version of the bootstrap is not second-order correct as an
estimator of the distribution of the spatial median, owing to the effect of
inliers. We suggest a Winsorizing device for reducing the impact of inliers.

The problem of inliers is less serious in the case of Gentleman's (1965)
generalization of the spatial median. There, the second-order term in a
stochastic expansion has all the classic properties associated with a regular
statistic (see, for example, formula (1.9) of Bhattacharya and Ghosh, 1978).
Furthermore, in the case of Gentleman's form of the median (corresponding
to p>1 in the definition in Section 2.1), the percentile-t bootstrap does
produce second-order accurate methods, although outliers can be more of
a problem. Their effect will be mentioned briefly. Inliers also cause fewer
difficulties in higher dimensions, where increased data sparseness produced
by the ``curse of dimensionality'' is actually of assistance. (Thus, there is
occasion to consider the ``blessing of dimensionality.'')

Properties of the spatial median and variants of it due, for example, to
Oja (1983) and Liu (1988, 1990) are surveyed by Small (1990). Brown (1983)
and Oja and Niinimaa (1985) describe the median's first-order asymptotic
performance. Breakdown properties of the spatial median are studied by
Lopuhaa� and Rousseeuw (1991) and Donoho and Gasko (1992), among
others. See also Rao (1988), who gave an affine-equivariant definition of
the spatial median alternative to that of Oja (1983); Randles (1989), Peters
and Randles (1990), and Mo� tto� nen and Oja (1995), who developed spatial
sign and rank test methods; Chaudhuri (1992), who developed a Bahadur-type
representation for the median; and Arcones, Chen, and Gine� (1994), who
established asymptotic Normality of Liu's simplicial median and Oja's
generalized median.

For odd n, Oja's (1983) affine-equivariant version of the spatial median
suffers from a degree of inexplicitness which, in two dimensions, produces
the same level of variability (O(n&1), where n denotes sample size) as
do fluctuations of the spatial median due to inliers. The spatial median
is uniquely defined, provided the data are not collinear (Milasevic and
Ducharme, 1987). Indeed, we provide a stochastic expansion which expresses
the spatial median explicitly to order n&1, with a remainder of smaller
order; see Section 3.2.

Estimation of the variance of the spatial median is discussed by Bose
and Chaudhuri (1993). They show that simple empirical estimates of the
variance matrix converge at rate n&1�2 in the case k�3, but they give a rate
of only n&$, for all $< 1

2, in the case k=2. In fact, the exact rate for k=2
is (n&1 log n)1�2, in the sense of convergence in probability (see Section 5.2);
and is slower than n&1�2 because of the effect of inliers. This property is
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arguably less important, however, than some of the other problems that
inliers cause. Indeed, there are two parts to the second-order term, one
involving the asymptotically Cauchy-distributed quantities mentioned in
the first paragraph and the other the asymptotically Normally-distributed
part noted by Bose and Chaudhuri. While the Normally-distributed term
has infinite variance, its distribution is consistently estimated by the
bootstrap. (Hall, 1990, has derived a univariate version of this result, and
the multivariate form required here is only a minor generalization.) On the
other hand, the bootstrap generally does not consistently estimate the dis-
tribution of random variables from domains of attraction of non-Normal
stable laws, such as the Cauchy, and so the presence of such quantities in
second-order stochastic expansions of the distribution of the median
prevents second-order accuracy of the bootstrap.

These problems are very different from those that are encountered for
the one-dimensional median, where the bootstrap has been discussed rather
extensively (see, e.g., Hall, 1992, Appendix IV). In one dimension the
difficulties of bootstrap methods arise from the fact that the asymptotic
variance of the sample median depends only on local properties of the
sampling distribution, in fact only on the value of the density at the population
median. Since a density usually cannot be estimated root-n consistently
without making parametric assumptions, then the nonparametric bootstrap
is bound to have problems. In the spatial case, however, variance depends on
the entire sampling distribution, and so the same difficulties do not arise. For
these reasons we do not share the views of authors who have suggested
important similarities between properties of bootstrap methods for the
median in univariate and spatial settings. Properties of the spatial median are
at once more subtle and complex than those in the real-valued case.

Section 2 will give definitions of the spatial median and its Winsorized
form, and summarize numerical work that reveals the problems of inliers.
Stochastic and Edgeworth expansions that theoretically explain these
problems will be given in Section 3, and their implications for bootstrap
methods outlined in Section 4. Section 5 will sketch technical details behind
work in Section 3.

2. EFFECT OF INLIERS AND WINSORIZING

2.1. Definition of Generalized Median

Given a sample X1 , ..., Xn from a k-variate population, a generalized
estimate of location may be defined by minimizing

S(x)= :
n

i=1

&Xi&x& p,
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where & }& denotes Euclidean distance. Taking p=1 or 2 gives respectively
the spatial median or mean, while 1�p<2 produces Gentleman's (1965)
generalization of the median.

The vector of derivatives of S(x) with respect to the components of x is
proportional to

T(x)= :
n

i=1

&Xi&x&&q (Xi&x), (2.1)

where q=2& p. Therefore, the generalized spatial median, +̂, is a
solution of the equation T( +̂)=0. It is consistent for +, defined by
E[&X&+&&q (X&+)]=0, where X has the distribution of a generic Xi .

The appearance of &Xi&x&q in the denominator at (2.1) signals potential
problems when Xi is close to +. We call such data values inliers. Our aim
in later sections is to investigate these suspicions, but for now we suggest
a way in which the problems might be alleviated. One approach is to trim
out, or (more accurately) Winsorize, the inliers. Indeed, given an integer
l�0 and a constant a�0, consider minimizing a penalized and truncated-below
version of S:

S(x, a)= :
n

i=1

max(&Xi&x& p, a)&la.

Minimizing S(x, a) with respect to a, for fixed x, suggests that a be taken
equal to the l th smallest value of &Xi&x& p. Therefore, minimization of
S(x, a) simultaneously over a and x produces the estimator +̂l , obtained by
minimizing

Sl (x)= :
(l, x)

&Xi&x& p,

where �(l, x) denotes summation over all indices i such that &Xi&x& is the
jth smallest value of that quantity for some j�l+1.

This method is related to metric Winsorizing (Huber, 1981, pp. 18, 180),
in that it involves replacing an extreme data value by a more moderate
quantity, rather than removing it altogether. However, since ``extreme''
is interpreted here in the context of ``closeness to the centre of the
distribution,'' rather than ``closeness to the edge of the distribution,'' then
the analogy is at best indicative, not prescriptive. Our use of the term
``Winsorizing'' below should be interpreted in this sense.

The impact of inliers on the spatial median is significant in small samples,
as shown by numerical studies summarized in the next section. There it
is pointed out that in small samples, Winsorizing out a small number of
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inliers significantly improves performance. This result is predicted by the
theory in Section 3.

2.2. Numerical Examples

We explored the effects of inliers by simulating from the k-variate Normal
N(0, I ) distribution, for k=2 and 3. Variability of the l-fold Winsorized
estimator +̂l , defined by minimizing Sl (x), was measured in terms of its
mean squared error, MSE( +̂l)=E(&+̂l&+&2), which was approximated by
averaging over 5000 simulated values of &+̂l&+&2. Our results are presented
here for sample sizes n=5, 10, and 15, and for p=1 and 1.2.

In the computations we utilised a quasi-Newton algorithm for function-
minimization, available from the NAG library. The algorithm is claimed to
locate the local minimum of a function even if the latter has derivatives
with ``occasional'' discontinuities. We started the numerical search again
if the routine ever expressed doubt about having located a minimum.
However, even after extensive experimentation, we always found that the
results obtained were invariant under changes to starting values.

Figure 1 depicts MSE in the cases (k, p)=(2, 1) (represented by the
solid line) and (k, p)=(2, 1.2) (the dotted line). As expected, given that the
effect of Winsorizing is of second order, the improvement produced by
``Winsorizing out'' a small number of the more extreme inliers is more
pronounced for smaller samples. Nevertheless, the extent of reduction in
mean squared error, when using the optimal value of l, is about 100 in
each case. For values of n in the range 5�n�15, the reduction is never
by less than 90. Also as predicted by our theory, the impact of inliers is
substantially greater for p=1 than for p=1.2. Similar results, not presented
here, show further diminution of the effect of Winsorizing as p increases
beyond 1.2.

Figure 1 also shows that for each n, as l increases there is initially a
reduction in MSE, owing to reduction of the unstable second-order effects
that inliers produce. But after too many inliers are removed the estimator
is based on too little information, and so MSE starts to rise once more. In
the case p=1 the optimal values of l are 2, 3, and 4 when n=5, 10 and 15,
respectively.

In principle, nonparametric bootstrap and cross-validation methods for
estimating variability after Winsorizing are one possibility for determining
empirically the value of l. In our experience, however, they suffer from a
high degree of variability in the small samples that are of particular interest.
This is backed up by theoretical work (not included here) which
shows that the usual nonparametric bootstrap is not capable of consistently
approximating those second-order terms in an expansion of mean squared
error that are minimized by appropriate choice of l.
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Fig. 1. Mean squared errors of median (solid line) and generalized median (broken line),
in the case of k=2 dimensions.

We suggest, instead, simulating from a Normal distribution with the
same covariance matrix as the data set and using the corresponding values
of l. This amounts to an application of the ``parametric bootstrap,'' or to
employing the Normal distribution as a plausible Bayesian prior for selecting
the tuning parameter, in small samples, before applying a nonparametric
procedure. There are precedents to this approach, including, for example,
the so-called Normal scale rule for selecting the bandwidth in non-
parametric density estimation; see, for example, Wand and Jones (1995,
pp. 60�61). Another example is the choice of the tuning parameter for
shrunken estimators. There, the tendency of mean squared error (MSE) of
the shrunken estimator to actually increase, over the MSE of the
unshrunken form of the estimator and in small samples, if the asymptoti-
cally optimal amount of shrinkage is employed, can be counteracted by
simulating from an appropriate prior distribution in order to determine
more suitable choices of shrinkage.

Figure 2 is the analogue of Fig. 1 in the case k=3; all other parameter
settings are unchanged. As suggested by our theory, the advantages of
Winsorizing are now less pronounced. For example, the optimal values of
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Fig. 2. Mean squared errors of median (solid line) and generalized median (broken line),
for k=3.

l are consistently less than they were for k=2��now they are 1, 2, and 2
for n=5, 10, and 15, respectively.

We also simulated the case of Oja's (1983) affine-equivariant alternative
to the spatial median, obtained by minimizing

U(x)=\n
k+

&1

: 2(Xi1
, ..., Xik

, x),

where summation is over 1�i1< } } } <ik�n, and 2(Xi1
, ..., Xik

, x) is the
volume of the simplex defined by Xi1

, ..., Xik
and x. For n even, Oja's

median is uniquely defined, while for odd n, minimization of U(x) is some-
times achieved over a convex set, from which the estimator can be selected.

This degree of inexplicitness prevents determination of second-order
sampling properties of Oja's median by the techniques used in the next
section for the median ( p=1) and its generalization ( p>1). The goal of
our simulation study of Oja's median was to depict graphically the mathe-
matically verifiable result that Oja's median has the same inexplicitness, for
odd n, as the spatial median. To this end, Fig. 3 illustrates three typical
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Fig. 3. Datasets of size n=7, and convex set of points minimizing the Oja objective
function U(x). Spatial medians for varying degree of Winsorizing shown by +.

spatial datasets and the convex set of points minimizing U(x) for sample
size n=7. Also shown in the diagrams are the estimators of location
obtained by Winsorizing the spatial median ( p=1) for different degrees of
Winsorizing, as determined by l in the definition of Sl (x). The inexplicitness
of Oja's median yields a degree of variability comparable to, in both size
and orientation, the variability of the spatial median caused by inliers.

3. EXPANSIONS OF THE DISTRIBUTION OF THE MEDIAN

3.1. Asymptotic Normality

Let % be the unit vector in the direction of X. In this section we prove
that the conditions

1�p�2, the distribution of X has a bounded density f
in a neighborhood of +, and A=E[&X&&q (I&q%%T )]
is nonsingular (3.1)
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and

E(&X&2( p&1))<� (3.2)

are sufficient for the distribution of n1�2( +̂&+) to converge in distribution
to N(0, 7), where 7 is a nonsingular matrix. See also Pollard (1984, p. 152)
and Chaudhuri (1992).

We shall also show that if the moment condition (3.2) is violated then
so too is the standard central limit theorem. In such cases the generalized
spatial median can converge very slowly, at rate n&= for any given =>0,
and have a limiting distribution which is a multivariate stable law. These
difficulties arise because of outliers��note that the size of a series in the
domain of attraction of a stable law is identical to that of any finite number
of its most extreme summands. (See Arov and Bobrov, 1960, and Hall,
1978.) The difficulties do not occur in the case of the classic spatial median
(i.e., when p=1); there, condition (3.2) is vacuous.

Define Yi=&Xi&&q (I&q%i %T
i ), T1=�i�n Yi , and {1=�i�n &Xi& p&1 %i ,

where %i is the unit vector in the direction of Xi . In analyzing properties of
+̂ there is no loss of generality in assuming that +=0, which we do below;
this entails E({1)=0. Let !1=log n if (k, p)=(2, 1), and !1=n(q+1&k)�k

otherwise; and !2=log n if (k, p)=(2, 1), and !2=1 otherwise. By Taylor
expansion, assuming only (3.1), we may show that

T(x)={1&T1 x+Op(n!1 &x&2) (3.3)

uniformly in x and, also, T1=nA+Op(n1�2!1�2
2 ). (Details are given in

Section 5.) Therefore,

+̂={+Op(!2 &+̂&2), (3.4)

where {=(nA)&1{1 .
This stochastic expansion implies that, if (3.1) and (3.2) hold, n1�2+̂ is

asymptotically Normally distributed with mean + and variance 7=A&1BA&1,
where B is the (nonsingular) variance matrix of &X& p&1%. It also illustrates
the potential effect of outliers. To appreciate this point, note that if p=1
then { can be expressed as a sum of independent bounded random variables.
Therefore, the impact of extreme multivariate order statistics (those values
of Xi with large &Xi&) is negligible. But if p>1 then { (and hence also +̂,
by (3.4)) can be of precise order n&= for any 0<=< 1

2 , owing to the effect
of outliers. Indeed, suppose X has a spherically symmetric distribution
satisfying both (3.1) and P(&X&>x)tCx&: as x � � for positive constants
:<2( p&1) and C>0. Then the summands of {1 are in the domain of
attraction of a symmetric multivariate stable law with exponent :�( p&1)<2,
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and as a result, n=+̂ has a proper limiting stable distribution with this
exponent, where ==(:+1& p)�:< 1

2. In this circumstance, condition (3.2)
is violated.

If one were to combine the effects of inliers and outliers into a very general
approach to the problem of estimating spatial location, then one would
have to consider ``trimming'' both large and small data values. However,
these problems would usually arise in disjoint settings: outlier trimming
when p>1, and inlier trimming when p=1. In the present paper we are
concerned principally with drawing the distinction between these two cases
and considering inlier ``trimming'' in the latter case. The problem of outlier
trimming, which in the context of two dimensions requires methods very
different from those in the present paper, will not be analysed here.

3.2. Second Term in Stochastic Expansion

We continue to assume, without loss of generality, that +=0. If
conditions (3.1) and (3.2) hold then, provided (k, p){(2, 1), we may
extend the expansion (3.4) to

+̂={+K{+Q({)+op(n&1), (3.5)

where Q( } ) is a fixed, nonrandom vector quadratic form, and K is a k_k
random matrix whose (r, s)th element has the form n&1 �i�n grs(Xi) for a
scalar function grs , satisfying Egrs(X )=0 and var grs(X )<�. (Details will
be given in Section 5. In each of (3.4), (3.5), and (3.7) we refer to { on the
right-hand side as the first term, so that K{+Q({) in (3.5) denotes the
second term.) This is the classic form of second-order stochastic expansion
of an asymptotically Normal statistic computed from a random sample
X1 , ..., Xn . It leads to an Edgeworth expansion of standard form, i.e.,

P(n1�2+̂ # S)=P(n1�2N # S)+n&1�2 |
S

?(x) ,(x) dx+o(n&1�2), (3.6)

valid uniformly in convex sets S, where N denotes a Normally-distributed
random k-vector with zero mean and variance 7, , is the probability
density of N, and ? is an odd, cubic polynomial. See, for example,
Bhattacharya and Ghosh (1978). (To derive (3.6) we must strengthen the
moment condition at (3.2), reflecting the need to calculate skewness.)

When (k, p)=(2, 1) the situation is different in several important respects.
In place of (3.5), we have

+̂={+K{+Q� ({)+op(n&1). (3.7)
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Here, K is as in (3.5), except that now the functions grs have (just) infinite
variance, with P[ | grs(X )|>x]tCrx&2 as x � �, for positive constants Cr .
Furthermore, Q� is a quadratic form in which each coefficient !n has an
asymptotic Cauchy distribution, although not necessarily centred at the
origin. (Indeed, the vector whose components are a list all candidates for
!n has a multivariate, symmetric stable limiting distribution with exponent
1 and is asymptotically stochastically independent of { and K. Details will
be given in Section 5.)

The elements of K are asymptotically Normal with zero mean, but
their asymptotic standard deviation is equal to a constant multiple
of *=(n&1 log n)1�2 rather than n&1�2, reflecting the infinite variance
of grs . Therefore, (3.7) implies that +̂={+Op[n&1(log n)1�2], rather than
+̂={+Op(n&1) (as follows from (3.5) in the case (k, p){(2, 1)). Never-
theless, it may be shown after detailed analysis that the first term in an
Edgeworth expansion of the distribution of +̂ is still of order n&1�2. That is,
(3.6) continues to hold, except that the function ?, in the integrand should
be replaced by a different function, � say. Its properties are very different
from those of ?,. In particular, originating from the fact that the asymptotically
Cauchy-distributed random variables in coefficients of Q� ( } ) do not have
any finite moments, |�| does not have finite integral against the absolute
value of any nonconstant polynomial. This is of course also a reflection of
the erratic fluctuations induced by inliers, which determine the coefficients
of Q� ( } ). An outline proof will be given in Section 5.

To obtain (3.7) in the case (k, p)=(2, 1) we need the following condition:

f is Ho� lder-continuous in a neighbourhood of the origin, and
(3.8)

each marginal density is bounded,

in addition to (3.1).

3.3. Higher-Order Terms

The methods used to derive formulae such as (3.4), (3.5), and (3.7) may
be employed to produce a stochastic expansion of arbitrary length, for
general k and p. Due to the effect of inliers, at some stage the expansion
will have a term involving random variables with limiting non-Normal
stable distributions. The point at which this occurs is the ( 1

2 k+ p) th term,
where (x) denotes the smallest integer strictly greater than than x&1. As
in Section 3.2, this sensitivity to inliers is reflected in the fact that the
( 1

2k+ p) th term in an Edgeworth expansion has a density that is not
integrable against all polynomials. Note particularly that the problems
caused by inliers are less for larger values of k and p, since the terms in
stochastic and Edgeworth expansions, where their impact is felt, are further
out.
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4. IMPLICATIONS FOR THE BOOTSTRAP

It is well known that the bootstrap performs particularly poorly in problems
connected with extremes. For example, standard bootstrap methods are
inconsistent for estimating distributions of extreme values, since the
relationship among extremes of a bootstrap resample is very different from
that among extremes in the original sample. If a univariate sample was
drawn from a continuous distribution then the probability that the largest
and second largest values of a bootstrap resample are equal converges to
1&e&1 as sample size diverges, whereas the analogous probability for the
sample is zero. Now, the size of the mean of independent random variables
from a sufficiently heavy-tailed distribution is largely determined by the
values of a handful of extreme values (Arov and Bobrov, 1960; Hall, 1978),
and so it is to be expected that the bootstrap will not approximate the
distribution consistently. This property has been explored and elucidated
by Athreya (1987), Knight (1989), and Hall (1990), among others.

In the case of the spatial median, the extremes that cause problems are
large values of &Xi&&1 (where we have assumed that +=0). The coefficients
in the quadratic form Q� , appearing in (3.7), are of the form

!n=n&1 :
n

i=1

&Xi&&(q+1) Zi ,

where Zi is a product of any one or three coefficients of the vector %i . In
Section 5 an outline proof is given of the fact that, when (k, p)=(2, 1)
and assuming conditions (3.1) and (3.8), such sums are in the domain of
attraction of the Cauchy distribution and, hence, are determined with
arbitrarily high accuracy by a sufficiently large finite number of extreme
terms. Therefore, arguing as in Athreya (1987) and Hall (1990), it may be
proved that (again when (k, p)=(2, 1)) the bootstrap distribution of

!n*=n&1 :
n

i=1

&Xi*&+̂&&(q+1) Zi*

does not converge to the limiting stable distribution of !n . In fact, it does
not converge in distribution at all, conditional on the data. (See Athreya,
1987, and Hall, 1990). The Xi*'s are resampled values of Xi , and similarly
the Zi*'s are resampled values of Zi .) Therefore, when (k, p)=(2, 1) the
bootstrap does not capture second-order properties of the distribution of
the sample median.

These problems do not arise when p>1, or if p=1 but k�3, since as
noted in Section 3.2 the second-order term has the classic form in such
circumstances. To some extent the problems of second-order inaccuracy
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when (k, p)=(2, 1) can be overcome by using resamples of smaller size
(m, say) than the sample, but this introduces other difficulties, since the
second-order terms that are captured are now of size m&1�2, not n&1�2.

5. TECHNICAL DETAILS

5.1. Details for Section 3.1

In the arguments that follow, C1 , C2 , . . . denote positive constants. We
assume throughout that +=0, and in this paragraph that (3.1) holds. By
Taylor expansion, T(x)={1&T1 x+21(x), where

&21(x)&=Op \ :
n

i=1

&Xi &&(q+1) &x&2+ . (5.1)

In view of (3.1), P(&X&�u)�C1uk for all u>0. Therefore, the probability
that &Xi &�C2 n&1�k for some 1�i�n is bounded above by C1C k

2 , which
may be made arbitrarily small be selecting C2 sufficiently small. Hence,
maxi�n &Xi&&1=Op(n1�k) and

:
n

i=1

&Xi &&(q+1)=Op _ :
n

i=1

E[min(n(q+1)�k, &Xi&&(q+1))]&
=Op {n \|1<u<n1�k

uq&k du+n(q+1)�k |
u>n1�k

u&k&1du+=
=Op(n!1).

Result (3.3) follows from this formula and (5.1).

5.2. Details for Section 3.2

Define

T2(x)=q :
n

i=1

&Xi&&(q+1)[[(q+2)(xT%i)
2&&x&2]%i&(xT%i)x].

Assuming (3.1) and using the argument leading to (3.3), we may carry that
expansion to one more term, obtaining T(x)={1&T1 x+T2(x)+22(x),
where &22(x)&=Op(� &Xi&&(q+2)&x&3) uniformly in x. If (3.2) holds as
well as (3.1) then &+̂&3=Op(n&3�2), and so, &22( +̂)&=Op(n(2q+4&3k)�(2k)).
Similarly, in view of (3.4), T2( +̂)=T2(T &1

1 {1)+Op(n&1�2!2
1). Combining

these results we conclude that

+̂=T &1
1 [{1+T2(T &1

1 {1)]+Op(n(2q+4&5k)�(2k)). (5.2)
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Assume both (3.1) and (3.2), let D=n&1(T1&nA), and write &D& for the
square root of the sum of the squares of elements of D. Arguments similar
to those used to derive bounds for &2j& may be employed to show that
&D&2=Op(n&1!2). Hence, by Taylor expansion, T&1

1 =n&1(A&1&A&1DA&1)
+Op(n&2!2). Therefore, T2(T&1

1 {1)=T2(n&1A&1{1)+Op(n&1�2!1!1�2
2 ); and

also, &{1&=Op(n1�2) and &T2( +̂)&=Op(!1). Using these formulae and (5.2)
we deduce that

+̂=(I&A&1D) {+n&1A&1T2({)+op(n&1). (5.3)

Next we introduce a little notation, to simplify discussion of (5.3). Write
%i=(%(1)

i , ..., % (k)
i )T, and define

U (r, s, t)
1 =q(q+2) :

n

i=1

&Xi&&(q+1) % (r)
i % (s)

i % (t)
i ,

U (r)
2 =q :

n

i=1

&Xi&&(q+1) % (r)
i ;

V (r, s)= :
n

i=1

&Xi&&q ($rs&q% (r)
i % (s)

i ),

where $rs denotes the Kronecker delta. Let U1 be the k_k_k array of
values of U (r, s, t)

1 , put U2=(U (1)
2 , ..., U (k)

2 )T, define xTU1x to be the
k-vector whose tth element is � � x(r)x(s)U (r, s, t)

1 , and let V=(V (r, s))
be the k_k matrix. In this notation, D=n&1(V&EV ) and T2(x)=
xTU1 x&[&x&2U2+(xTU2)x]. Let Zi denote either % (r)

i or % (r)
i % (s)

i % (t)
i ,

Wi=&Xi&&(q+1) Zi , and R=�i�n Wi .
We consider separately the cases (k, p)=(2, 1) and (k, p){(2, 1). In the

latter, E|Wi |<�, and so n&1R � E(W1) in probability. Therefore, writing
ui for n&1E(Ui) (which quantity does not depend on n), and Q(x)=
A&1[xTu1x&[&x&2u2+(xTu2)x]] and K=&A&1D, we obtain (3.5) from
(5.3). When (k, p)=(2, 1), let &n=E[WiI(&Xi &�C3n1�k)] and observe that
the limit distribution of the vector L of all distinct choices of n&1R&&n has
a symmetric multivariate stable distribution with exponent 1 and zero
median for each component; and &n has a proper limit. (These results require
condition (3.8) and the fact that Yi equals the product of an
odd number of values of %(r).) Furthermore, L is asymptotically independent
of ({, D). (This result may be proved by observing that the multivariate
distribution of L may be approximated within accuracy =, uniformly in
all sufficiently large n, by selecting only a finite number l=l(=) of large
summands from each of the series that comprise L; and noting that removing
these summands from each of the series that comprise ({, D) has no
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asymptotic effect on the limit. The methods are those of Hall, 1978.)
Arguing thus we see from (5.3) that (3.7) holds, where K=&A&1D and Q�
are as described there.

The claim in Section 3.2 about asymptotic properties of the elements
of K, in particular the fact that they are asymptotically Normal with
variance equal to a constant multiple of n&1 log n, follows from multi-
variate versions of standard results on random variables in non-Normal
domains of attraction of the Normal distribution; see for example
Gnedenko and Kolmogorov (1954, pp. 172�175). The form of an Edgeworth
expansion of the distribution of +̂ may be determined from a Taylor expan-
sion of its characteristic function, as follows. In view of (3.7) we may write
n1�2+̂=n1�2{+*V1+n&1�2V2+op(n&1�2), where *=(n&1 log n)1�2, V1=
n(log n)&1�2K{, and V2=nQ� ({) have proper limiting distributions. Therefore,

exp(itTn1�2+̂)=exp[itT (n1�2{+n&1�2V2)][1+itT*V1+op(n&1�2)].

Taking expectations and using the delta method we conclude that the
characteristic function of n1�2+̂ equals that of n1�2{+n&1�2V2 (call it /), plus
an odd cubic in t multiplied by n&1�2exp(&tT7t) (this produces a term of
standard form in the Edgeworth expansion, like the second term in (3.6)),
plus a term of smaller order than n&1�2. Evaluate / by first taking expecta-
tion conditional on {, Taylor-expanding the result in increasing powers of
n&1�2, and then taking expectation in the distribution of {, noting that the
coefficients of the quadratic form Q� are asymptotically independent of {.
Arguing thus we see that / equals the characteristic function of n1�2{, plus
n&1�2 exp(&tT7t) multiplied by an odd, cubic polynomial in |t|=( |t(1)|, ...,
|t(k)| )T (call this term /1), plus a term of smaller order than n&1�2. The tails
of the function whose Fourier transform is /1 decrease in each direction
like the inverse of a quadratic and so do not have finite integral against any
nonconstant polynomial.

5.3. Details for Section 3.3

The analogue of (5.3), taken to terms that are of order r in products of
sums of independent random variables, involves series in M=�i�n &Xi& p&1 }
&Xi &&r Zi , where Zi denotes a product of coefficients of %i . Under (3.1),
and assuming +=0, P(&X&&1>x)tCx&k for some C>0, as x � �.
Therefore, M has a limiting non-Normal stable law if and only if
k�(r+1& p)<2, or equivalently, r> 1

2k+ p&1. It follows that a stochastic
expansion to r terms has the classic form of a second-order stochastic
expansion of an asymptotically Normal statistic, in which each term is a
polynomial in sums of independent and identically distributed random
variables with asymptotic Normal distributions (see Bhattacharya and
Ghosh, 1978), provided r<( 1

2k+ p) . The ( 1
2k+ p) th term in the
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stochastic expansion has properties similar to those of the second term in
the case (k, p)=(2, 1).
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