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Edgeworth and bootstrap approximations to estimator distributions in L ' regression are described. Analytic approximations based 
on Edgeworth expansions that mix lattice and nonlattice components and allow for an intercept term in the regression are developed 
under mild conditions, which do not even require a density for the error distribution. Under stronger assumptions on the error 
distribution, the Edgeworth expansion assumes a simpler form. Bootstrap approximations are described, and the consistency of the 
bootstrap in the L' regression setting is established. We show how the slow rate n-'l4 of convergence in this context of the standard, 
unsmoothed bootstrap that resamples for the raw residuals may be improved to rate n-*/' by two methods: a smoothed bootstrap 
approach based on resampling from an appropriate kernel estimator of the error density and a normal approximation that uses a 
kernel estimator of the error density at a particular point, its median 0. Both of these methods require choice of a smoothing 
bandwidth, however. Numerical illustrations of the comparative performances of the different estimators in small samples are given, 
and simple but effective empirical rules for choice of smoothing bandwidth are suggested. 
KEY WORDS: Density estimator; Edgeworth expansion; L' regression; Normal approximation; Smoothed bootstrap. 

1. INTRODUCTION 

In the general linear model with independent and iden- 
tically distributed errors, the L estimator of the regression 
parameter is widely recognized to enjoy superior robustness 
properties to the least-squares estimator (see, for example, 
Bloomfield and Steiger 1983). 

Asymptotic theory for the L' regression estimator was 
developed by Bassett and Koenker (1978). In this article we 
discuss in detail analytic approximations based on Edgeworth 
expansion of estimator distributions in this setting. We con- 
sider also use of the bootstrap in estimation of the sampling 
distribution of the L estimator. In particular, we establish 
consistency of the unsmoothed bootstrap and show how a 
faster convergence rate may be obtained using an appropriate 
smoothed bootstrap or by a simple normal approximation 
based on kernel estimation of the error density. 

Specifically, we consider the model 

Yi = B Z X i  + E i ,  1 I i I n, (1.1) 

where BO = ( ,&, . . . , pop) is a vector of unknown param- 
eters, xi  = (x i  I ,  . . . , xi,) is a vector of design points, and 
e l ,  . . . , E, are independent, identically distributed random 
errors from a distribution F with density sand  median 0. 
(Here and throughout the article, B0 denotes the true value 

Under the L I criterion, the estimator 8 of Po is chosen to 
of B .I 

minimize 

Bassett and Koenker ( 1978) showed that under appropriate 
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regularity conditions, 8 is asymptotically normally distrib- 
uted with 

where VO = n-I C ~ = I  Xixi'. 

Section 2 describes our three main practical approxima- 
tions to the distribution G of 8. These are the ordinary 
bootstrap approximation G , a Normal approximation e, 
and a smoothed bootstrap approximation 6. The perfor- 
mance of these methods is compared in a Monte Car10 study, 
which points to the advantages of the Normal approximation 
and the smoothed bootstrap over the unsmoothed bootstrap. 
Sections 3 and 4 develop theory that elucidates the numerical 
results presented in Section 2. In particular, Section 3 de- 
scribes an Edgeworth expansion of the distribution of 
n'l'(6 - Do). An important, nonstandard feature of that 
expansion is that it mixes lattice and nonlattice components, 
the former arising when we assume an intercept term in the 
Model ( 1.1). For related work on Edgeworth expansions for 
lattice random variables or for one-component lattice, see 
Yarnold (1972), Babu (1991), and Babu and Singh 
(1989a,b). Section 4 describes theory for the two bootstrap 
approximations and relates it to the Normal approximation. 
We show that the smoothed bootstrap and the Normal ap- 
proximation both have theoretical convergence rates superior 
to that of the ordinary bootstrap; the latter is only n-'14. For 
discussion of Edgeworth expansion methodology with the 
bootstrap see, for example, Bhattacharya and Qumsiyeh 
(1989) and Hall (1992). Sections 5 and 6 outline proofs of 
our main results. 

The use of the bootstrap with A4 estimates in linear models 
has been considered by Mammen ( 1989). For a more general 
discussion of resampling methods in regression analysis, see 
Wu (1 986). Hall (1988) has discussed Edgeworth expansions 
of the distributions of least-squares estimators in regression 
and has shown that quite different conclusions should be 
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drawn there. The differences arise partly from the fact that 
variance is easily estimated root-n consistently in the least- 
squares case; no density estimation is involved. Withers 
(1987) has described expansions, in n - l ,  of the cumulants 
of a^. These formulas enable one to provide Edgeworth ex- 
pansions of the “continuous” part of the distribution of &, 
but do not express the lattice component. 

2. APPROXIMATIONS TO DISTRIBUTION OF @ 
Assume the model described in Section 1, and let @ have 

the definition given there. Put ii = Yi - bTxi, 1 I i I n. If 
we suppose that one component (the first) of xi is identically 
unity, then the median of the &’s, as defined by minimizing 
C I i; - med. 1 ,  equals 0. Let e? , . . . , e: denote values drawn 
randomly, with replacement, from the collection i l ,  . . . , 
in, and put 

n 

Y ?  = & * X , + C ;  and L*(/3)= 2 IY? - B T x i ) .  

Choose jf? to minimize L*, and let z = ( z I ,  . . . , zp)*E Rp. 
The bootstrap estimator of 

G(z)  = P {  n112(6; - 0 0 , )  I z;, 1 ~j I p }  

I =  I 

is given by 

G(z) = ~ ( n ’ / ’ ( f i ?  - 4.) 5 z,, 1 I j i p J X } ,  

where X = {(xi, Y ; ) ,  1 I i I n }  denotes the original data 
set. We shall show in Section 4 that the error in this ap- 
proximation is of size n-’14, as n + co . 

As noted in Section 1 ,  the asymptotic variance ma- 
trix of n”’(@ - Do) equals {2f(0)}-2V;’, where Vo 
= n-l C xixT andf(0) = F’(0).  This suggests a Normal 
approximation based on a kernel estimator off(O), as follows. 
Define 

n 

f(0) = ( n h ) - ’  2 K ( i i / h ) ,  (2.1) 
i= 1 

where K is a symmetric density function. It may be shown 
that if h - const. n-l15, then n2IS{f(0) - f ( O ) }  is asymp- 
totically Normal N ( b l ,  b?) ,  where I bl I -= co and 0 < b2 
< 00. Therefore, if we take d to be the distribution func- 
tion of the p-variate Normal (0, %) distribution, where 
% = {2f(0)}-2V01, then 

SUP ~ G ( z )  - G ( z ) ~  = 0 p ( n - 2 / 5 ) .  (2.2) 
I 

Sufficient regularity conditions are those of Theorem 4.1 and 
that the symmetric density K be bounded and compactly 
supported. See Silverman (1 986, chap. 3) for a discussion of 
kernel density estimation. 

A convergence rate similar to that in (2.2) may be achieved 
by using the smoothed bootstrap, as follows. Generalizing 
(2.1), define 

n 

f ( x )  = (nh1)-’ 2 K { ( x  - ; ; ) / I l l } ,  -co < x < co. 
i= I 

Conditional on X, let c ! ,  . . . , denote independent vari- 
ables drawn from the population with density j=. (Alterna- 
tively, we may center this distribution at its median first, but 

it may be shown that this does not affect the convergence 
rate given in (2.3).) Put 

Y f  = b T x i + e f  and L t (P )=  2 I Y f  - @ * x i [ .  
n 

i= 1 

Choose st to minimize Lt and define 
G‘(z)=  P { n ’ / 2 ( P ^ j - @ j ) s z j ,  1 S j l P l X } .  

The argument used in Section 6 to prove Theorem 4.1 is 
readily modified to show that if hl - const. n - ‘ / ’ ,  then for 
each 1, X > 0, 

SUP IG(z) - G ( z ) ~  = 0 p ( n - ( 2 / 5 ) + 1 ) .  (2.3) 

A longer proof allows the right side to be refined 

The discussion here relies crucially on the fact that the 
kernel K is nonnegative. Should K take negative values, then 
of course it is not a density, and so resampling from the 
distribution whose density is f is problematical. This diffi- 
culty has been discussed by Hall, DiCiccio, and Romano 
( 1989), who suggested numerical integration as one solution 
to the problem. Another solution is to slightly modifyf if 
K should take negative values, retaining its good convergence 
properties but removing its negativity. 

Next we describe numerical results that compare the three 
approximations G, d ,  and G of G We consider the case p 
= 2 of the model ( 1 .  l),  where 

(2.4) 
with Pol = 1.0, Po2 = 2.0, and x12, x22, . . . , xn2 fixed design 
points generated from a uniform distribution on [0, 11.  Four 
distributions for the independent errors e l ,  . . . , c, are con- 
sidered: standard normal N(0, l), the normal mixture 
.9N(O, 1) + .lN(O, 5 ) ,  the double exponential with density 
f(c) = ie-l‘l, and the logistic with density f ( ~ )  = e-’/ 
( 1 + e?). Three sample sizes were considered n = 1 1, 2 1, 
and 51. 

For each of the 12 combinations of error distribution and 
sample size, the “exact” distribution G of n1/2(a^ - &) was 
determined from a simulation of 5,000 data sets from the 
model (2.4), at 2,500 points of a regular grid in [ - 17.5, 17.51 
X [-17.5, 17.51, which covers the range of values of 
ni l ’ (& - Po) experienced in the simulations. 

From a given data set, we may construct three approxi- 
mations to G--6, 6, and G-as described previously. In 
the study, the bootstrap approximations G and G were es- 
timated at each of the 2,500 grid points by drawing 2,500 
resamples from the given data set, and d was evaluated nu- 
merically at the same points. The quantities sup I G - G I, 
sup I d - GI, and sup 1 G - GI were then evaluated, and 
these error measures were averaged over 2,000 simulations 
from the model. The resulting summaries of the accuracies 
of the three estimators are given in Table 1 .  

The smoothed bootstrap estimator G and the normal ap- 
proximation d both depend on the choice of a kernel func- 
tion K and a bandwidth. Throughout the simulation, the 
Epanechnikov kernel was used. This has the form 

l l ~ l l ~ ~  

to 0 ~ ~ 5 ) .  

Yi = Pol + POZX;Z + c;, 1 I i I n, 

~ ( t )  = {3/(4\/J)> (1  - ( t 2 / 5 ) } ,  if ~ t l  5 G, 
= 0, if otherwise. 
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Table 1. Average Over Simulation of sup 1 G - G I (UNS), sup I G - G I (SM), and sup 1 G - G I (NOR) for the Regression Model 

SM NOR 

Error distribution UNS c, = .5 c, = 1.0 Cy = 1.5 cp = .5 cp = 1.0 cp = 1.5 

Normal n = l l  
n = 21 
n = 51 

Normal mixture n = 11 
n = 21 
n = 51 

Double exponential n = 1 1  
fl = 21 
n = 51 

Logistic n = l l  
n = 21 
n = 51 

,25221 
.20237 
,15533 

,25886 
,21263 
.15889 

,24493 
,19619 
,15146 

.26307 
,20867 
. 1 5883 

,15123 
.11476 
.08226 

,14731 
,10529 
.07562 

,13538 
,10774 
.08915 

,15130 
,11014 
,081 79 

.12348 

.09462 

.07248 

,18052 
.15770 
.13877 

,16328 
,16723 
,16521 

,13206 
,10322 
.07709 

,14585 
.12546 
.lo428 

,241 17 
,24094 
,23373 

.22285 
,24767 
,2491 0 

.16563 

.15042 
,12176 

,15920 
.11915 
.08200 

,15245 
,10554 
.07431 

,14178 
,10745 
,08540 

.15974 

. 1 1353 
,081 27 

,12410 
,09325 
.06954 

,18377 
,15960 
.13952 

,17013 
,16989 
,16436 

. 1 3205 
,10220 
,07231 

,15517 
,13013 
. 1 0482 
,25157 
,24626 
,2361 6 

.23570 
,25458 
,25062 

,17550 
.15525 
.12050 

NOTE: Simulation size was 2.000. 

Letting $* denote the empirical variance of the residuals 
il, . . . , in, we investigate the following empirical rules for 
choice of the bandwidths hl , h: 

hl = ~ ~ $ n - ' / ~ ,  

h = c2$n-115 (2.5) 
for values of cl, c2 to be chosen. In the simulation these 
values are taken, arbitrarily, as cl, c2 = .5, 1.0, or 1.5. 

Random number generation was done using the NAG 
subroutine library and L I minimization performed using 
the NAG routine e02gaf. The normal approximation d 
was evaluated using the NAG routine gOlhaf for compu- 
tation of the bivariate normal distribution function. 

The results in Table 1 highlight the slow rate of conver- 
gence of the unsmoothed bootstrap (UNS) in this context. 
Each figure in the table has a standard error of no more than 
.OO 15. The smoothed bootstrap (SM) and normal approxi- 
mation (NOR) methods improve greatly and significantly 
on the UNS, as the theory predicts. These two improved 
estimators rarely perform significantly differently from each 
other. The figures suggest that, at least for the simple case p 
= 2 considered here, the NOR method is to be preferred 
over the computationally more expensive SM. Success of 
the simple bandwidth selection rules (2.5) is striking; taking 
cI = c2 = .5 always gives considerable improvement over the 
UNS, although optimal choice of bandwidth clearly depends 
on the underlying error distribution. 

3. ANALYTICAL APPROXIMATION OF DISTRIBUTION 
OF 6 

We assume the model described in Section 1. Our attention 
is mainly devoted to the case where one component (which 
we take to be the first) of 60 is a location or intercept constant, 
and those components of the design vector xi that do not 
correspond to the location constant vary in a reasonably 
smooth manner. Other cases are treated in Remarks 3.5 and 
3.6 following the first theorem. The second theorem spe- 
cializes the first result to the case where the error distribution 
is smooth. 

We begin by describing the related Edgeworth expansion 
in a simpler setting. Then we show how this may be devel- 

oped into a very general expansion of the distribution of 
6. Let z I ,  . . . , zp denote real numbers, and put 

Let J, , 1 I i I n ,  denote independent random variables 
taking the values f l  with probabilities 1/2(1 f p i ) ;  note 
that E( .Ti) = pi and put A; = Ji - p i ,  and let Z, be the p 
vector whose j t h  component is xijAi. Write {X,} for 
the average of the p-variate cumulant sequence and V 
= n-' C (1 - pLf)xixT for the average variance matrix, of 
the vectors ( x i l A i ,  . . . , X ~ ~ A ; ) ~ ,  1 I i I n (Bhattacharya 
and Rao 1976, p. 71; the Xi there is here replaced by x; ,A;);  
and let Pk( -&" : { Xy } )  denote the usual polynomial mul- 
tiple of the N(0,  V) density &v (Bhattacharya and Rao 1976, 
pp. 53-54). We generally shall assume that x i l  = 1 for 
each i. 

Let S = ZZ; . If the vectors Z, had continuous distribu- 
tions, then it would typically be the case that the distribution 
of the vector S = (SI , . . . , Sp)T would admit an Edgeworth 
expansion of the form 

P(n-'12S E B )  

uniformly in a large class of Bore1 sets B. See, for example, 
Bhattacharya and Rao ( 1976, p. 194). But here the first com- 
ponent of S has a lattice distribution, and the other p - 1 
components have discrete distributions. 

Nevertheless, we claim that an analog of (3.2) is true, which 
allows for the latticeness of the distribution of S1 and ignores 
the discreteness of S2, . . . , S,. Most important, that analog 
produces an Edgeworth expansion of the distribution of 
n ' / 2 ( 6  - Do) under regularity conditions that do not even 
demand a density for the error distribution. The reader is 
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referred to Bhattacharya and Rao (1976, chap. 5) for a dis- 
cussion of Edgeworth approximations in the lattice case. 

Let r 2 0 be fixed. 

Theorem 3.1. Assume that x j l  = 1 for all i, and that 
( x i 2 ,  . . . , x j p )  I- for 1 I i I n represent independent values 
of a (p - 1) vector X = ( X 2 ,  . . . , X p ) T  that satisfies the 
moment condition 

P 

2 E(Ix,I~+~) < (3.3) 
j = 2  

and the CramCr-type condition 
P 

E cos tI + C tjXj < 1 
0ar1s*,t:+. SUP . . + t j > $  1 ( j = 2  11 

for all 7 > 0 (3.4) 

and is such that with X probability 1, the average variance 
matrix V converges to a proper, nonsingular limit. Assume 
too that the distribution function F of the error distribution 
is Holder continuous at the origin and satisfies F(0) = t .  
Define uj = -n-Il2 2; pixi i .  Then for a sequence of design 
points x1 , x2,  . . . arising with X probability 1 and for { > 0 
sufficiently small, 

uniformly in vectors z = (zl, . . . , z ~ ) ~  satisfying llzll 
= ( C  z t ) ’ / ’ s  rn’/’. 

The qualification “with X probability 1” means “for se- 
quences xI  , x2, . . . arising with probability 1 as independent 
realizations of X ”. 

Remark 3.1. The moment condition (3.3) is required 
because the ( k  + 2)th sample moment of the collection 
{ x I  , . . . , x,  1 appears as a coefficent of the polynomial Pk. 
Because Pr+I is a major contributor to the remainder term 
O( n - ( r + 1 ) / 2 )  in ( 3 . 9 ,  the remainder would be of larger order 
than n-“+”/2 if the ( r  + 3) moment were infinite. 

The Cram&-type condition (3.4) differs 
from the more usual CramCr condition, 

Remark 3.2. 

< 1 for all 7 > 0 (3.6) 

(see, for example, Bhattacharya and Rao 1976, p. 207), in 
that it involves only the cosine function, it is one-sided (i.e., 
we do not take the absolute value of the expectation in (3.4)), 
the range of t l  is bounded, and the coefficient of t l  is non- 
random. Condition (3.4) holds if ( X 2 ,  . . . , X,) satisfies the 
usual ( p  - I)-variate Cramtr condition and if C E ( X f )  

< co (see the Appendix). In particular, it is sufficient for the 
distribution of ( X 2 ,  . . . , X,) to have finite variance and a 
nondegenerate continuous component. 

The condition that llzll 5 ( n 1 / ’  is hardly 
important, because it is readily deduced from (3.5) that 

Remark 3.3. 

Remark 3.4. The factor 2n-’l2 outside the summation 
sign in (3.5) derives from the lattice component SI = 2 A;. 
Note that the span of the lattice of Ai equals 2 and that the 
density of the discrete random variable SI is of size n - ’ I 2 .  

Remark 3.5. If there were no intercept in the linear 
model-for example, if xI, . . . , x, were a realization 
of a sequence of independent p vectors distributed as 
(XI, . . . , Xp)Tand satisfying (3.6)-then the lattice compo- 
nent of the expansion (3.5) would vanish. In this event the 
right side of (3.5) would be identical to that of (3.2), with 

There is a version of the theorem for the 
case of regularly spaced design, in particular where xi 
= (1, i / n ,  (i/n)’, . . . , ( i / n ) p - l ) T ,  1 s i I n. In this cir- 
cumstance the conditions on the X distribution, including 
(3.4), are of course dropped from the theorem. 

To conclude, we suppose that the underlying error distri- 
bution F has three bounded derivatives in a neighborhood 
of the origin, with f = F’ andf(0) # 0. Assume also the 
conditions of Theorem 3.1 for the case r = 1. We claim that 
in this circumstance the expansion (3.5) assumes a simpler 
form. Indeed, the asymptotic symmetry of the variables Ai 
ensures that third-order cumulants equal O( n - ’ I 2 ) ,  whence 
PI(-+o,v  : { xY}) = O(n-II2). This term may be omitted 
from (3.5) if we seek the latter expansion only up to a re- 
mainder of O( n-’ ). It may be shown by Taylor expansion 
that 

B = n (-0, U j ] .  

Remark 3.6. 

v = vo = O(n-’), 

= 2f(O)VOZ + n - ’ / 2 f ’ ( o ) a ( z )  + O(n- ’ ) ,  

v = (UI, . . . , up)T 

where z = ( z I  , . . . , z , ) ~ ,  
n 

( V O ) ~ ~ ~ ~  = n-I 2 xijlxii2, and 
i= I 

n 

( U ( 2 ) ) j  = C ( X T 2 ) t X j j .  
i= I 

(The formula for V follows from the fact pi = O(n-’I2) . )  
Arguing thus, we may prove the following result. 

Theorem 3.2. Assume the conditions imposed in the 
previous paragraph. Then for a sequence of design points 
XI,  x2, . . . arising with X probability 1, and for { > 0 suffi- 
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ciently small, 

P{ n1/2(/$ - po,) I z,, I I j I p} 
n n 

X &,v,{ n-Il2(k - P I ) ,  ~ 2 ,  . . . 9 up} d ~ 2 ,  . ., dup 

+ O(n-1) (3.7) 

uniformly in vectors z = (zl, . . . , zplT satisfying llzll 
- < { n 1 I 2 .  

Owing to the discrete rounding errors of 
size n - 1 / 2  arising from the series in (3.7), the quantities pl 
and u1 appearing there may not be replaced by their Taylor 
expansions. We do not suggest that (3.7) be used to develop 
a numerical approximation to the distribution on the left- 
side, but state it here because of its theoretical interest. 

Remark 3.7. 

4. THEORY FOR BOOTSTRAP APPROXIMATION 
TO DISTRIBUTION OF 6 

We begin by describing the basic bootstrap approxima- 
tions, G, ofthe distribution G. (Refer to Sec. 2 for notation.) 
Our claim is that the error between G and G is of order 
n-(1/4)+" for each g > 0. In particular, the unsmoothed 
bootstrap approximant G consistently estimates G, as our 
next theorem shows. 

Assume the conditions of Theorem 3.1, 
except that we strengthen (3.3) by asking that P( IIX 11 I C) 
= 1 for some C > 0 and insist that the distribution function 
F of the error distribution have three bounded derivatives 
in a neighborhood of the origin, with F'(0)  # 0. Then for 
each g, X > 0, and for a sequence xI, x2, . . . arising with X 
probability 1, 

Theorem 4. I .  

SUP lG(z) - G ( z ) ~  = Op(K(1/4)+").  
llzllsx 

Remark 4.1. A longer proof than that given here may 
be used to show that the convergence rate of G to G is actually 
O,<n-'l4), not just Op(n-(1/4)+q).  We shall make clear in 
our proof the changes that are needed. The rate n-Il4 cannot 
be improved on, as we briefly explain now. By comparing 
Edgeworth approximations to the functions G and G 
(see (3.7) and (6.3)), we may deduce that d(z )  - G(z) 
= ~ , ( n - ' / ~ )  if and only if 6, - uj = ~ , ( n - " ~ ) ,  for 1 5 j 
I p, where 6, (defined in Sec. 6) is an empirical approxi- 
mation to u, (defined in Sec. 3). The actual formula for f l j  is 
rather complicated, but this quantity may be shown to have 
the same first-order asymptotic properties as 

x1j Z ( ~ I <  0) C I {  ~i E (61,oI) [ i:l 
5, = - n - ' / 2  

I= 1 

n 1 - I ( & >  0) C I { & ;  E [O ,  61) )  , (4.1) 
i= 1 

where 61 is given by (3.1). Now the right-side of (4.1) is a 
sum of independent random variables with mean uj and 
variance asymptotic to a constant multiple of n-'I2. In fact, 
it is asymptotically Normally distributed with this mean and 

variance and closely resembles a kernel-type density esti- 
mator with variable bandwidth h = 6l -N n-'I2. The variance 
of such a quantity is of course approximately given by 
(nh)-' N n-Il2.  Therefore, ijj - uj and 6, - uj are of size 
(n-1 /2)1 /2  = n-1/4 , as claimed earlier. 

As noted in Section 1, the asymptotic vari- 
ance matrix ofn1/2(6 - 8) equals {2f(0)}-2V;1, where Vo 
= n-' C x j x T  andf(0) = F'(0) denotes the error density 
evaluated at the median. Indeed, it may be proved that under 
the conditions of Theorem 4.1, 

(4.2) 
Therefore, a Normal approximation to the distribution G of 
n I/'( 6 - Po) may be used, provided that we estimate f(0). 
Should our estimate off(0) be accurate to O( n-'), where 0 
< c < 1 /2, then in view of (3.7) and (4.2) our Normal ap- 
proximation to G will also be accurate to O( n F). 

As indicated in Remark 4.1, the conver- 
gence rate n-'I4 comes about because the bootstrap is im- 
plicitly like using a kernel estimator to estimate f(0) and 
taking the bandwidth to be h = n-'/'. Of course, h = n-'I2 
is too small a smoothing parameter for such an approach: 
taking h to be of size n-Il5 provides a faster convergence 
rate of n-2/5  when estimatingf(0) (see, for example, Silver- 
man 1986, p. 40ff). This leads to the Normal approximation 
6, suggested in Section 2. 

Result (2.2) shows that d improves on the 
bootstrap estimator G, but it has the drawback of requiring 
the choice of the bandwidth h . This may be done empirically, 
using methods such as those suggested by Silverman (1986, 
p. 43ff). Higher orders of approximation may be obtained 
by using a higher-order kernel Kin definition (2.1) (see, for 
example, Silverman 1986, p. 66ff). But becausef(0) generally 
cannot be estimated root-n consistently without making 
parametric assumptions, then the convergence rate in (2.2) 
generally cannot be improved to Op( n- ' I2) .  

Our discussion in Remark 4.3 of the boot- 
strap approximation G, which suggests that the bootstrap 
implicitly estimates the variance of 6 with an error of order 
n-'I4, is in line with the bootstrap's peformance in estimating 
the variance of a sample quantile. There the convergence 
rate is also n-Il4 (see Babu 1986; Hall and Martin 1988). 
The issue of smoothing to improve this rate was treated by 
Hall, DiCiccio, and Romano (1 989). 

5. PROOF OF THEOREM 3.1 
Observe that L(B) is a convex, headdown, cup-shaped 

surface in pdimensional space with its vertex at 6, and that 
with probability 1, @ I B if and only if dL( B)/dB 2 0, where 
both inequalities are interpreted element-wise. It follows, af- 
ter some algebra, that 

~ { n l l ~ ( r B j  - pOj) I zj, I I j I p)  

Remark 4.2. 

var{n1/2(b - Boo>} = {2f(0)}-2V;1 + O(n-'). 

Remark 4.3. 

Remark 4.4. 

Remark 4.5. 

where A, = sgn( EI - n-It2 c k  xlkzk) - PI. Put Sj = CI XI;&, 
1 I j I p. We smooth S2,  . . . , S, by adding to them the 
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variables y1-wN2, . . . , n-wNp, where the Nj's are independent 
standard normal variables independent also of cl, . . . , en,  
and w > 0 is a large, fixed, positive constant. We seek 
the joint density ( q ,  say) of T = ( T I ,  . . . , Tp)= = ( n-I/'SI, 
n- ' l2S2 + n-wNz,  . . . , n - 1 / 2 S p  + nPWNp) .  Put S 

1315 

dependent standard normal random variables independent 
of X and of E : ,  . . . , c:. We need this version of Theorem 
3.1 only up to a remainder of order n - ' l 2 ,  and so that is the 
extent to which we state it here: 

= (Sl, . . . , s p y .  G ( Z )  = 2n-1/2 
For any Borel set B E Rp, 

P(T E B )  
,l 

- q{n- ' /2(k - u }  with probability 1, where V denotes the average p-variate 
variance matrix of the vectors (xllA:, . . . , x1,A: I T ,  1 I 1 

- F JuERp-l:(n-ll2(X-pl ),u)EB 

If we demonstrate that 
0 

(5.1) I p, conditional on X, and i j j  = -n-I/' 
shown by Markov's inequality that for each [, rl > 0, 

It may be 

n 

i j j  - 2n-'/2f(0) 2 xjr& 
I= I 

Details are given in our technical report. More simply, it 
may be proved that V = Vo + Op(n- ' /2 ) ,  where Vo was 
defined iust before Theorem 3.2. Therefore, directly from 

where qr denotes the integrand of the integral on the right 
side of (3.3, then we may deduce from (5.1) that 

SUP I P(TE B ) -  Qr(B)I = O(n-''+1'/2), (5.3) (6.1), 
BE 2( 

where Q, is the signed measure whose density is qr and 8 is 
the class of all Borel subsets of Rp.  Now the class 6' of all 
semi-infinite p-dimensional rectangles n (-m, a,] satisfies 

G( z) = 2n-1/2 2 s - * * s 
ksFl+n-~123, ujsB,,Zs j s p  

x 40,",{n-1/2(k - i l l ,  u 2 , .  . . , up} 

SUP J 4 O , I p ( Z )  dz = O(17) X duz, . . . , du, + 0 , ( n - ' j 2 ) .  (6.3) 
Theorem 3.1 follows from combining this formula with (6.2) 
and (3.7). 

BE@ (as)''  

as 17 $ 0, where (dB)" denotes the set of all points in Rp 
distant 9 or less from the boundary of dB. Therefore, with 7 
- - n - ( w - l )  

SUP I P(T E B )  - P(n- ' / 'S  E B)I 
APPENDIX: VERIFICATION OF (3.4) 

and w > ( r  + 3)/2, 

B E @  Here we outline a proof that if E ( X :  + - - - + X ; )  < co and 
5 2nP( I N I  I > n)  + 2 sup P{ T E ( d B ) " }  (X2, . . . , X,) satisfies the usual CramCr condition, 

1 - 6 , ( q )  = sup 
BE@ 

IE[exp(i(tZX2 + - - - + t,X,)}Il < 1, 
1;+ .  . .+I;>$ 

= O ( ~ - ( W - ~ ) )  = O ( n - ( r + l ) / 2  1. 
all 0 > 0, 

then the modified condition (3.4) also holds. We treat only the case 
p = 2, because p 2 3 differs only in that the notation is more com- 
plex. 

The theorem follows from this result and (5.3). So the proof 
may be completed by deriving (5.2), for which the reader is 
referred to our technical report, & Angelis, Hall, and Young 
(1 99 1) on which this article is based. 

Given 7 > 0, choose 0 < p < I so small that 

6. PROOF OF THEOREM 4.1 1 - 6 2  = sup {cos tl + ( 1/2)p272E(X:) 
(I-p2)11 V<l,<* 

Let 6, be as defined in Section 3, and put + pqT(EX:)1 /2 }  < 1. 

If 0 I t l  5 T, t :  + t :  > 0' and t :  I p 2 q 2 ,  then ( 1  - p2)1 '2q  s tl 

I T, and also 
= - ~ P ( o I E T  <611X) if6120. E(cos(t1 + t z X z ) }  = E[cos t l  - (cos t , ) {  1 - cos(t2Xz)} 

Then, conditional on X, the variables A: = sgn(cf - (sin tl)sin(t2X2)] 
- n-If2&) - f i 1  are independent and identically distributed 
with 0 mean, taking the values +1 - with probabilities 
i ( l  + ir). Put S,! = 21 xljA:, 1 I j  I p. A version of 
Theorem 3.1 may be derived by arguing as in Section 5. The 
"smoothing" part ofthat method can be conducted as before, 
working with T* = (n- IJ2S:,  n-1/2S2* + n-wN2, . . . , 
n-'I2S: + K w N p )  instead of T, where N2,  . . . , N, are in- 

Furthemore, i f t ;  , p 2 0 2 ,  then 
I E{cos(tl + t 2 X 2 ) }  I = IRe e x ~ ( i t ~ ) E ( e x p ( i t ~ X ~ ) }  I 

5 IE{exp(it2X2)}I 5 1 - 6 1 ( p d .  
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Therefore, 

sup O r f , r r * L  ,++$ 

which verifies (3.4). 

E{cos(tl + t2X2)} 5 max(1 - & ( p r ) ) ,  1 - 6,) < 1, 

[Received December 1991. Revised December 1992.1 
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