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Saddlepoint approximation for the studentized mean,
with an application to the bootstrap

BY H. E. DANIELS AND G. A. YOUNG
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SUMMARY

A saddlepoint technique is used to approximate to the density and tail probability of
the studentized mean of a random sample. The motivation was to replace bootstrapping
of the studentized mean in the way Davison & Hinkley (1988) used the saddlepoint
approximation for the unstudentized mean. The method involves first obtaining a bivariate
saddlepoint approximation, then, after a nonlinear transformation, integrating out an
unwanted variable either numerically or by a Laplace approximation. The tail probability
is similarly evaluated either by a further numerical integration or by a Laplace approxima-
tion of the Temme type. Two difficulties arise.

(i) The nonlinearity of the transformation may result in Laplace approximations
failing in the tail when the sample is not large. But numerical integration always
works.

(ii) In the bootstrap application the saddlepoint approximation may itself break down
when the data set contains an outlier.

Some key words: Bootstrap; Nonlinear transformation; Saddlepoint approximation; Studentized mean.

1. I N T R O D U C T I O N

The purpose of this paper is to devise a saddlepoint technique for approximating to
the density and tail probability of the studentized mean of a random sample. Difficulties
arise from the fact that a nonlinear transformation is involved and it is convenient to
consider first the general problem of a nonlinear transformation of which this is a special
case. Our motivation was to use such a technique to replace resampling in the way
Davison & Hinkley (1988) used the saddlepoint approximation in the case of an unstudent-
ized mean. For remarks concerning the value of studentization in the bootstrap context,
see, for example, Hall (1988). We discuss that application in the final section of the paper.

The method of finding the density involves first obtaining a bivariate saddlepoint
approximation, then integrating out an unwanted variable which can be performed either
numerically or by using a Laplace approximation, as was done in a different context by
Tierney, Kass & Kadane (1989). The tail probability can similarly be evaluated by further
numerical integration or by a Laplace approximation of the Temme type (Barndorff-
Nielsen & Cox, 1989, p. 82). Similar approximations have been considered by DiCiccio,
Field & Fraser (1990) and others.

We find that for some distributions the nonlinearity of the transformation may result
in Laplace approximations being unacceptably inaccurate in the tail when n is not large.
A similar point was made by Leonard, Hsu & Tsui (1989). In practice, direct numerical
integration is probably the safest procedure to use, and little accuracy is lost after
renormalization.
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170 H. E. DANIELS AND G. A. YOUNG

In the bootstrap application we encounter the further difficulty that the saddlepoint
approximation itself may break down when the data set contains extreme outliers.

2. THE STUDENTIZED MEAN

We wish to approximate to the distribution of \=x/s, where x = n~l 1 Xj, s2 =
n~l 1. (xj — x)2 and xu...,xn is a random sample from some distribution F(x). For
economy of notation random variables and observations will not always be distinguished;
the interpretation is never ambiguous. The divisor n rather than n - 1 has been used for
s2 to simplify the formulae, so that Student's / is related to A by t = AV(« -1) . Since we
do not necessarily assume E(x) = 0 this could be noncentral t.

Assume that the density/(x) dies away at least as fast as a normal density in the tails.
This will certainly be true in the bootstrap application but is otherwise a rather severe
restriction.

The joint moment generating function of X and X2 is

M(T, U) = E{exp(TX+UX2)}.

Then

Mn(T, U) = E[exp{nTx + nU(s2 + x2)}] = E[exp{nTsA + nUs2(\ + \2)}] ( 2 1 )

from which a bivariate saddlepoint approximation can be found for the joint density of
s\ and s2(l + A2). A transformation then gives the joint density of A and s. To approximate
to the marginal density of A one has either to integrate out s numerically or to find a
Laplace approximation to replace the integration, which raises certain difficulties. Similar
considerations arise for the marginal distribution of s.

3. THE GENERAL PROBLEM

Suppose there are two random variables X, Y whose joint moment generating function
is

M(T, U) = exp{K(T, U)} = £{exp (TX + UY)} (3-1)

and
The means x, y from a sample of n observations are related to new quantities a, b by

a transformation x = x(a, b), y = y{a, b) which is (1 — 1) but is in general nonlinear. In
our case Y = X2, a = \, b = s. The density of the means is

(3-2)

integration being along admissible paths in the T and U planes. The usual saddlepoint
approximation is

n{K(f,U)-fx-Up}

f^^y)=Tz-nn>—jr-^. (3-3)
ZiT (K-rrt^uu — KTU)

where

KT = KT{f,U) = x, Ky^Koit U) = y, (3-4)

 at :: on Septem
ber 6, 2015

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Saddlepoint approximation for the studentized mean 171

KT, Ku etc. denoting derivatives. See, for example, Barndorff-Nielsen & Cox (1979). The
relative error is O(n~x). Then the approximate joint density of a, b is

gn( ' ] d ( a , b ) J n { ' y ) 2 n d ( a , b ) 1 1 ' k* b)

where
A = A(a, b)=fx+Uy-K(f, 0)^0, (3-6)

A/" L\ ^ T T ^ T U

= A(a,fc) = £ £ \- (3-7)

The order of a, 6 is conventionally chosen to make the Jacobian positive.
The approximate marginal density fin(a) of a can be found by integrating out b

numerically over its range. It would be desirable to replace this integration by a Laplace
approximation in the usual way, but care is needed because although A is always convex
as a function of (x, y) it may not be in terms of (a, b) for a nonlinear transformation.

Similarly, while an approximation to the tail probability can always be found by a
further numerical integration one would like to replace it by a Temme approximation,
but for the same reason it is necessary to proceed with caution.

The maximum of gn(a, b) occurs, to O{n~l), at (a, fi), where Aa = A^ = 0. From (3-6)

L-tf+Ofl. A.-f£+0f2 (3-8)
da da db db

These vanish when 7 = 0, U = 0, in which case x(a, p) = £ y(a, /3) = 77. Also

+ f ) 4 + + ^ (3.9)
da2 da da da da da

with similar formulae for Aab, Aw,. Differentiating (3-4) leads to
df_ Kuudx/da - k-njdy/da dU ̂  -K^dx/da + K-n-dy/da

da |A| ' da |A|
Then

dfctf dU dy KULj (dx/da )2 - 2KTudx/dady/da + K^dy/da )

da da da da |A|
= D'aA-]Da,

where

2

«-[£•£]• «-[%•%]•
The other corresponding quantities are D'aA

 lDb and D'bA
 lDb. At the maximum (a,

the first two terms in (3-9) vanish, and

IK
Since \[Da, Dp]\ = d(x,y)/d(a, j8) it follows that

So A(a, 6) remains convex in the vicinity of (a, f}). However, for moderate values of
n nonconvexity outside this region may affect the approximations.
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172 H. E. DANIELS AND G. A. YOUNG

4. LAPLACE APPROXIMATIONS

To approximate to the integration over b we need bo = bo(a) such that Ab(a, bo) = 0
and Abb(a, bo)>0. Assuming the latter to be satisfied, the Laplace approximation to the
marginal density of a is

,-, . //n\a(x,y) »-""'
d(a, b0) |A(a, fto^'A}*^, bo)

(4-2)
v \zv/ d{a, OQ)

where

£ ) § £ + * T T ( £ Y (4-3)
0 dbj \dboj db0 db0 \db0/

and f0, Uo, b0 are determined from the three equations

f ° i r + £ o ^ r = 0, KT(f0,U0) = x(a,b0), K ^ t , Uo) = y(a, b0). (4-4)
db0 do0

These equations are easily solved using packaged iterative routines. Throughout the
paper, numerical computations were performed using the NAG root finding algorithm
C05NBF. The key to finding suitable starting values for the iteration is to observe that
(4-4) is satisfied with fo= Uo = 0, bo = p, at a = a.

Under appropriate conditions the tail probability of a can be found from (4-2) by an
approximation due to Temme (1982) which is analogous to that arrived at by Lugannani
& Rice (1980) using complex variable methods. Maximizing A(a, bo(a)) with respect to
a should give a = a, bQ(a) = p as in §3 . Differentiating Ab(a, bo) = 0 with respect to a
we find

db0 Aab(a, b0)

da Aw,(a, b0)

Also

d k a b ) ^ (a,bo), (4-6)

d2A(a, b0) * , . - , u\db° : / L ̂  {Aab(a, b0)}
2 -

; = Aaa(a, bo) + Aab(a, b0) = Apa(a, fc0) ; = Aaa.6(a, b0). (4-7)
rfa da Abb(a, b0)

The tail probability is

which we further approximate by Temme's method (Barndorff-Nielsen & Cox, 1989,
p. 82). Since A(a, /3) = 0, let

w = V{2A(a,feo)}sgn(a-a). (4-9)

Then
A

dw Aa{a, b0)
da w

(4-10)
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Saddlepoint approximation for the studentized mean 173

and, expanding A about a in (4-9), we find

Then Qn(at) transforms to

<?»(*.) = } yj(^y(a,bo)e-^2dw, (4-12)

where

., . N d(x,y) da/dw

• ^ • ( 4 ' 3 )

and w, = >v(a,).
Temme's device is to replace if>(a, b0) by if/(a, p)-{if>(a, f3)-i{>(a,b0)} and then

integrate by parts. From (3-14) and (4-11) it is found that if/(a,p) = 1, and using (4-10)
we can rearrange (4-12) as

1
U Aa(a, bo)\Ma, bo^AUa, bo)

On integrating by parts and replacing a,, w, by a, w in the final result we obtain

{ . ^ / ^ (4-15)
n U A a ( a , 6 0 ) |A(a , fe)lJAL( 6 ) J

the remainder being incorporated in the error O(n~$). Here <!>(.), <£(.) are the usual
standard normal distribution function and density, and w is defined by (4-9).

5. MARGINAL DISTRIBUTIONS OF A =x/s AND S

For this application, we first take a = A, b = s

to find the marginal distribution of A. The marginal distribution of s can be found from
the same formulae by taking a — s, b = A.

A good illustration of the care needed when using Laplace approximation is provided
by the example of a mixture of normal distributions with

F(x) = ±{<i>(x + c) + <t>(x-c)}. (5-1)

Here

\j (52)

When c = 0 the distribution is N(0,1) and the joint density of A and 5 is approximated
by

^ 2 (5-3)
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174 H. E. DANIELS AND G. A. YOUNG

The approximate marginal densities of A and s are found to be
i n , kn(s) = Cs" 2 e J™\ (5-4)

where A, B, C are Stirling approximations to the normalizing constants. In this case all
three are exact after renormalization and both /jn(A) and kn(s) can be obtained either
by direct integration of gn(A, s) or by Laplace approximations. Moreover Temme approxi-
mations to the tail probabilities of A and s will be found to agree well with the values
obtained by direct integration.

However, as c increases from zero the situation changes. Figure 1 shows contours of
log gn(A, s) for c = 0,1, 2 and n = 10. The distribution is centred around the point A = 0,
s = y/(l + c2) at which AA =0, AJ = 0. When c = 0 the maxima required for the Laplace
approximations are unique for all A and 5. But when c = 2 this is no longer true when s

(a) c =

A 0

A 0

0-4 0-6 0-8 1 1-2 1-4 1-6

(b) c =

A 0

1 1-5 2 2-50-5

Fig. 1. Contours of loggn(A, 5) for normal mixture distribution, c = 0 ,1 ,2 , sample size n = 10. In each plot
there are 11 contours with equally spaced heights between 0-0 and -10-0.
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Saddlepoint approximation for the studentized mean 175

is small enough, and integration of A for such values of s cannot be replaced by a simple
Laplace approximation. On the other hand, integration of s for given A to find the
marginal density of A can always be replaced by a Laplace approximation.

These facts are borne out by the calculation shown in Tables 1 and 2, in which the
density and tail probability of A and s obtained by various methods for n = 10, c = 1, 2
are compared with the 'exact' value computed from 5x 106 simulations. Here, as in all
the tables of the paper, simulated density figures were obtained by numerical differenti-
ation of the simulated tail probability figures, using a 5-point Lagrange formula on a
grid with intervals of 0-05: this procedure is equivalent to a 5-point kernel smoothing of
the corresponding histogram of simulated values of the statistic. The simulation sizes are
such that the fourth significant figure in any simulated value is unreliable. In the case of
A it will be seen that the simulated values of the density hn(\) are well matched by those
obtained by both numerical integration of s and the use of a Laplace approximation.
The tail probability <?n(A) obtained from a Temme approximation agrees remarkably
well with the simulated values.

In the case of s, however, while the values of the density £,(s) obtained by numerical
integration of A agree well with the simulated values, those obtained from a Laplace
approximation become progressively worse with decreasing s, as would be expected from
the contours in Fig. 1. As s approaches a critical value the quadratic approximation near
the maximum with respect to A for given s fails and a quartic approximation becomes
appropriate. In the case c = 2, with decreasing s this ultimately separates into two

Table 1. Normal mixture distribution, c = 1. Simulated figures based on 5 000 000 samples

(a) Tail probabilities and densities ofA. Laplace and integrated densities renormalized

<?n(A) &U) Qn{\) £,(A) £.(A) £,(A)
A Simulated Temme Integrated Simulated Laplace Integrated

01 0-3842 0-3838 0-3847 11249 11173 11162
0-3 01937 01931 01949 0-7452 0-7515 0-7513
0-5 00834 00829 0-0844 0-3699 0-3736 0-3739
0-7 00334 00330 00339 01567 01561 01564
0-9 00132 00130 00135 00603 0-0610 00612
11 00054 0-0053 0-0055 0-0231 00238 00239
1-3 00023 00023 0-0024 0-0091 00096 00097
1-5 00011 00010 00011 0-0044 00041 00041
1-7 00005 0-0005 00005 00019 00018 00018
1-9 00002 0-0002 00002 0-0009 00008 00009

(b) Tail probabilities and densities of s. Integrated densities renormalized, Laplace densities not renormalized

s Simulated Integrated Simulated Integrated Laplace

0-5 0-9993 0-9993 00112 00116 00152
0-7 0-9894 0-9912 01176 01184 01409
0-9 0-9338 0-9345 0-4990 0-5030 0-5775
11 0-7736 0-7729 11084 11167 1-2604
1-3 0-5103 0-5091 1-4240 1-4275 1-5958
1-5 0-2480 0-2475 11031 11038 1-2265
1-7 0-0848 00847 0-5367 0-5312 0-5879
1-9 00199 00199 01634 01620 01788
21 00031 00032 00323 00317 00349
2-3 00003 00003 00040 0-0040 00044
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s

0-7
0-9
1 1
1-3
1-5
1-7
1-9
2 1
2-3
2-5
2-7
2-9
3 1
3-3

QAs)
Simulated

0-9997
0-9987
0-9962
0-9879
0-9606
0-8860
0-7315
0-5028
0-2691
01068
0 0304
00060
0-0008
00001
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Table 2. Normal mixture distribution, c = 2. Simulated figures based on 5000 000 samples

(a) Tail probabilities and densities of k. Laplace and integrated densities renormalized

4(A) <?n(A) QB(A) £,(A) f>M) £,(A)
A Simulated Temmc Integrated Simulated Laplace Integrated

01 0-3816 0-3815 0-3825 11447 11347 11333
0-3 01897 01896 01918 0-7469 0-7441 0-7436
0-5 00820 00819 00839 0-3594 0-3596 0-3597
0-7 00342 00341 0-0355 01477 01496 01498
0-9 00149 00148 00157 00589 00606 00608
11 0-0076 00070 00075 00253 00257 00259
1-3 00036 00036 0-0039 00116 00118 00119
1-5 00021 00021 0-0022 0-0052 0-0059 00060
1-7 00013 00013 0-0013 0-0027 0-0032 00033
1-9 00009 00008 00008 00016 00019 0-0019
21 0-0006 00006 00005 00012 00012 00012
2-3 00005 0-0004 00003 00008 00008 00008

(b) Tail probabilities and densities of s. Integrated densities renormalized, Laplace densities not renormalized

<?„(«) £,(•*) £,(*) £,(*)
Integrated Simulated Integrated Laplace

0-9997 0-0028 0-0028 0-0015
0-9987 00071 0-0079 0-0039
0-9958 00210 00234 00109
0-9869 0-0725 00756 00348
0-9587 0-2245 0-2289 0-1311
0-8829 0-5544 0-5584 10094
0-7275 0-9909 0-9941 1-4790
0-4995 1-2310 1-2278 1-5105
0-2675 10324 10275 11852
01062 0-5806 0-5761 0-6450
00302 0-2185 0-2153 0-2372
00060 0-0542 00535 0-0584
00008 00088 0-0089 0-0096
00001 00009 00010 00011

symmetric maxima on either side of A = 0, one of which the Laplace computer program
detects and uses to produce half the correct value. When c = 1 the effect is less pronounced
but still serious.

The danger can only be recognized by examining the behaviour of the density of A
near the maximum for each value of s. The safest procedure would seem to be to inte-
grate A numerically. Computationally such numerical integration is most conveniently
performed using direct function evaluation on a regular grid, for then the numerical
solution of (3-4) proceeds sequentially.

6. APPLICATION TO THE BOOTSTRAP

We now apply the present procedure in an attempt to replace bootstrap sampling of
the studentized mean from a data set, in a way similar to Davison & Hinkley's (1988)
use of a saddlepoint approximation for unstudentized means. How far the confidence
intervals so obtained relate to the underlying distribution is a separate important issue
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Saddlepoint approximation for the studentized mean 111

which is not addressed here; the simpler situation of an unstudentized mean has been
discussed by us elsewhere (Young & Daniels, 1990).

We have a data set x , , . . . , xn from an unknown distribution F(x) with mean /x and
variance a2. Let x = n~x 1 x,, sl = n"l 1 (xj-x)2, and let Ylt..., Yn be a random sample
from the empirical distribution function Fn(y) which has probability \/n at each of
x , , . . . ,*„ , so that E(Yt) = x, var(Y,) = s2. The motivation for this application is the
assumption that the sampling behaviour of X - /x can be inferred from that of Z = Y-x,
where z} = y} — x. Now s2 = n~x 2 (Yj — Y)2 and the required moment generating function
is

M(T, U) = E{exp(TZ+UZ2)} = - £ e
nxri)+U(*r*>\

from which K(T, U) = log M(T, U) and its derivatives can be computed.
Davison & Hinkley's data (n = 10), recentred to have zero mean, are -8-27, -7-47,

-4-87, -2-87, -1-27, -0-67, -0-57, 3-93, 6-13, 15-93. For this data set the simulated
densities and tail probabilities of A = z/s and 5 are compared with the various approxima-
tions in Table 3. As regards A the agreement is quite good, though not as close as Davison
& Hinkley's results for the unstudentized mean. However, the simulated density for 5
differs markedly from the saddlepoint densities computed either by numerical integration
or by a Laplace approximation, which are themselves in good agreement. Notice that it
appears to have a periodic variation superimposed on the values obtained by the other
methods. This is related to the presence of the outlying observation 15-93 in the data set
in a way we explain below, and is also probably responsible for the observed slight
instability in the simulated density of A.

What we are coming up against here is the limitation of the saddlepoint approximation
itself when applied to an empirical distribution and hence to the bootstrap. Davison &
Hinkley found it worked well for the unstudentized mean even with such an outlier in
the data set, but calculation of s involves squaring the observations and the effect of the
outlier is magnified.

Data sets with more extreme outliers than Davison & Hinkley's are found to cause
similar trouble even with the unstudentized mean. To illustrate the way an outlier generates
periodic variation in the density of the unstudentized mean, consider the following more
extreme data set constructed by squaring Davison & Hinkley's Xj - x, recentring at their
mean and dividing by 100: -0-4621, -0-4608, -0-4492, -0-3830, -0-3109, -0-2282,
-0-0896,0-0927,0-2183,20723. Table 4 compares the simulated and saddlepoint densities
fn(z) of z using this data set. There is a strong periodic variation of the simulated density
about the saddlepoint values, the period being about 0-25.

The explanation is as follows. The data consist of nine observations closely clustered
about their mean —0-2303 and a widely separated outlier 2-0723. Consider the even more
extreme data set consisting of -0-2303 repeated nine times, and 2-0723. This is a two-point
distribution with probability ns a t -0-2303 and ^ at 20723. Then we are simulating
samples of 10 centred Bernoulli variables whose means z take values on the lattice

-0-2303,0, 0-2303, 0-4606,..., 1-8420, 2-0723

with binomial probabilities. In the actual data set the small variation of the first nine
observations around -0-2303 evens out these binomial 'spikes' into fluctuations with a
period related to the lattice interval. In situations like this the saddlepoint approximation
produces a smoothed version of the exact density.
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Table 3. Bootstrap example. Simulated figures based on 1000 000 samples. Laplace and
integrated densities are renormalized

{a) Tail probabilities and densities of k

A

1-8
1-6
1-4
1-2
1 0
0.8
0-6
0-4
0-2
0 0
0-2
0-4
0-6
0-8
1 0

<?n(A)
Simulated

0-9978
0-9953
0-9900
0-9807
0-9661
0-9390
0-8901
0-8136
0-6837
0-4769
0-2490
0-0910
00245
00053
00011

s

1 0
2-0
3-0
4-0
5-0
6-0
7-0
8-0
9-0

10-0
11-0

<?n(A)
Temme

0-9978
0-9954
0-9907
0-9820
0-9657
0-9383
0-8951
0-8203
0-6865
0-4715
0-2482
0-0896
0-0235
0-0050
0-0010

kn(s)

Qn(k) MA)
Integrated Simulated

0-9983
0-9961
0-9915
0-9830
0-9680
0-9417
0-8950
0-8118
0-6700
0-4624
0-2402
0-0884
00239
0-0053
00011

(b) Densities of s

Simulated I

0-0002
0-0057
0-0596
0-1592
0-1187
01338
0-2852
0-1447
0-0740
0-0135
0-0005

Ms)

00083
00182
00367
00576
0-0972
01821
0-3087
0-4777
0-8482
11561
1-0339
0-5385
0-1740
00426
0-0083

ntegrated

0-0003
00055
00580
0-1247
01571
0-2000
0-2128
01601
00684
00122
00005

M A )
Integrated

00071
00155
00311
00560
00970
01715
0-3064
0-5414
0-8866
11589
0-9993
0-5129
01659
00396
0-0082

M*)
Laplace

00002
0-0045
00509
0-1320
01609
0-2004
0-2107
0-1587
0-0688
00124
00006

MA)
Laplace

00072
00150
00294
0-0554
01014
01761
0-3011
0-5270
0-8769
11650
10121
0-5187
0-1658
00386
0-0077

Table 4. New data set. Density of mean z of bootstrap sample of size n = 10. Simulated
figures based on 1000 000 bootstrap samples. Saddlepoint figures computed using method

of Davison & Hinkley (1988)

f Simulated Saddlepoint z Simulated Saddlepoint

0-40
0-35
0-30
0-25
0-20
015
0 1 0
0 0 5
0 0 0
0 0 5

01275
0-5739
1-3050
1-7826
1-6081
1-2217
1-3538
1-9345
2-1082
1-5775

00340
01769
0-5255
0-9687
1-2860
1-5088
1-6646
1-7467
1-7522
1-6876

010
015
0-20
0-25
0-30
0-35
0-40
0-45
0-50
0-55

0-9845
0-9207
11088
10303
0-6494
0-3419
0-3156
0-3556
0-2756
01348

1-5665
1-4059
1-2231
10337
0-8502
0-6816
0-5333
0-4076
0-3047
0-2228
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Saddlepoint approximation for the studentized mean 179

In the case of the studentized mean the trouble would be to some extent diminished
if 5 were replaced by an estimator such as the mean deviation which does not involve
squaring the observations. Simulation methods could still be used, but an analytic
approach does not seem feasible.
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