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S

Even in one dimension the sample median exhibits very poor performance when used
in conjunction with the bootstrap. For example, both the percentile-t bootstrap and the
calibrated percentile method fail to give second-order accuracy when applied to the
median. The situation is generally similar for other rank-based methods, particularly in
more than one dimension. Some of these problems can be overcome by smoothing, but
that usually requires explicit choice of the smoothing parameter. In the present paper we
suggest a new, implicitly smoothed version of the k-variate sample median, based on a
particularly smooth objective function. Our procedure preserves many features of the
conventional median, such as robustness and high efficiency, in fact higher than for the
conventional median, in the case of normal data. It is however substantially more amenable
to application of the bootstrap. Focusing on the univariate case, we demonstrate these
properties both theoretically and numerically.

Some key words: Bootstrap; Calibrated percentile method; Median; Percentile-t; Rank methods; Smoothed
median.

1. I

Rank methods are based on simple combinatorial ideas of permutations and sign
changes, which are attractive in applications far removed from the assumptions of normal
linear model theory. Excellent introductions are found in Lehmann (1975), Maritz (1981)
or Hettmansperger & McKean (1998).

However, there is a discrete aspect to rank procedures which means that, in moderate
or small samples, only a discrete set of test p-values or confidence interval coverage levels
is possible. Consequently, test p-values are not continuous, and can jump in response to
only a very small change in data values. These aspects constitute a disincentive to using
rank methods in practice. Finding a suitable smoothed version of rank methods, under
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which p-values and confidence region coverage levels are continuous functions of data, is
a clearly worthwhile aim.

Another powerful reason for seeking a smoothed version of rank methods concerns the
bootstrap. The bootstrap (Efron & Tibshirani, 1993; Davison & Hinkley, 1997) has had
a great impact on the practice of statistics, to the extent that the property of being
bootstrappable might well be added to those of efficiency, robustness and ease of compu-
tation, as a fundamentally desirable property for statistical procedures in general. By
‘bootstrappability’ we mean the ability of the simple bootstrap to describe accurately the
asymptotic sampling characteristics of the procedure in question. There are questions
about the bootstrap performance of the sample median, even in one dimension (Hall &
Martin, 1991; Hall, 1992, Appendix IV), and of rank statistics more generally. Recently,
Brown et al. (1997) considered the bootstrappability of various generalised medians for
k-dimensional data, and showed that, in the isolated bivariate case k=2, neither
Gentleman’s spatial median, discussed in an unpublished 1965 Princeton University Ph.D.
thesis of W. M. Gentleman, nor Oja’s generalised median (Oja, 1983), was bootstrappable.
In both cases the difficulty was caused by minimising an objective function that lacked
interior smoothness. A device of ‘inner Winsorising’ was introduced to alleviate the
problem, by providing the necessary degree of interior smoothness.

A smoothed version of rank methods may therefore achieve bootstrappability. A related
issue is the desirability of individual estimates to be computable as easily as possible, both
in programming and execution time, because of the extensive resampling operation of the
bootstrap. For this purpose, having a very smooth procedure facilitates the use of descent
methods which are easy to program and have rapid convergence properties.

The present paper introduces in § 2 a smoothing operation in k-dimensional location
parameter estimation, for k�1. For any existing estimation procedure, a modification is
made creating a very smooth objective function, preserving features of the original pro-
cedure such as robustness, high normal efficiency, invariance, either affine or rotation, and
computational regularity. While the ultimate aim is to apply the smoothing method to
general rank methods, including multivariate cases, the present paper concentrates on
symmetric location estimation through a smoothed median in k=1 dimension. Procedures
based on the smoothed median hold the promise of sharing the valuable properties held
by conventional median estimates and sign tests, while removing less desirable aspects
such as jumps in p-values, and so on, referred to above.

Since there are many ways in which smoothing can be applied, it is important that
some ‘natural’ choice be made, if possible free of arbitrary tuning constants such as band-
widths. The general smoothing operation of § 2 is applied in § 3 to create a one-dimensional
smoothed median, which can be viewed as the result of embedding one-dimensional data
in a two-dimensional context, and applying Gentleman’s bivariate spatial median. No
tuning parameter is involved, and the method has intuitive appeal.

In §§ 4–6, properties of the smoothed median are outlined involving exact conditional
‘smoothed sign’ tests and confidence intervals, efficiency, asymptotic distributions and
robustness. In comparison with the ordinary median, the smoothed median has improved
efficiency and slightly weaker robustness properties, and shares the attractive permutation,
or in this case ‘sign change’, aspects.

We also show in § 5 that the smoothed median is bootstrappable. The result yielding
this property, along with other asymptotics, is deferred to the Appendix. Since the proof
is so delicate, it is of interest to know whether or not the formal asymptotics take effect
for reasonable sample sizes. Simulations outlined in § 7 show that they do.
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2. A  

Consider an existing estimation procedure to minimise

S1(h )=∑
i

A(x
i
, h),

where h is a parameter and {x
i
} are independent observations, or groups of independent

observations. For instance, for the Oja bivariate median (Oja, 1983) each x
i
is a pair of

observations and A(x
i
, h) is the area of the triangle having the pair x

i
and h as vertices.

Assume that A(x, h ) is convex in h for every x. Thus the computation of hA to minimise
S1 (h) is completely regular with assured existence, uniqueness and numerical convergence
properties. Propose now a new estimator h@ to minimise a smoothed objective function

S(h )= ∑
{i,j:x

i

]x
j

=w}
{A2 (x

i
, h)+A2 (x

j
, h)}D.

Note the restriction that x
i

and x
j

be nonoverlapping. This guarantees the complete
smoothness of all computational operations, and is of particular relevance for the boot-
strap, when repeated observations are bound to occur during resampling. It can be
observed qualitatively from the behaviour of the function (x2

1
+x2

2
)D that S will increase

at the same asymptotic rate as S1 when |h |�2, indicating that hA and h@ will have similar
robustness properties. Also, in the applications to follow each A will be an L 1 func-
tion, differentiable everywhere except when A=0, but, because x

i
]x

j
=w for iN j, the

function S will be differentiable everywhere. The resulting estimator h@ is expected to be
bootstrappable, from this inner smoothness; see § 7 for confirmation in the particular case
of the smoothed median.

The next result shows that h@ shares the full computational regularity of hA .

T 1. L et A(x, h) be nonnegative and convex in h for every x. T hen S is a convex
function of h.

Proof. Let h be k×1 and denote the first derivative vector (k×1) of B with respect to
h by the gradient VB, and the second derivative matrix (k×k) by H

B
. Write A(x

i
, h) as

A
i
and note that each H

A
i

is nonnegative definite. Elementary differentiation yields

VS=∑
i,j

(A2
i
+A2

j
)−1/2 (A

i
VA

i
+A

j
VA

j
)

and further differentiation also yields

H
S
=∑

i,j
(A2
i
+A2

j
)−3/2B

ij
BT
ij
+∑

i,j
(A2
i
+A2

j
)−1/2 (A

i
H
A
i

+A
j
H
A
j

),

where B
ij
=A

i
VA

j
−A

j
VA

i
. Clearly H

S
is nonnegative definite, as required. %

Note that if hA is affine invariant then so too will be h@ .

3. A   

We now apply the general smoothing operation in § 2 to symmetric one-sample location
estimation and the sample median. Let x1 , . . . , xn be independent observations drawn
from a distribution with density f, with f assumed symmetric about h, and let A(x

i
, h)=

|x
i
−h |. Thus,
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S(h )= ∑
i<j

{(x
i
−h)2+(x

j
−h)2}D

=2D ∑
i<j
Cqh− 1

2
(x
i
+x

j
)r2+(x

i
−x

j
)2/4DD

and call the h@ that minimises S a smoothed median. Thus h=h@ satisfies

0=S∞(h )=T (h )

= ∑
i<j

{D
i,j

(h )}−D (2h−x
i
−x

j
), (1)

where D
ij
(h )= (x

i
−h)2+ (x

j
−h)2. A consequence of Theorem 1 is that h@ is easily com-

puted to solve T (h )=0 using the Newton–Raphson method, with a check against
overshoot, with

T ∞(h)= ∑
i<j

(x
i
−x

j
)2{(x

i
−h)2+(x

j
−h)2}−3/2.

The following sections discuss properties of the smoothed median, its testing counterpart
the smoothed sign test, and corresponding confidence intervals. Broadly speaking, the
smoothed median and sign test share the good features of the conventional median and
sign test, in addition to enjoying some benefits of smoothing. For instance, large-sample
computation is easier, all coverage levels are available for asymptotic confidence intervals,
and normal efficiency is increased. On the other hand, the robustness indicator the break-
down point is reduced, and the influence bound is increased.

The ‘true’ value of h, h0 say, is the solution of E{T (h )}=0:

E{d(X1 , X2 )− (h0 , h0)d−1 (2h0−X1−X2 )}=0, (2)

where X1 and X2 are independent random variables with the underlying sampling distri-
bution, and d .d denotes the conventional Euclidean norm for 2-vectors. Note that existence
of h0 , and in fact root-n consistency and asymptotic normality of h@ , do not require moment
conditions on the sampling distribution. It is sufficient for the sampling distribution to
have a bounded density; see part (a) of Theorem 4. If, however, EdXd<2, where X has
the distribution of X

i
, then we may equivalently define h0 to be the minimiser of S(h ):

h0=arg min
h

Ed(X1 , X2 )− (h0 , h0)d . (3)

If the norm at (3) were squared, and if EdXd2<2, then h0 would be identical to the
population mean. On the other hand, if dimension were reduced back to 1, so that h0 was
the minimiser of EdX−hd, then h0 would be identical to the population median. Thus,
h0 defined at (2), or equivalently at (3) if EdXd<2, may be interpreted as a compromise
between the mean and the median.

When we implement the bootstrap it is convenient to smooth the empirical distribution
slightly so as to avoid the inconvenience of ties in pairs (X*

i
, X*

j
) when iN j. Thus, writing

X(1)∏ . . .∏X
(n)

for the order statistics of the sample X={X1 , . . . , Xn
}, and taking

K1 , . . . , Kn
to be independent, conditional on X, and uniformly distributed on the integers

1, . . . , n−1, we let X*
1
, . . . , X*

n
be independent, conditional on X and K1 , . . . , Kn

, with
X*
i

uniformly distributed on (X
(K
i
)
, X

(K
i
+1)

), conditional on X and K
i
.

This very small amount of smoothing slightly improves performance of both our
approach and standard methods based on the unsmoothed median. For the latter tech-
nique, however, this is not nearly enough smoothing to overcome the difficulties experi-
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enced by that approach. The difficulties derive from the fact that first-order asymptotic
properties of the unsmoothed median depend crucially on local properties of the sampling
distribution; this will be discussed in more detail at the end of § 5. The amount of smoothing
suggested in the previous paragraph is an order of magnitude less than that required by
the unsmoothed median. In particular, such smoothing has very little effect on the numeri-
cal properties of the unsmoothed median for the situations studied in § 7 below.

In conventional problems the percentile-t bootstrap and the calibrated percentile boot-
strap are second-order accurate when used to construct confidence intervals; see Hall
(1992, pp. 15, 32ff ) for an introduction to the methods and Hall (1992, Ch. 3) for an
account of their properties. Section 5 of the present paper will describe analogues of these
properties in the case of the smoothed median, and § 7 will summarise numerical perform-
ance. In connection with the bootstrapped median, Singh (1998) discusses the effects of
bootstrapping on the breakdown point.

4. A   

The estimating function T for the smoothed median can be used to create a smoothed
sign test. An alternative version to (1) is

T (h )= ∑
n

i=1
(x
i
−h)W

i
(h ),

where the weight W
i
is given by

W
i
(h )= ∑

jNi
{D

ij
(h )}−D= ∑

jNi
{(x

i
−h)2+ (x

j
−h)2}−D.

Let h0 denote the true value of h. As a result of symmetry, residual sign changes are equi-
probable, i.e. the residual x

i
−h is equally likely to have the value h−x

i
. Such sign changes

do not affect the weights {W
i
(h )}, so if we test H0 : h0=h the null distribution of T (h ),

conditional on {W
i
(h )}, is exactly that of

T0= ∑
n

i=1
u
i
V
i
(h),

where V
i
(h)=|x

i
−h |W

i
(h ) and where the {u

i
} are independent, equalling ±1 with equal

probabilities. Rather than perform the corresponding exact test, it is easier to use an
asymptotic normal approximation, since for large n the distribution of T0 is clearly approxi-
mately N{0,Wn

i=1
V 2
i
(h)} under mild conditions.

The corresponding standardised normal test criterion for the smoothed sign test is

z(h)=T (h){var(T0 )}−D=
Wn
i=1

(x
i
−h)W

i
(h )

{Wn
i=1

V 2
i
(h)}D

. (4)

Next, we establish that approximate confidence intervals based on inverting the asymptotic
form (4) of the smoothed sign test are unique, and all coverage levels are available. This
follows from the simple observation that, in (4), z is a smooth function of h, together with
the following theorem.

T 2. In (4), z is a monotone decreasing function of h.

The regularity property asserted in Theorem 2 is essential for the orderly specification
of confidence intervals, but it is not a trivial property. It does not follow automatically
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that normalised conditional test criteria of the form z=T {var(T )}−D are monotone, even
when T itself is monotone.

The easiest way to prove Theorem 2 is to exploit a relationship between the smoothed
median h@ and the bivariate spatial median (Brown, 1983). The way h@ is defined is to
reproduce the sample values {x

i
} on both axes ofR2, eliminate (x

i
, x

i
) points and formulate

the bivariate spatial median as (h@ , h@). Then the smooth influence function discussed in § 6,
and the improved normal efficiency of h@ compared with the conventional median, are
related to the well-known corresponding efficiency improvement for componentwise
estimation enjoyed by the spatial median.

Theorem 2 will be proved by first proving a corresponding result for the bivariate
spatial median. This is stated below as Theorem 3. It constitutes a useful, as yet unobserved,
property of angle tests which are the testing counterparts of the spatial median.

Consider bivariate observations {(u
i
, v
i
)} drawn from a distribution symmetric about

m0 . In testing H0 : m0=m against a directed alternative H1 : ‘m0 lies in a direction having
angle a from m’, let b

i
be the angle from m to (u

i
, v
i
), that is

cos b
i
= (u

i
−m1 )/pi , sin b

i
= (v

i
−m2 )/pi,

mT= (m1 , m2), p2
i
= (u

i
−m1)2+ (v

i
−m2 )2,

and as test statistic use

C=∑
i

cos (b
i
−a).

Sign changes are equi-probable by symmetry, and the null distribution of C has variance
W

i
cos2 (b

i
−a), so the corresponding normalised test statistic is

z
a
=

W

i
cos(b

i
−a)

{W
i
cos2 (b

i
−a)}D

.

T 3. As m moves in any fixed straight line having direction a, z
a

is a monotone
function of m.

Proof. By the rotational invariance of the spatial median, without losing generality we
may assume that a=0. Then we need only consider dz

a
/dm1 . However,

d(cos b
i
)/dm1=−p−1

i
sin2 b

i
,

so with a=0 simple calculations give

dz
a

dm1
=−(Sc2

i
)−3/2{(Ss2

i
/p
i
)(Sc2

i
)−(Sc

i
)(Ss2

i
c
i
/p
i
)},

where c
i
=cos b

i
, s
i
=sin b

i
This expression is proportional to

−[covariance between {c
i
} and {c

i
p
i
/s2
i
}, with weights s2

i
/p
i
].

However, the covariance in question is always nonnegative since c
i
, c
i
p
i
/s2
i
are either both

positive or both negative, and any weighted regression through the origin must have
nonnegative slope. Thus dz

a
/dm1<0, as required. %
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Proof of T heorem 2. Simply apply Theorem 3 to the case of bivariate observations
(x
i
, x

j
) with iN j and take a=p/4. %

5. T 

We begin by describing basic central limit properties and efficacy of the estimator h@ . It
will be shown in part (a) of Theorem 4 that, under mild regularity conditions, nD (h@−h0 )
is asymptotically normally distributed with zero mean and variance s2=v−2

0
s2
1
, where

v0=E{(X2
1
+X2

2
)−D}/2 and

s2
1
=E q X2

1
(X2

1
+X2

2
)D(X2

1
+X2

3
)Dr .

For normal data, without loss of generality the population variance equals 1, in which
case v2

0
=p/8 and s2

1
=0·454. Therefore, Pitman efficacy is 1/s2=0·865, which is the asymp-

totic relative efficiency of the smoothed median relative to the sample mean. The normal
efficiency of the smoothed median is an improvement upon that of both the conventional
sample median, 2/p=0·637, and the single component estimation efficiency of the bivariate
spatial median, p/4=0·785.

As a prelude to describing formal properties of our method, including sufficient con-
ditions for h0 and s2 to be well defined and finite, let T (h )=−S∞(h )=W

i<j
T
ij
(h ), where

T
ij
(h)={(X

i
−h)2+(X

j
−h)2}−D (X

i
+X

j
−2h ).

Put

t(h)={1
2
n(n−1)}−1E{T (h )}=E{T12(h )}

= P P uf (u+h) f (v+h)

(u2+v2 )D
du dv.

Provided the density f of X is bounded, the first derivative of t may be calculated by
differentiating E{T (h )} under the expectation sign. It is continuous and strictly negative.
Therefore, since E{T (±2 )}=A2D sgn (h), the equation E{T (h )}=0 has a unique solution
h0 , which without loss of generality is zero. In that case the average rate of decrease of T
at h0 is proportional to

v0¬−t∞(0)=E{(X2
1
+X2

2
)−3/2 (X1−X2)2}/2,

which is finite and strictly positive, as too is the quantity s2=v−2
0

s2
1
, where now

s2
1
=E{m1 (X)2} and m1 (x)=E{(X2+x2 )−D (X+x)}.
Likewise, with probability 1, T (h ) is continuous and strictly decreasing from 2D to−2D,

and so the solution h@ of the equation T (h)=0 is uniquely defined and finite.
A consistent estimator of s2 is s@ 2=v@−2

0
s@ 2
1
, where

v@0={n(n−1)}−1 ∑∑
1∏i<j∏n

{(X
i
−h@ )2+(X

j
−h@ )2}−3/2 (X

i
−X

j
)2

consistently estimates v0 and

s@2
1
=

1

n
∑
n

i=1
C 1

n−1
∑
jNi

X
i
+X

j
−2h@

{(X
i
−h@ )2+ (X

j
−h@ )2}DD2 (5)

consistently estimates s2
1
. The results in Theorem 4 below do not alter if we take the
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‘internal’ series on the right-hand side of (5) to be over all j, rather than simply over jN i.
In this case, s@2 is a bootstrap estimator of s2.

Derivatives of t higher than the first generally cannot be obtained by differentiating
E{T (h)} under the expectation sign. However, under sufficient smoothness conditions on
f, general derivatives can be computed by differentiating the formula at (5) under the
integral sign. For example, if f has two integrable derivatives then

t◊(h )= P P u

(u2+v2)D
∂2
∂h2

{ f (u+h ) f (v+h)} du dv,

the integral being absolutely convergent. Using integration by parts we may convert this
into a formula whose existence, as an absolutely convergent integral, requires only bound-
edness and integrability of | f ∞ |:

t◊(h )=− P P (u2+v2 )−3/2 (u−v)2{ f ∞(u+h ) f (v+h)+ f (u+h) f ∞(v+h)} du dv.

A separate argument may be used to prove that t◊ exists, i.e. is finite, and admits this
expression under just those conditions, and that moreover

t(h )=t(0)+ht∞(0)+1
2
h2t◊(0)+o(h2 )

as h�0. We define

v1¬−
1

2
t◊(0)= P P (u2+v2 )−3/2 (u−v)2 f (u) f ∞(v) du dv.

Define

m2 (x)=E{(X2+x2 )−3/2 (X−x)2},

and put s12=E{m1 (X)m2 (X)} and b=E{m1(X)3}. Let w and W denote the standard normal
density and distribution functions, respectively. Recall the bootstrap algorithm proposed
in § 3. Our next result gives sufficient regularity conditions for asymptotic normality of h@ ,
root-n consistency of s@2, existence of one-term Edgeworth expansions and second-order
accuracy of the percentile-t and calibrated percentile bootstrap methods.

T 4. (a) If the distribution of X has a bounded density f, and if h0=0, then nDh@
is asymptotically normally distributed with zero mean and variance s2.

(b) If f is diVerentiable, and if sup | f ∞ |<2, ∆ | f ∞ |<2 and h0=0, then s@ 2=s2+O
p
(n−D )

and there exist constants a11 , . . . , a22 , depending only on v0 , v1 , s1 , s12 and b, such that

pr (nDh@∏sx)=W(x)+n−D (a11+a12x2)w(x)+o(n−D), (6)

pr (nDh@∏s@x)=W(x)+n−D (a21+a22x2)w(x)+o(n−D) (7)

uniformly in −2<x<2.
(c) L et (−2, t@

a
) denote a one-sided a-level confidence interval for h0 , computed using

either the calibrated percentile method or the percentile-t method. T hen, under the same
conditions as for (b), pr (h0∏t@

a
)=a+o(n−D ) for each 0<a<1.

Result (7) fails to hold in the case of the Studentised median, using the bootstrap
variance estimator. There the polynomial in the coefficient of the n−D term in the
Edgeworth expansion is a cubic, with nonvanishing contributions of each degree up to
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the third; see Hall & Martin (1991) and Hall (1992, Appendix IV). The fact that the
polynomial is not an even quadratic means that some of the important practical advan-
tages of percentile-t methods, for example the o(n−D ) coverage error of two-sided confi-
dence intervals, are not available in the case of the conventional median. By way of
contrast, the smoothed median h@ has many of the properties classically associated with
percentile-t, and so enjoys relatively good performance.

The root of the problems suffered by the conventional median is the fact that its asymp-
totic variance depends definitively on local properties of the sampling distribution, specifi-
cally on the value of the sampling density at the true median. By way of contrast, the
variance of the smoothed median depends solely on global properties. The relative diffi-
culty of estimating local properties accurately is of course well known; in particular, root-
n rates of convergence cannot be achieved. By using instead a location estimator whose
asymptotic variance depends on global properties we are able to achieve root-n consistency
of variance estimators, and thereby avoid difficulties with coverage accuracy.

6. R

Traditional measures of robustness are the influence function and the breakdown point.
From the preceding asymptotic analysis the influence function, if we assume still that
h0=0, may be derived to be

 (x)=v−1
0

m1 (x),

where m1 (x)=E{(X2+x2 )−D (X+x)}, equalling E{x(X2+x2)−D} under the assumption
that X is distributed symmetrically about h0=0. The function m1 depends on the distri-
bution being sampled, but is a bounded, differentiable odd function. Thus the smoothed
median h@ has bounded influence, and in the normal case that bound is v−1

0
=(8/p)Dj

1·6.
Note that ∞(0)=2 in the normal case, reflecting the effect, after smoothing, of the

sample median influence function  (x)=sgn (x)/{2f (0)}.
The breakdown point of the sample median is 0·5, but is reduced for the smoothed

median. The easiest derivation is to use the connection with the bivariate spatial median
exploited in § 4. If we use that representation, it can be seen that the maximum allowable
proportion of contamination at +2 is b, where

b2+2 cos (p/4)b(1−b)=(1−b)2,

giving breakdown point b=0·341.

7. S 

In this section we present the results of a numerical study which examines small-sample
properties, in particular those relating to coverage accuracy of bootstrap confidence inter-
vals based on the smoothed median.

Table 1 presents the true sampling variance of both the smoothed median and the usual
sample median, for various sample sizes n, and for four parent populations: standard
Gaussian, the t distribution on 5 degrees of freedom, and the ‘folded’ versions of each of
these distributions, obtained by taking absolute values of the corresponding random vari-
ables. Each variance figure was obtained from a series of 100 000 simulations from the
parent distribution. Also recorded in Table 1 are the mean squared errors of the bootstrap
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estimators of variance, as well as analogous results in the case of the sample mean, for
which the true sampling variance is easily computed. Each mean squared error figure is
based on 1000 data samples from the parent population, with each bootstrap estimator
being constructed by the drawing of 100 bootstrap samples from each data sample. The
Monte Carlo algorithm for the construction of the bootstrap variance estimator is
described, for example, by Efron & Tibshirani (1993, Ch. 6). The construction of the
bootstrap version of the smoothed median is described in § 3 above.

Table 1. Ordinary and smoothed medians, and the sample mean: sam-
pling variances and mean squared errors of bootstrap estimators of

variance, for four parent populations

n Smoothed median Ordinary median Mean

True var. Boot.  True var. Boot.  True var. Boot. 

N(0, 1)
5 0·21729 0·01892 0·28848 0·09936 0·20000 0·01415

11 0·10401 0·00308 0·13706 0·01463 0·09091 0·00167

21 0·05475 0·00050 0·07333 0·00361 0·04762 0·00025
31 0·03745 0·00021 0·05013 0·00129 0·03226 0·00009

t5
5 0·28890 0·04758 0·35096 0·54576 0·33333 0·10834

11 0·12853 0·00718 0·15841 0·02653 0·15152 0·01906
21 0·06658 0·00109 0·08289 0·00427 0·07937 0·00138
31 0·04471 0·00036 0·05652 0·00179 0·05376 0·00064

|N(0, 1) |
5 0·08111 0·00308 0·10825 0·01485 0·07268 0·00231

11 0·03919 0·00049 0·05288 0·00272 0·03304 0·00033
21 0·02096 0·00010 0·02862 0·00050 0·01730 0·00004
31 0·01428 0·00004 0·01953 0·00021 0·01172 0·00002

|t5 |
5 0·13036 0·02104 0·15592 0·17790 0·15321 0·06231

11 0·05755 0·00151 0·07110 0·00844 0·06964 0·01040
21 0·02994 0·00030 0·03762 0·00125 0·03648 0·00057

31 0·02025 0·00010 0·02556 0·00036 0·02471 0·00032

In the case of the N(0, 1) and t5 distributions, Table 1 confirms both the improved
efficiency of the smoothed median and its greater bootstrappability. In particular, the
bootstrap variance estimator is considerably more accurate when applied to the smoothed
median rather than the conventional median. Of course, no such direct comparison is
possible for the |N(0, 1) | and |t5 | distributions, since there the values of h vary from one
estimator to the other. Nevertheless the smoothed median estimator has commendably
low variance.

A principal theoretical argument that we have made in favour of the smoothed median
is the greater asymptotic coverage accuracy obtainable from the percentile-t and calibrated
percentile confidence intervals, compared to the accuracy obtained by those methods when
used in conjunction with the conventional median. For each of a number of sample sizes
n, 2000 data samples were generated from a standard normal distribution, and also from
a folded standard normal distribution. The former has h0=0 and the latter has h0=0·709.
The corresponding population medians are 0 and 0·675 respectively. On the basis of these
2000 samples, we estimated the true coverages of one-sided, nominal 90% coverage, per-
centile, percentile-t and calibrated percentile bootstrap confidence intervals for h0 . The
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latter two intervals, when applied with the smoothed median, are shown by Theorem 4
to provide second-order accuracy, while this is not true for the percentile method interval,
nor for any of the intervals when applied with the ordinary median. The Monte Carlo
construction of percentile and percentile-t intervals is described by Efron & Tibshirani
(1993, Ch. 12, 13). In the case of the ordinary median, the percentile-t interval was con-
structed using the bootstrap estimator of variance, as given by Hall (1992, Appendix IV).
In the case of the smoothed median h@ , the bootstrap estimator of asymptotic variance,
discussed following (5) in § 5 above, was used to perform the studentisation which is the
basis of the percentile-t method. The Monte Carlo construction of calibrated percentile
intervals is discussed, for example, by Lee & Young (1999). A key feature of the calibrated
percentile method interval, which uses the bootstrap itself to estimate the coverage error
of the percentile interval and adjust the nominal coverage of the latter, is the need for two
nested levels of bootstrap sampling; the uncalibrated percentile and percentile-t intervals
only require a single level of bootstrap sampling. In our simulation study all bootstrap
confidence intervals were constructed using 500 first-level bootstrap samples drawn from
the relevant data sample, while the calibrated percentile intervals were constructed by
drawing 200 second-level bootstrap samples from each first-level bootstrap sample. The
coverage estimates for the three types of interval are shown in Table 2, for three sample
sizes n and both the smoothed median and the conventional median. Again, intervals
based on the sample mean are also included for comparison.

Table 2. Coverage of percentile, percentile-t and calibrated percentile, nominal
90% coverage, one-sided confidence intervals, for two parent populations

Smoothed median Ordinary median Mean
n Perc. Perc.-t C. Perc. Perc. Perc.-t C. Perc. Perc. Perc.-t C. Perc.

N(0, 1)
5 0·816 0·916 0·901 0·811 0·830 0·965 0·841 0·885 0·884

11 0·866 0·918 0·909 0·894 0·842 0·952 0·892 0·914 0·913

21 0·891 0·918 0·915 0·915 0·858 0·939 0·895 0·910 0·905

|N(0, 1) |
5 0·691 0·857 0·848 0·696 0·692 0·931 0·667 0·800 0·792

11 0·804 0·869 0·855 0·837 0·769 0·931 0·780 0·858 0·861

21 0·832 0·890 0·870 0·875 0·802 0·903 0·824 0·869 0·871

Perc., coverage of percentile method; Perc.-t, coverage of percentile-t method; C. Perc., coverage
of calibrated percentile method.

The figures in Table 2 demonstrate quite clearly the low coverage error obtainable from
the calibrated percentile and percentile-t intervals when used with the smoothed median;
coverage error is particularly low for the computationally more costly calibrated percentile
interval. Table 2 shows also that neither the percentile-t nor the calibrated percentile
interval is satisfactory in producing low coverage error when used with the conventional
median; the calibrated percentile interval over-covers dramatically, while the percentile-t
interval is much less accurate than in the case of the smoothed median.

We note from Table 2 that, for the conventional median, the percentile interval is prob-
ably to be preferred to the other two types of interval. We remark also that, at least for
sample size n=11 in the N(0, 1) case, the percentile method interval, when applied with
the conventional median, actually yields smaller coverage error than the theoretically
favoured percentile-t interval based on the smoothed median. A more detailed comparison
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Fig. 1. Confidence interval coverage plotted against sample size n.

of the percentile and percentile-t intervals under the Gaussian model was obtained by
simulating the coverage properties of the two intervals, for both the smoothed and conven-
tional medians and for a range of sample sizes n, the larger number of 10 000 replications
being used for each sample size. The calibrated percentile interval was excluded from the
comparison on account of its substantially greater computational demands. The results
of this study are presented graphically in Fig. 1. It is seen that the coverage of the percentile
interval based on the ordinary median fluctuates very dramatically with varying sample
size n. Though for particular values of n the coverage of a percentile interval might be
better than that of the associated percentile-t interval, the latter generally has coverage
error which changes more smoothly with varying n. Further, intervals based on the
smoothed median are, in the sense of coverage varying smoothly with n, more stable than
those based on the ordinary median, even if the small degree of smoothing applied when
bootstrapping the smoothed median is applied with the ordinary median, to damp down
the fluctuations in coverage apparent in Fig. 1. The latter observation provides another
argument in favour of the smoothed median, not apparent from only asymptotic
considerations.

A

We are grateful to a reviewer for helpful comments.

A

Outline proof of T heorem 4

Since pr{T ∞(h )<0}=1 then, if h@ denotes the solution of T (h@ )=0, and h=h(x)=x/nD,

pr (nDh@∏x)=pr{T (h)∏0}. (A1)
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Defining

U
ij
= (X2

i
+X2

j
)−D, V

ij
= (X

i
+X

j
)U

ij
,

T
1,ij
=V

ij
, T

2,ij
=U

ij
(2−V 2

ij
), T

k
= ∑∑

1∏i<j∏n
T
k,ij

,

we have

T
ij
(h )=V

ij
−hU

ij
(2−V 2

ij
)+R

ij
(h ), T (h )=T1−hT2+R(h ), (A2)

where, for a constant C>0,

|R
ij
(h ) |∏C min ( |hU

ij
| , |hU

ij
|2 ) (A3)

for all 1∏ i< j∏n<2 and all h, and R(h )=WW

1∏i<j∏n
R
ij
(h ).

Since the distribution of X has a bounded density then, for each e>0, the probability that none
of X1 , . . . , Xn

lies in the interval [−n−(3/2)−e, n−(3/2)−e] equals 1−O(n−(1/2)−e ). It will follow that,
if instead of working with the unconditional distribution of the X

i
’s we condition on the event that

|X
i
|>n−(3/2)−e for 1∏ i∏n, then we shall incur errors of at most O(n−(1/2)−e ) in the probability

statements made later in this proof. This property will be used without further comment.
Let Y

i
have the distribution of X

i
given that |X

i
|>n−(3/2)−e. In an abuse of notation we shall

temporarily replace X
i
by Y

i
in the definitions of U

ij
, V

ij
and R(h ), without altering the latter

terminology. Let Q
ij

denote either U
ij
(2−V 2

ij
) or h−1R

ij
(h ), and for iN j define

q(Y
i
)=E(Q

ij
|Y
i
), q0=E(Q

ij
), q

ij
=Q

ij
−q(Y

i
)−q(Y

j
)+q0 , Q= ∑∑

1∏i<j∏n
q
ij
.

It may be proved by Markov’s inequality that, for all C>0,

pr ( |Q |>Cn(3/2)−e )=O(n−1+2e log n), (A4)

where in the case Q
ij
=h−1R

ij
(h ) the bound is valid uniformly in h.

Now we revert to the X
i
’s. It may be shown that, for a constant C1>0,

E{(X2+x2 )−D}∏C1{1+ ( log |x |−1)I( |x |∏1)}

for all xN0, whence it follows by Markov’s inequality that, for some C2>0 and for each C3>0,

prqK ∑n
i=1

q(Y
i
)K>C2nr=O(n−C

3
). (A5)

Let m2 and p( . |h ) denote the versions of q, defined by q(x)=E(Q
ij
|X

i
=x) for iN j, that arise when

Q
ij
=U

ij
(2−V 2

ij
) Q

ij
=h−1R

ij
(h ), respectively. From (A2), (A4) and (A5) we conclude that,

provided e<1
4
,

pr{T (h )∏0}=prq2n−3/2 ∑ ∑
1∏i<j∏n

V
ij
−n−1/2h ∑

n

i=1
m2 (Xi

)+n−1/2h ∑
n

i=1
p(X

i
|h )∏hD1 (h )r ,

(A6)

where, for j=1, 2, the random function D
j
( . ) satisfies, for all C>0,

sup
|h|∏1

pr{ |D
j
(h ) |>Cn−e}=O(n−(1/2)−e∞ ) (A7)

for some e∞>0.
Defining

v0=−E{T ∞
12

(0)}=E{m2 (X)}, R1 (h)=∑
i

[p(X
i
|h )−E{p(X

i
|h)}],
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we rewrite (A6) as

pr{T (h )∏0}=prA2n−3/2 ∑ ∑
1∏i<j∏n

V
ij
−n1/2h Cv0+n−1 ∑

n

i=1
{m2 (Xi

)−v0}D
+2hn−3/2 (1−n−1)−1E{R(h )}+n−1/2hR1 (h)∏hD1 (h )B . (A8)

Assume that |h |∏1. Using (A3) and the boundedness of f we see that there exists C4>0 such that

|hp(x |h) |∏C4 qh2/ |x | , if |h/x |∏2,

|h | log |h/x | , if |h/x |>2,
(A9)

from which it may be proved in succession that E{p(X |h )}r∏C5 (r) |h | and, provided 0<e<1
4

and
g>2e, that, for all C>0,

sup
|h|∏n−g

pr{ |R1 (h ) |>n(1/2)−e}=O(n−C).

This enables us to incorporate the term in R1 (h ) in (A8) into the term in D1 (h ) there:

pr{T (h )∏0}=prA2n−3/2 ∑ ∑
1∏i<j∏n

V
ij
−n1/2h Cv0+n−1 ∑

n

i=1
{m2 (Xi

)−v0}D
+2hn−3/2E{R(h )}∏hD2 (h )B , (A10)

where D2 satisfies (A7), provided we take the supremum in (A7) over |h |∏n−g with g>2e.
If f is bounded then, by (A9), E{p(X |h )}=O( |h | log |h |−1) as h�0. Therefore, taking h=n−Dx

for fixed xN0, we have that |h |n−3/2E{R(h )}=o(n−D). Also,

∑ ∑
1∏i<j∏n

V
ij
=

1

2
(n−1) ∑

n

i=1
m1 (Xi

)+W, (A11)

where m1 (Xi
)=E(V

ij
|X

i
) for iN j, E{m1 (Xi

)}=0, E(W 2 )=O(n2 ) and E(W )=0. Combining the
above results, and noting that n−DW

i
m1 (Xi

) is asymptotically normally distributed with zero mean
and variance s2

1
=E{m1 (X)2}=v2

0
s2, we see that (A10) implies, for h=n−Dx and x fixed,

pr{T (h )∏0}=pr (Zs∏x)+o(1),

where Z has the standard normal distribution. This establishes part (a) of the theorem.
If f ∞ is bounded and integrable, and if g>0, then

2hn−3/2E{R(h)}=−n1/2h2{v1+d(h )},

where d(h ) denotes a nonrandom quantity, depending on n, such that sup
|h|∏n−g

|d(h ) |�0 as n�2.
From this result, (A10) and (A11) we obtain

pr{T (n−1/2x)∏0}=pr{(S1+2n−3/2W )(1−v−1
0

n−1/2S2 )∏v0x+n−1/2v1x2+D(x)}, (A12)

where S1=n−1/2W
i
m1 (Xi

), S2=n−1/2W
i
{m2 (Xi

)−v0}, and for each e>0 the random function D
satisfies

sup
|x|∏logn

pr{ |D(x) |>n−1/2e}=o(n−1/2 ). (A13)

Next we show that (A12) and (A13) imply (6). We temporarily replace W by 0 in (A12). Then
the left-hand side of the inequality in the argument of the right-hand side of (A12) equals Vs1 ,
where V= (S1/s1) (1+cn−1/2S2 ) and c=−v−1

0
. Put s12=E{m2 (X1 )m1 (X1 )} and b=E{m1 (X1 )3}.
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The first three moments of the distribution of V are

E(V )=cn−1/2 As12s1
B+O(n−3/2 ), E(V 2 )=1+O(n−1 ),

E(V 3 )=n−1/2 qA bs3
1
B+9c As12s3

1
Br+O(n−3/2 ),

from which a two-term Edgeworth expansion of the distribution of V may be derived, leading to

prqV∏x+n−1/2 Av1s2
1

v2
0
B x2r=W(x)+

1

6
n−1/2 CA bs3

1
B+3c As12s1
B+q6 Av1s2

1
v2
0
B

−A bs3
1
B−9c As12s3

1
Br x2D w(x)+o(n−1/2 ),

uniformly in |x |∏ log n. From this result, (A1), (A12) and (A13) we deduce that, provided it is
permissible to replace W by 0 in (A12), the Edgeworth expansion (6) holds, with

6a11=A bs3
1
B+3c As12s1B , 6a12=6v1s2−A bs3

1
B−9c As12s3

1
B .

That W may be replaced by 0 follows from the fact that W is uncorrelated with any quantity of
the form W

i
g(X

i
) that has finite variance, and in particular is uncorrelated with S1 and S2 .

The Studentised case (7) may be treated similarly. The main prerequisite is derivation of expan-
sions of v@0 and s@1 , in which the first term is linear and the rest is remainder, and applying this
result to obtain the analogous expansion of first s@−1 and then h@/s@ . Modification of earlier arguments
to obtain part (c) of the theorem is more straightforward than might be expected. In particular,
the conditioning argument leading to (A4), in which the X

i
’s were replaced by random variables

Y
i
that were constrained to exceed n−(3/2)−e for some e>0, is not necessary in the bootstrap world,

since if all the X
i
’s exceed n−(3/2)−e then so too do all the members of a resample drawn from the

set of X
i
’s. While there is not a direct bootstrap analogue of v1 , since we are carrying the Edgeworth

expansion only to terms of order o(n−1/2 ) that does not cause essential difficulties. In this way it
may be shown that the probability that each of

sup
|x|∏C

|pr{n1/2 (h@*−h@ )∏s@x |X}−{W(x)+n−1/2 (a11+a12x2 )w(x)}|,

sup
|x|∏C

|pr{n1/2 (h@*−h@ )∏s@*x |X}−{W(x)+n−1/2 (a21+a22x2)w(x)}|

exceeds en−1/2 equals o(n−1/2 ) for all C, e>0, where a11 , . . . , a22 are exactly as in (6) and (7). The
second of these results gives (c) in the percentile-t case, and the first leads to (c) in the calibrated
percentile case.
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