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Abstract
An interesting recent paper by Falk and Kaufmannfll] notes, with an element of

surprise, that the percentile bootstrap applied to construct confidence intervals for
quantiles produces two-sided intervals with coverage error of size n~~*, where n
denotes sample size. By way of contrast, the error would be 0(n~x) for two-sided
intervals in more classical problems, such as intervals for means or variances. In the
present note we point out that the relatively poor performance in the case of
quantiles is shared by a variety of related procedures. The coverage accuracy of two-
sided bootstrap intervals may be improved to o(ri~*) by smoothing the bootstrap. We
show too that a normal approximation method, not involving the bootstrap but
incorporating a density estimator as part of scale estimation, can have coverage error
0(n~1+e), for arbitrarily small e > 0. Smoothed and unsmoothed versions of bootstrap
percentile-^ are also analysed.

1. Introduction
This note is prompted by an interesting article of Falk and Kaufmann[ll],

pointing out that two-sided percentile-method bootstrap confidence intervals for
quantiles, based on samples of size n, have coverage error of size n~5, not n"1 as is the
case in more classical settings. We suggest that this conclusion is not really
'unexpected' [11], but rather is to be expected because the percentile method
produces a straight binomial-type interval without any attempt at smoothing. The
atoms of a binomial Bi(n,p) distribution are of size n~*, for each fixed p, and so there
is an inherent error of size n"1 in any confidence procedure based on the binomial.
However, a smoothed version of the percentile method, or even a non-bootstrap Mike
method, involve sufficient smoothing to remove the binomial-based discreteness, and
so can produce two-sided confidence intervals whose coverage error is of smaller
order than n~*.

These results are direct analogues of those which arise in the classical case, for
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example in connection with confidence intervals for a mean. See for example
Beran[l] and Hall [13]. Thus, the principal distinction noted by Falk and
Kaufmann[ll] for percentile-method confidence intervals for quantiles, vanishes
when a little smoothing is incorporated into the bootstrap.

There are, however, differences between the classical and quantile cases at a
smaller order than n~5. In the classical case, the coverage error of a two-sided
percentile-method confidence interval is of order n~l (see for example [13]); in the
quantile case the coverage error can generally be no smaller than re""*, even after
smoothing.

There exist alternative, competitive approaches to constructing confidence
intervals for quantiles. For example, intervals may be based on interpolation among
intervals constructed by the sign-test method (Hettmansperger and Sheather[17],
Sheather[19], Sheather and McKean[20], Beran and Hall[2]). This technique does
not require choice of a smoothing parameter, or Monte Carlo simulation; and it
produces a confidence interval with coverage error O(ri~l). The contributions of the
present paper might be thought of as principally didactic, showing that the rather
pessimistic view of Falk and Kaufmannfll] should be modified if smoothing is
incorporated in the bootstrap.

Section 2 addresses the binomial discreteness problem, explaining why it results in
coverage errors of size n~? for unsmoothed percentile intervals. We point out that
these errors are not intrinsic to the bootstrap, but in fact arise with a wide variety
of different procedures based on order statistics. Section 3 discusses smoothed
percentile intervals. We keep our account as brief as possible, since our intention is
only to make the point that smoothing can remove the difficulties encountered by
Falk and Kaufmann[ll]; we are not arguing that percentile-method intervals, in
either smoothed or unsmoothed forms, should be used widely. Studentized non-
bootstrap and percentile-< bootstrap methods are discussed in Section 4. We point
out that non-bootstrap, two-sided intervals based on the Studentized statistic can
have coverage error 0(n~1+e), for e > 0 arbitrarily small, depending on the manner of
Studentizing. Application of the smoothed bootstrap in this context can further
reduce coverage error, although not beyond Ofo'1). Section 5 summarizes a
simulation study that provides numerical illustrations of our results, and Section 6
sketches proofs of the theory from Sections 2^4.

The notion of smoothing the bootstrap was originally discussed by Efron[8, 9].
Issues such as the value of smoothing, and when to smooth, have been addressed by
Silverman and Young [22], Hall, DiCiccio and Romano [15], Falk and Reiss[12]
and Wang[23]. Empirical procedures for smoothing have been suggested and
analysed by Young [24, 25], De Angelis [5], Bowman and Hall [4], and De Angelis
and Young [6, 7].

2. Percentile bootstrap confidence intervals
Let 3C = {Xj,...,Xn} denote a random sample drawn from a distribution F for

whose a quantile, £a, we wish to construct a confidence interval having specified
nominal coverage /?. The common form of two-sided percentile bootstrap interval
may be defined as follows. WriteXnl ^ ... ^ Xnn for the order statistics of 3C, and let
r denote the integer part of an. Draw a resample 9C* = {X*,... ,X*} randomly from
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$C, represent the ordered values in S£* by X*x ^ ... <X*n, and let lt and l2 be the
nearest solutions of the equations

P{X*nh<Xnr\2C) = \{\+{1), P(X*lt>Xnr\Z) = &\+p). (2-1)

Then the desired confidence interval is

See for example Efron[8]. This is the 'backwards' interval discussed by Falk and
Kaufmann[ll]. Note that the left-hand sides of both equations in (2-1) are non-
random functions of Zx and l2 (see [8], equation (3-4)), and so the values of ^ and l2

produced by solving (2-1) as nearly as possible are non-random.
No matter how the values of lx, l2 are chosen, using bootstrap arguments or

otherwise, the inherent coverage error of / is at least of size n~*, as the following
theorem shows. Let <j>, $ denote the standard normal density and distribution
functions respectively, and put z = ^>~1(y) for 0 < y < 1.

THEOREM 2-1. Assume that F has two derivatives in a neighbourhood of £a, that F" is
continuous at £a, and that F'(E,a) > 0. Then for each 0 < ft < 1,

limsupn* inf \P{^eI(l1,l2)}-fi\=^(l-cc)}^mm{^(zUl+fl),^(Zl^)}. (2-2)

The other form of percentile bootstrap confidence interval considered by Falk and
Kaufmann[ll] is defined by

J(lltl2) = (2Xnr-Xnlt,2Xnr-Xnli),

where Zj and l2 are again the nearest solutions of the equations at (2'1). The
backwards interval / implicitly assumes that n?(Xnr — £J has a symmetric sampling
distribution, while J does not. However, as our next result indicates, this interval
fares little better than / in terms of coverage accuracy, no matter how lt and l2 are
chosen.

THEOREM 2-2. Under the conditions of Theorem 2-1, result (2-2) continues to hold if
I(lltl2) is replaced by J(lltl2).

Of course, 1(1^ l2) and J(Z1(Z2) have the same length. As Falk and Kaufmann[ll]
show, the nominal equal-tailed version of/ has asymptotically greater coverage than
J, and so it is generally to be preferred.

When g ̂  /? < 1, which is of course the situation of greatest practical interest, the
best 'worst case' coverage accuracy of/(/1;Z2) and J(lt,l2), in the sense described by
Theorems 2-1 and 2-2, is achieved by intervals which are approximately equal tailed
in that {ll — wx)/(l2 — na)-+— 1 as rc-s-oo. The remark in the previous paragraph may
appear to contradict this property. However, it should be borne in mind that those
values of lx and l2 which optimize coverage accuracy are slightly different for / and
J. The optimal Is for/ and J differ only by amounts which remain bounded as n-*co,
but adjusting either lx or l2 by only +1 introduces a change of size ri~* to coverage.

When 0 < ft < %, the best 'worst case' coverage accuracy of both/(/j, l2) and J{ll712)
is achieved by intervals that are so highly skewed as to be effectively one-sided.

The main conclusion to be drawn from Theorems 21 and 2-2 is that any confidence
procedure based directly on order statistics has inherently poor coverage accuracy,
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no matter whether the order statistics are selected by a bootstrap argument or by
some other approach. In the next section we show that if a bootstrap argument is
employed then coverage accuracy may be improved by smoothing the bootstrap.

3. Smoothed percentile bootstrap confidence intervals
The technique suggested here is identical to that described in the third paragraph

of Section 2, except that the bootstrap distribution is now smoothed prior to
resampling. We smooth using a kernel density estimator,

where K, the kernel function, denotes a known symmetric density, and h is a
bandwidth. The quantity / estimates f = F', wherever the latter exists. I t is not
necessary to assume t h a t / i s well-defined everywhere; existence in a neighbourhood
of £a is sufficient.

Conditional on 5T, let SC^ = {X\,... ,X^n} denote a sample drawn randomly from the
distribution with density/, and represent the ordered values byX* x ^ ... ̂  X^n. Write
£a for the quantile of the distribution with density/, and let r denote the integer part
of an. Given 0 < y < 1, write uy for the y quantile of the conditional distribution of

Then
Jj = ( - oo, Xnr - u^p), J2 = (Xnr - u^(1+fi),Xnr

are nominal /?-level confidence intervals for £a. In particular, J2 is a smoothed
bootstrap version of the percentile interval J(l1,l2) introduced in Section 2, with Z1;
l2 defined by (2-1).

We claim that if the bandwidth h is chosen appropriately then Jx has coverage
error of size »"*, and J2 has coverage error of smaller order than n~i The latter value
improves by an order of magnitude on the coverage error of even the most accurate
version of the (unsmoothed) percentile method bootstrap intervals discussed in
Section 2.

These claims about coverage accuracy follow from the theorem below. Let <f>, <1>
denote the standard normal density and distribution functions respectively, and put
zy = O~1(y) and

THEOREM 3-1. Assume that / has three bounded derivatives in a neighbourhood of £a;
that K is a symmetric, compactly supported density with K' existing and Holder
continuous; and that h = h(n) -*• 0 as n^-oo, with n~^e < h < n~l~e for some e > 0. Then
for each 0 < y < 1, and some e' > 0,

P(Xnr - £ a ^ iiy) = y + »-iCa«^(2y) + O(n-W) (3-1)
as 72,->OO.

A result close to this one has been obtained independently by Falk and Janas [10].
Therefore we do not give a proof here.
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As an immediate corollary of the theorem we obtain,

This property, that the one-sided percentile interval Jx has coverage error of size n~*,
while the two-sided percentile interval J2 has coverage error o{n~*), is identical to that
observed in more routine problems where the statistic of interest is a smooth function
of a vector mean [13].

A version of Theorem 31 may be proved for a smooth variant of the other
bootstrap percentile interval / , introduced in Section 2. We have chosen to develop
theory for J since that interval is based on the centred statistic X^nr — £a, which will
appear again in the next section during our study of the percentile-^ bootstrap. Also,
Falk and Kaufmann's[ll] main theorem is about the unsmoothed version of J. For
both / and J, bootstrap iteration may be applied to both one- and two-sided
intervals, reducing coverage error to o(n~%) in the case of the former.

A crucial aspect of the Edgeworth expansion (3-1) is that it does not contain a term
of size (nh)~*. This is perhaps surprising, given that an Edgeworth expansion of the
density estimator/has a term of size (nh)~?. The property occurs in related settings,
as we shall see in Section 4.

A substantially longer argument than that given here will show that the 0(n~11~e)
term on the right-hand side of (3-l) may be expressed in more detail as

(nhr^m^) <j>{zy) + h2m2(zy) <f>{zy) + oiinhy1 + h2}, (3-2)

where ra^rag are odd polynomials, the latter deriving from bias. (We must assume
that F'" is continuous at £a.) Owing to the fact that mx and m2 are odd, terms of orders
(nhy1 and h2 persist in Edgeworth expansions of the coverage of J2; unlike the n~5

term, they do not cancel.
Our assumption that h be of smaller order than n~* is imposed to ensure that the

term of order h2 in the Edgeworth expansion (see (3-2)) is of smaller order than n~k
Its removal invalidates Theorem 3"1. However, the condition that h be of larger order
than n~* is imposed for technical reasons connected with the relatively uncomplicated
proof given in Section 6; it can be relaxed. Note particularly that a bandwidth of size
n~~*, which is optimal for point estimation of/ (e.g. Silverman[21], p. 40ff), violates
the necessary condition h = 0(72."*).

4. Stvdentizing
Observe that Xnr — E,a is asymptotically normally distributed with zero mean and

variance n~1cr\p~i, where <T£ = a(l— a) and pa =/(£J. The unknown part of the
asymptotic variance is of course pa, which may be estimated directly. Hall and
Sheather[16] considered this possibility using the quantile variance estimator
proposed by Bloch and Gastwirth[3]. However, that approach is quite restrictive, in
that it confines attention to the case of estimation under the assumption of just two
derivatives of the unknown density / . By using higher-order, kernel-type density
estimators one may construct estimators of quantile variance that are substantially
more accurate than those suggested in [16]. In the case a = \, where the quantile is
the median, it is often true that pa can be estimated particularly accurately.
Problems of negativity, which arise towards the tails of high-order kernel density
estimators, usually do not occur if a. = \ and kernel order is only moderately large.
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Let K be a bounded, compactly supported function, satisfying (for some integer

1 forj = O
yjK(y)dy = 0 for 1 ̂  j < s-1

Kj 4= 0 for j = s.

We call s the order of the kernel K. (The kernel considered in Section 3 had 5 = 2.)
An estimator of pa is given by

2 K{(Xnr-Xt)/h},

\

where h denotes bandwidth and r equals the integer part of an. If h = h(n) -*• 0 in such
a manner that nh-*co, then pa-+pa, and so

is asymptotically normal N(0,1). Inference about £a may be based on Q. Our first
result describes the difference between Edgeworth expansions of the distributions of
Q and Q, where

Put K2 = jK2, Aa = K2p^ and£ a = -K^'+^^Jp-1, and let Ca be as in Section 2.

THEOREM 4-1. Assume that F has s+1 ^ 3 continuous derivatives in a neighbourhood
of £a, that K is a continuous, compactly supported sth order kernel (s ̂  2); that K has
compact support [a, b] and the property that for some decomposition a = u0 < ux < ... <
um = b,K' exists and is bounded on each interval (Uj_vUj), and is either strictly positive
or strictly negative there; that

rco ro roo ro
K-\ K= K2- K2 = 0; (41)

Jo J— oo Jo J—oo

and that h = h(n) -> 0 as n -»-oo, with n'1+c ^ h < n~e for some 0 < e < \. Then as nH>-OO,

P(Q ^ x)~P(Q ^x) = (nh)-iAahx(l-\x2)^{x) + hsBax<t>(x)

- n-*Cah x2 <f>{x) + 0{(nA)"i+n"1*"*} + o(h2k47s), (4-2)

where Aah = Aa + O(h), Cah — Ca + O(h) denote quantities depending only on h.
As shown by Reiss[18], the distribution of Q admits an Edgeworth expansion of

more classical form,
P(Q ^x)~ <D(z) + S n-i/2n}(x) <f>(x), (4-3)

where n^ denotes a polynomial of degree 3j— 1 with the same parity asj . For example,

n^x) = {|(2a-1) a'1 + 1
2-F"(UP;*cra}x2+|(1 - 2 a ) cr'1 + (r-ocn + a-1) a~\

The kernel K would typically be a symmetric function, in which case s would be
even and (4-1) would hold. Should (4-1) be violated then the expansion (4-2) still holds
but with more complicated formulae for the constants in polynomials.

If on the right-hand side of (4.2) we replace hsBa by
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where fia = Sf(£a — hy)K(y)dy denotes the mean of the estimator /(£o) (see Section 3
for a definition of/, but use the sth order kernel introduced in the present section),
then the term o(hs) in (4-2) may be replaced by 0(h2s). This makes it explicitly clear
that the hs term derives from bias of a density estimator; i^CL—pa equals the bias of
/(£J as an estimator of /(£J.

Note that the terms in n~* in the expansions (3-1) and (4-2) are identical, except
that the signs are different. The reason for the sign change is that the percentile
bootstrap effectively estimates the variance of XnT by n^ip^p'2)2 cr\, at least insofar
as its effect on the n~* term goes (see (6-9) in the proof of Theorem 3-1), whereas the
estimate n~lip~2 a\ is employed when Studentizing.

Since the polynomial in the n~* term is even, it cancels from coverage error
formulae for two-sided confidence intervals. Therefore, the operation of Studentizing
can reduce coverage error from n~* for bootstrap, non-Studentized two-sided
intervals (see Section 2) to o(n~?) for non-bootstrap, Studentized two-sided intervals.
In more detail, let

H1 = (-co,Xnr + n-vp-1 aa zfi),
, Xn ^

nr /
denote nominal /?-level confidence intervals for £a, based on the normal ap-
proximation to the statistic Q. Assume that h is of smaller order than n~ll(2s) but of
larger order than n"1, so as to render the terms in hs and (nh)'1 (in (4-2)) of smaller
order than n~$. Then by (4.2) and (4.3), X

I (4'4)
J

The o{n~*) term in (4-4) is comprised of contributions of size hs and (nh)'1. These are
in balance, and equal to n~sl(s+1), when h is of size n~1/(s+1). By taking s sufficiently
large, this coverage error may be rendered smaller than n~1+e for any given e > 0.
However, empirical choice of bandwidth in this problem is quite difficult.

Next we describe the smoothed bootstrap in the context of the Studentized
statistic Q. This amounts to applying to Q the smoothed resampling algorithm
discussed in Section 3. We introduce a new kernel K1 and a new bandwidth hx, since
it is not necessary to use the same amount of smoothing as for the construction of px.
Let Kx be a known, symmetric density function, and put

which estimates f(x) =F'(x) whenever the latter exists. As in Section 3, let 9C^ =•
{X\,... ,Xf

n} denote a sample drawn randomly from the distribution with density/.
Represent the ordered values in X^ by X^nl ^ ... ^ X^n, write £a for the a quantile
of the distribution with density / , put

pt = {(n-1) h}~i S K{(X*nr-Xl)/h}

(using the same kernel K and bandwidth h that were employed earlier to construct
pj, define Q* = n^p^a'1 (X\r — £J, and let vy denote the y quantile of the conditional
distribution of Qf:
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Then

H1 = (-co, X^-n^p^aJ^),

denote nominal /?-level confidence intervals for £a. The theorem below shows that if
the smoothing parameters h and h1 are chosen appropriately then both Hx and H2
have coverage errors of smaller order than rC*.

THEOREM 4-2. Assume that F has three bounded derivatives in a neighbourhood of £a,
that K is a continuous, compactly supported sth order kernel (s ^ 2), that K1 is a
symmetric, compactly supported density with K\ existing and Holder continuous, and
that h = h(n) and h1 = h^ri) satisfy n~~*+e ^ h, hx < n~*~e for some e > 0. Then for each
0 < y < 1, and some e' > 0,

P(Q < vy) = y + O(w-W). (4-5)
An immediate corollary of the theorem is that

The condition h, hx ^ n~x~e is imposed specifically to ensure that the bias
contributions to (4-5) are negligible. If s ^ 3 and if the smoothness assumption in F
is strengthened by asking that F(s+1) exist and be bounded in a neighbourhood of £a,
then the condition h ̂  n~*~E may be relaxed to h ̂  ra-{i/(2s)>-e

A longer expansion than (4-5) may be developed to describe more fully the
individual terms that contribute to the O(n~*~e) remainder in (4-5). However, those
terms depend on both h and \ , and as a result, a practical, empirical choice of h and
Aj seems very difficult to effect.

We have not investigated an unsmoothed version of bootstrap percentile-i, since
it appears to us that such a technique will not eliminate the n~* term in an expansion
of coverage error of a one-sided confidence interval. To appreciate why, observe that
if the resample is drawn directly from the original sample then it will, with high
probability, contain ties. Indeed, the number of times that any particular value is
repeated in the resample is very nearly Poisson distributed with unit mean. Of
course, in a sample drawn randomly from a continuous distribution, each spacing
away from the tails will be of size n'1. Since on the present occasion many of the
spacings will be exactly zero, then we should expect the conditional distribution of
^ ~ X n r ) to differ from the distribution ofK^u^ ' f l^-^) in terms of size

(In classical problems, the difference is O^n'1) rather than 0p(n~*).)
Hence, the unsmoothed bootstrap cannot be expected to capture correctly terms of
size ri~* in Edgeworth expansions.

5. Simulation
In this section we summarize a simulation study designed to investigate the small

sample effect of smoothing and Studentization on the coverage properties of two-
sided confidence intervals for the population quantiles and median (a = 025, 050,
075). We consider construction of the intervals J, J2, H2 &ndHz of nominal coverages
/? = 0-90 and ft = 0-95, for two sample sizes, n = 15 and n = 30, and three underlying
distributions, the uniform distribution on [0, 1] and chi-squared with 3 and 5 degrees
of freedom.
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Table 5-1. Estimated coverages from 1000 simulations of confidence intervals of nominal
P coverage for a quantile of uniform distribution on[0, 1]. Figures in parentheses denote
smoothing parameter values used

a...

/? . . .

71= 15
J

H2

a,
7i = 30

J
Jo
H2

# 2

* = & , =

Table 52.

a...

71= 15
J

H2
H2

7i = 30
J
J j
H2
Ho

h = hl =

0-25

0-90

0-67
0-95
0-98
0-94

0-75
0-92
0-95
0-91

(0-5«-5) (i

As for Table 5-

0-25

0-90

0-76
0-94
0-96
0-91

0-76
0-90
0-93
0-89

0-95

0-70
0-96
0-99
0-96

0-81
0-96
0-98
0-96

0-571-5)

1> for

0-95

0-78
0-97
0-99
0-95

0-83
0-94
0-96
0-94

(l-5n-5) (l-5w"5)

0-90

0-77
0-87
0-87
0-85

0-78
0-86
0-88
0-86

(0-5w"5

0-50

0-95

0-77
0-92
0-94
0-91

0-86
0-91
0-93
0-92

) (0-571-1)

chi-squared distribution,

0-90

0-77
0-95
0-94
0-93

0-78
0-90
0-90
0-87

(3-OTI-!

0-50

0-95

0-77
0-98
0-97
0-96

0-85
0-95
0-95
0-93

) (3-071-5)

0-75

0-90

0-76
0-91
0-87
0-90

0-78
0-91
0-86
0-91

(0-571-5) (

3 degrees

0-75

0-90

0-72
0-92
0-82
0-87

0-73
0-89
0-79
0-84

(4-5w-5) (

0-95

0-80
0-96
0-92
0-95

0-84
0-96
0-92
0-96

0-571-3)

of freedom

0-95

0-74
0-97
0-89
0-94

0-80
0-94
0-86
0-91

4-57T5)

Smoothing, both in the construction of the estimators pa and p\ and in the
bootstrap algorithm, is performed using the second order (s = 2) Epanechnikov
k l

/
L0, otherwise.

Numerical results are summarized in Tables 5-1—5-3. Each entry in the tables is
based on 1000 simulations, with 1000 resamples being used in the construction of
each smoothed bootstrap interval J2 and H2. For simplicity, the same value was
adopted for the smoothing parameter h required by the construction of p a , pi and
that hx in the smoothed bootstrap resampling algorithm. The values used are shown
in parentheses in the tables, though no a t tempt has been made to optimize the
choice.

The study demonstrates clearly the poor coverage accuracy of the unsmoothed
bootstrap interval J and how considerable improvement is offered by the smoothed
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Table 5-3. As for Table 51, for chi-squared distribution, 5 degrees of freedom

a...

ft...
n= 15

J
Ji
H2

n = 30
J
J*
Ht
H2

h = hx =

0-90

0-87
0-94
0-97
0-91

0-78
0-91
0-93
0-89

0-25

0-95

0-90
0-97
0-99
0-95

0-84
0-96
0-98
0-95

) (3-On-i)

0-90

0-77
0-93
0-91
0-89

0-77
0-89
0-90
0-88

(4-0n-

0-50

0-95

0-77
0-97
0-97
0-95

0-85
0-94
0-95
0-93

1 i

0-90

0-74
0-86
079
0-87

0-75
0-86
0-80
0-89

(4-OHH

0-75

0-95

0-77
0-92
0-85
0-93

0-82
0-91
0-86
0-93

bootstrap interval J2 or the non-bootstrap Studentized interval H2. Generally,
further improvement in coverage accuracy is provided by the Studentized bootstrap
interval H2. The simulation does, however, underline the difficulties of empirical
choice of the smoothing parameters h, h1. The optimal values for these parameters
depend on the quantile being estimated, the sample size n and the underlying
distribution.

The distribution-free confidence interval / has a coverage accuracy comparable
with that of the bootstrap interval H% in many circumstances. However, the
discreteness noted in Section 1 leads to the undesirable property, which the smoothed
bootstrap and Studentized intervals avoid, of a coverage error which fluctuates
rapidly with n, a. For instance, with a = 0-25, the interval / of nominal coverage 0-90
has true coverage 0-85 for n = 15, but true coverage 0-96 for n = 16. Smoothing and
Studentization yield confidence intervals which are generally more reliable, though,
as noted previously, methods which interpolate between confidence intervals / of
different known coverages may be preferred in practice over the more complicated
methods discussed here.

6. Outlines of proof s
Throughout we denote by F the distribution function of the sampling distribution

from which Xt,... ,Xn were drawn. Pu t / = JF', whenever the latter is well-defined.
Let <r* = a(l — a), pa =/(£J, pa2 =F"(E,a) (this notation being taken directly from
Reiss[18]), Q = •n^pa(T~1(XnT — £,a). Let 0,0 denote the standard normal density and
distribution functions respectively.

Proof of Theorem 2-1. Let llt l2 denote integers, depending on n and satisfying 1 ^
lx ^ l2 ^ n, which minimize |/?'—/?| where

Put a.i = lj/n and x} = n*pa o"'1^ — ̂ ). We may assume without loss of generality
that the limits

jj = lim a.} and yt = lim Xj
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both exist for j =1 ,2 , possibly as infinite values in the case of yy (The case where y}

or yt might not exist for some j may be treated via a subsequence argument.) In the
event that y1 < a or y2 > a we have

/?' = P{£,a < Xnl) + O(rr°) or /?' = P{£a > Xnl) + 0(n~%

respectively, for all c > 0, and it is readily proved that

lim sup7i* inf min {|P(£a < Xnl) -ft, \P{ga > Xnl)-ft)

min
using a slightly simpler version of the argument we shall give below. Therefore, we
may assume without loss of generality that yx = y2

 = oc.
Defining D} = n*pajo--*(Xnlj-£aj), observe that

It may be shown as in Reiss[18] that

uniformly in x a,ndj =1,2 , where the polynomial n does not depend onj. (Here we
have used the fact that a^a. Our definition of a^ as lj/n means that the 'rounding
error' from Sn in Reiss' expansions assumes a form which asymptotically does not
depend on n.) Therefore,

^ = «(«!)-<D(x8) + n-i2 + o(w-*), (6-1)

where z = ir{yx)<j>{yx) — 7r(2/2)0(2/2)> a n c^ w e define n(y)<j>(y) = 0 if y = ±oo.
In the event that l} is changed to ^ + 1 , £a is altered to

and so x} is changed to ̂  + »i~̂ cr~1 + o(n~5). Therefore, incremental adjustments to lx

and l2, which have no bearing on the limits of x1 and x2 (and hence, no bearing on the
value of z in (6-1)), alter the value of /?' by amounts whose absolute values equal

n-^a~1<p(yl) + o(n~^) and n'^a~1^(y2) + o(n'^), (6-2)
respectively. Such adjustments result in a coverage error which asymptotically
attains half the minimum of the values in (6-2). If I ^ /? < 1 then the smallest value
that min{<fi(y1),<fi(y2)} can take is 0(zi(1+^), and occurs when the interval I{lvl2) is
constructed to have (asymptotically) equal tails. If ft < \ then the smallest value is
0(2i-/j)> occurring when the interval is taken to be (essentially) one-sided. I

The proof of Theorem 2-2 is similar. The technique is first to condition on Xnr, and
to treat separately the cases

1 ^ k ^ r ̂  l2 ̂  n, i ^ r ^ l x ^ l 2 ^ n , 1 ̂  lx < l2 ̂  r ^ n.
For example, in the first of these cases, and conditional on Xnr, Xnl has the
distribution of the Zjth largest of r— 1 random variables from the distribution with
distribution function F(x)/F(Xnr), x ^ Xnr; and Xnli has the distribution of the
(n —12+ l)th largest ofn — r random variables from the distribution with distribution

function {F(x)-F(Xnr)}/{l-F(Xnr)}, Xnr^x<oo.

Proof of Theorem 41 . We give the proof only in outline, with the aim of identifying
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the expansion. A rigorous proof may be given along lines similar to those in [14, 18].
The technique is first to condition onXnr, and to derive an Edgeworth expansion of the
'density estimator' pa, using methods from [14]; and finally, to take expectations in
the distribution of Xnr, developing the expansion using methods from [18]. The
unusual regularity condition in K is needed to derive an Edgeworth expansion of the
conditional distribution of pa. As shown in [14], it provides a version of Cramer's
smoothness condition.

Define

Aa = E{pa\Xnr), va = nh var (&|Xnr), Q = n*paa~\Xnr-£,),
Q =

T . . . . ..
In this notation

P(Q ^x)=P(D^R,Q> 0) +P(D >R,Q^0). (63)
We shall develop an Edgeworth expansion of the first term on the right-hand side of
(6-3); an analogous expansion of the second term follows by symmetry.

Arguing as in [14] we may prove that there exist polynomials qx and q2, both
functions of Xnr, even and odd respectively, and of orders 2 and 5 respectively, such
that

P(D

Replacing Xnr by £a in q} we obtain a new polynomial qp say, whose coefficients are
non-random and bounded (although still depending on h), and which satisfies

l). Thus,

P(D

and it may be proved that

R,Q> 0) =
(6-4)

Also, the distribution of Q admits an Edgeworth expansion. Indeed, arguing as in
[18], we may prove that for g = <&(H) or

E{g{Q)} = jg(y)+{l + n^q(y)}<f>(y)dy + O(n-1), (6-5)
where q is an odd polynomial of degree 3. Combining (64) and (65) we deduce that

0) = r
Jo

2 (nh)-"> r
i-\ Jo

hT*}. (6-6)
Next we develop an expansion of the function H. Let

/ta= [* K(x)Ma-hx)dx, i£= T K{z)*f(£a-hx)dz-h/il,
J— CO J —CO
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denote respectively the mean, and (nh)'1 times the variance, of a regular density
estimator based on sample size n, kernel K and bandwidth h. I t may be proved after
some Taylor expansion that for constants aa, ba satisfying

Therefore,
R=H(Q) = (nA)*

= At i t e^ - l -n -VG + wJ + Opfa-1)}, (6-7)
where A = {nh)*v^/ia,u = xp^/i'1, v ~ aa/t~1-6a, and M; = xp^/i'1.

In the case w > 0 w e write (6-6) as

Jo

x{l+n-iq(y)}<f>(y)dy+\
J u

Jo

Changing variable in all but the first integral on the right-hand side, from y to z =
'1 — 1), we obtain in view of (6-7),

P(D ^R,Q>0) [
Jo

r°
+ A"1

Jo

+ A"1 r
J -

ru
= {i+n-lq(y)}<f>(y)dy

Jo

+ A"1 U(j>(u) I r {^(2) - 1 } dz + r 0(2) rfz

f00
(j>(z)dz

J -co

} \ \°°z{<!>(z)-l}dz+ I zd>(z)dz\

Jo
h-i}. (6-8)
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(Terms involving q} pass into the remainder, since the change of variable transforms
the integral /« to A"1/^ = A ^ / ^ + ^A"3), and j?aoqj{z)<f>(z)dz = 0.) Similar
arguments show that for u sj 0,

P(D ^R,Q>0) = OK

P(D > R, Q ^ 0) =
J —oo
+ A~2u(l -\u2)<f)(u) + 0{(nh)

and that for u > 0

0)
J—0

Combining the expansions from (6-8) down, and noting (6-3), we deduce that

P(Q < x) = P(Q ^ u)-nl ^
(6-9)

Observe next that A = (K^1 panh)\i + 0(h)}, and

u = x{l-pZ1{fia-pa) + O(h2')}, w =
Therefore,

P(Q ^ x)=P(Q < x)-p-^a-K)xcj>{x)-n^x2{

+ (nh)'1^ p'1 x{ \-\x2) <j){x) + 0{(nh)-* + n^h^ + h2s},
which implies (4-2). I

The proof of Theorem 4-2 is similar to that of Theorem 3-1, and so will not be given
here.
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