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 Summary

 The question of smoothing when using the non-parametric version of the bootstrap for estimation
 of population functionals is reconsidered. In general, there is no global preference for procedures
 based on a smoothed version of the empirical distribution rather than the empirical distribution
 itself. In the majority of problems smoothing influences only the second order properties of the
 estimator, while requiring greater computation and choice of a suitable amount of smoothing.
 There are problems, however, where smoothing may affect the rate of convergence of the
 estimator. We discuss an example of such a problem and consider issues relating to empirical choice
 of whether to smooth, and by how much. A procedure based on the bootstrap for choice of
 bandwidth is suggested and illustrated.

 Key words: Bandwidth; Bootstrap; Functional estimation; Mean squared error; Smoothed boot-
 strap; Smoothing parameter.

 1 Introduction

 In its generally understood form, the non-parametric bootstrap estimation procedure
 introduced by Efron (1979) operates as follows. We require to estimate some sampling
 property of a pivot T(Xi,...., X,,,; F), where {XI, ... , X,,,} denotes an independent,
 identically distributed sample of size m from F, with F completely unspecified. A random
 sample {x1,. .. , x,,}, with empirical distribution F,,, from that distribution is given. The
 bootstrap estimates the quantity of interest by simulating the sampling distribution of
 T(Y1,..., Y,; F,), for bootstrap samples of size m drawn from F,. Such a bootstrap
 sample {Y1,,..., Y,,,} is drawn by successively sampling, with replacement, from the
 observed data {x1, ... , x,,}. In this paper we adopt the convention of denoting, as here,
 the observed sample data by lower case letters and the underlying random variables by
 capitals.

 The bootstrap should be viewed as giving general expression to an old idea which
 estimates a population functional of interest, a-(F) say, by its empirical version a(F,,).
 The power of the resampling aspect of the bootstrap lies in its ability to extend this
 estimation to functionals a which do not admit simple closed form expressions in terms of
 F.

 In many applications it will be natural to suppose that the underlying distribution F is
 continuous with a density f. Several authors have discussed the superficially sensible idea
 of replacing the discrete distribution F,, in the estimation of a(F) by a smoothed version
 of that empirical distribution. Within the bootstrap literature see, for example, Efron
 (1979), Efron (1982), Silverman & Young (1987), Young (1988), Hall, DiCiccio &
 Romano (1989) and Wang (1989). This paper reviews issues and results relating to this

This content downloaded from 128.252.121.153 on Tue, 14 Jun 2016 19:49:55 UTC
All use subject to http://about.jstor.org/terms



 46 DANIELA DE ANGELIS and G. ALASTAIR YOUNG

 idea. A general account of non-parametric functional estimation is given by Prakasa Rao
 (1983).

 Our discussion is phrased in terms of bootstrap estimation, but since our arguments are
 based on the properties of estimators of simple population functionals, the conclusions
 presented extend immediately to functional estimation problems where there is no
 immediate bootstrap interpretation.

 When is a smoothed bootstrap to be preferred to the standard, unsmoothed, bootstrap?
 If smoothing is to be used, how much should be applied? How might a suitable degree of
 smoothing be chosen empirically? Is it possible to reproduce theoretical advantages of
 smoothing when the degree of smoothing is chosen empirically?

 In the paper we focus our discussion on the basic issue of whether smoothing is
 advantageous. In Section 2 we discuss smoothing in the context of estimation for
 differentiable functionals, where it is easy to characterise circumstances when smoothing
 reduces the mean squared error of estimation, and the second order nature of any
 reduction. In Section 3 consideration is given to circumstances where first order
 improvements in the performance of the bootstrap estimator can be obtained by
 smoothing. An important practical issue is that of empirical choice of the smoothing
 bandwidth. This issue is addressed in Section 4, and a practical example given in Section
 5. Section 6 contains some concluding remarks.

 2 Smoothing and Differentiable Functionals

 To date, most theoretical attention has focussed on the issue of whether a reduction in
 mean squared error may be obtained by smoothing when estimating population
 parameters expressed in the form of simple functionals of F: see Silverman & Young
 (1987), Young (1988) and Young (1990). Conclusions reached for such functionals may be
 readily generalised to a wider class of differentiable functionals, which includes most of the
 estimation problems to which the bootstrap is routinely applied.

 Consider estimation of a linear functional

 ac(F) = EF{a(X)} = fa(t) dF(t)= fa(t)f(t) dt. (2.1)

 We will suppose here for simplicity that the distribution F and its density f are univariate.
 Extensions to the multivariate case and different forms of smoothed bootstrap to that
 described below are considered by Silverman & Young (1987) and Wang (1989).

 Given a set of independent and identically distributed observations {xl,..., x,,} from F, the unsmoothed bootstrap estimator of a(F) is

 ac(F,) = n-1 ,a(xi),
 i=1

 while a smoothed bootstrap estimator is

 a(A) = fa(t) dA(t) = a (t)i(t) dt.

 Here fh(t) is the kernel estimator of f(t),

 h(t) = (nh)-f K{(t-x,)/h}, (2.2) i=1
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 and

 A(t) = h(z) dz. (2.3)

 The kernel function K(t) is assumed to be symmetric and satisfy

 fK(t)dt=l1, fK(t)tdt = 0, K(t)t2 dt=r K10.
 To stress the effect of the smoothing on the form of the estimator, note that for such K

 the smoothed estimator a(A) may be written

 ac(Fh) = n-1 a Kh(Xi), i=1

 where a * Kh denotes convolution of the function a with the rescaled version Kh of the
 kernel function given by Kh(x) = K(x/h)/h.

 The smoothing parameter or bandwidth h is to be specified. The limiting case h = 0
 corresponds to the unsmoothed bootstrap estimator.

 For general usage of the smoothing method in the bootstrap context, where resampling
 may be required to construct the estimator, it is essential to be able to sample from Fh.
 The advantage of the kernel method of smoothing over other possible procedures, based
 on orthogonal series etc., lies in the simplicity of drawing samples from Fh: if

 Y = x, + hE, (2.4)
 where I is uniformly distributed on {1, . . . , n } and E has density function K, then Y has
 distribution Fh. The kernel smoothing therefore adds somewhat to the computation
 involved in constructing the estimator, but does not require explicit construction of Fh.

 It is easily seen that consistency of the bootstrap estimator a(Fh) requires h---0 as
 n--->oo. It is also easily established that, under suitable smoothness conditions on a,
 specifically that it has derivatives of the first three orders, the mean squared error of

 MSE (h)= EF[{C t(Fh)- c-(F)}2

 admits the expansion

 MSE (h) = Co/n + Clh2/n + C2h4 + O(h4/n + h6), (2.5)

 as h --->0, n- oo, with Co= varF {a(X)} = n varF {ca(F,)}, C1 = covF {a(X), a"(X)} and
 C2 = [EF{a"(X)}]2/4.

 It is immediate from (2.5) that if C, < 0 then, for some h > 0, the mean squared error
 of the smoothed bootstrap estimator will be less than that of the unsmoothed estimator,
 at least for large enough sample sizes. A full derivation of this result was first given by
 Silverman & Young (1987). It will, however, by no means always be the case that C, <0.
 As a simple illustration, it is easily seen that with a(t) = t4 - 7t2, C1 <0 when F is standard
 normal, but C1 > 0 when F is exponential with mean 1.

 Define m(h) = Clh2/n + C2h4. If C1 > O, m(h) is minimised by h* = 0, while if C, <0,
 m(h) is minimised by h* = IC1I/(2C2n) . Note that in the latter case, though negative,
 the minimum of m(h) is of order n-2. From (2.5) it is seen that

 MSE (h) = Co/n + m(h) + o(n-2), (2.6)

 uniformly in En-f h < E- -, for each E >0. It is then seen that the value hop, which
 minimises MSE (h) is asymptotic to h*.
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 The conclusion then is simple. Smoothing is not always advantageous, and even when it
 is, the smoothing only has a second order effect on the convergence of the bootstrap
 estimator. A point of great importance to be stressed is that whether or not smoothing is
 advantageous depends crucially on the underlying F, which is in practice unknown.
 Absence of any global rule on whether smoothing is advantageous would seem to detract
 considerably from the appeal of the smoothing idea.

 It is a feature of the estimation problem considered above that none of the established
 methods of modifying the kernel estimator (2.2), of rescaling (Silverman & Young, 1987),
 of using higher order kernels (Hall, DiCiccio & Romano, 1989), or variable kernels
 (Silverman, 1986, Section 2.6), will affect the rate of convergence of the bootstrap
 estimator. Such modifications may, of course, affect the second order term in the
 expansion (2.5) for the mean squared error: see Silverman & Young (1987) and the
 examples therein. Use of a modified estimator may be indicated for any specific problem,
 and results analogous to those presented here are easily obtained for such cases. An
 operational weakness of the smoothing approach is the need to decide in advance the
 form of smoothing to be performed, as well as the amount of smoothing to be applied.
 This weakness is perhaps most apparent in a multivariate setting when the decision has to
 be made of whether a different degree of smoothing should be applied in each coordinate
 direction or a single smoothing parameter used.

 Further, we may note that the optimal smoothing parameter for the estimator (2.2) of
 f, in terms of mean integrated squared error, is of order n-"5 (Parzen, 1962). Therefore,
 even if smoothing is considered worthwhile in the bootstrap estimation, the optimal
 amount of smoothing will generally be small compared to that appropriate for estimating
 the underlying density. This remark has important implications for defining empirical
 procedures for choosing the smoothing parameter.

 The above conclusions extend directly to a wide class of estimation problems. Suppose

 that ao(F) admits a first order von Mises expansion. Then (Hinkley & Wei, 1984) for P
 such that sup IF - Fl = Op(n-?) we have

 ar(F) = ar(F) + A(F - F) + Op(n-1)

 with A being linear. To a first level of approximation the sampling properties of ao(F) as
 an estimator of a(F) are the same as those of A(F) as an estimator of A(F) and the effect

 of smoothing on estimation of ao(F) may be approximated by the effect on estimation of
 A(F).

 Silverman & Young (1987) show how the techniques of computer algebra may be
 applied to approximate the variance of the variance stabilised correlation coefficient by a
 linear functional of the form (2.1). Their machinery may in principle be applied to any
 statistic which can be expressed as a smooth function of a vector sample mean: what Hall
 (1988) calls the 'smooth function model'. Hall (1990a) notes that, within this model, the
 bootstrap is, by Taylor expansion and to first order, being used to estimate a population
 functional specified by a fixed function of a multivariate population mean. Since the first
 order performance of a sample mean as an estimate of the population mean cannot be
 improved by smoothing, such smoothing can only have a second order effect on the
 bootstrap estimation. The argument applies to bootstrap problems involving estimation of
 means, variances, ratios of variances, as well as the correlation coefficient example
 considered by Silverman & Young (1987).

 Despite the somewhat negative observations above, marked reductions in mean
 squared error may be sometimes be obtained by smoothing in small samples: see the
 figures given by Efron (1982, Table 5.2) for an illustration of this point. Furthermore, in
 certain problems for which the smooth function model does not apply, smoothing can
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 have an influence on the rate of convergence of the bootstrap estimator. An example of
 such a problem is considered by Hall, DiCiccio & Romano (1989), and discussed in
 Section 3 below. Of course, there are in addition problems where the estimator of the
 functional a(F) is not even defined without smoothing. The example of the mode
 considered by Romano (1988) is such a problem.

 3 Quantile Variance Estimation

 First order improvements in the performance of the bootstrap estimator can be
 obtained by smoothing when estimating a quantity which depends on local, rather than
 global, properties of the underlying distribution. Statistically important examples include
 estimation problems involving sampling properties of order statistics and linear combina-
 tions of order statistics, such as those provided by robust estimators of location and scale.
 Falk & Reiss (1989) discuss the benefits of smoothing when bootstrapping the quantile
 empirical process. We reconsider here estimation of the variance of a sample quantile, as
 discussed by Hall, DiCiccio & Romano (1989).

 Let X,,, denote the sth largest of the sample values X1,..., X, drawn from an

 underlying distribution F. The pth population quantile is ,P = F-l(p) and the pth sample
 quantile (0 <p < 1) is ,p = Fn'(p) = X,(,) + 1, where (z) is the largest integer strictly
 less than z. Let r = (np) + 1. We wish to estimate the variance ac(F) of &p:

 a(F) = {x - (F)}2[n!/{(r- 1)! (n - r)!}]F(x)r-l{1 - F(x)}"-r dF(x), (3.1)
 where

 M(F) = x[n!{(r - 1)! (n - r)!}]F(x)r-l{1- F(x)}"-r dF(x).

 The smoothed bootstrap estimator of ac(F), based on a given sample {x1, . . . , x,}, is
 a(Fh), with Fh given by (2.3). Under certain smoothness and boundedness conditions on
 F, asymptotically, the mean squared error of a(Fv) depends on h through

 (nh)-'W1 + h4W2. (3.2)

 Here W1 = K2f (p), With K2= f K2(t) dt, and W2 = [K{pf"(Qp) -f'(?p)2f( P)-1}/2]2. For a
 full derivation of this result and statement of the required conditions on F, see Hall,
 DiCiccio & Romano (1989). The asymptotic minimiser of mean squared error in this
 problem is therefore

 h = {W1/(4nW2)1/5. (3.3)

 With this asymptotically optimal h, the relative error of ac(Fh) as an estimator of ca(F)
 is of order n-2/5, which contrasts with a relative error of order n-1/4 for the unsmoothed
 variance estimator (Hall & Martin, 1988a). The optimal bandwidth (3.3) is of the same
 order, though with a different constant, as that which minimises the mean integrated
 squared error of I, as an estimator off.

 Provided a suitable estimator of the optimal h can be chosen empirically, we might
 expect smoothing to yield substantial improvement over the unsmoothed estimator in this
 example. Once again, however, we must recognise that there is no global prescription for
 smoothing. Improvements are only to be expected from smoothing if the true, but
 unknown, distribution is suitably smooth. It will usually in practice be impossible to check
 the validity of regularity conditions required for smoothing to be effective.
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 4 Choice of Smoothing Parameter

 In view of the fact that the smoothed bootstrap has been based on an estimator (2.2) of
 the underlying population density, it is tempting to believe that good performance of the
 smoothed bootstrap will be obtained for values of the smoothing parameter h which are
 good for estimation of that density. Unfortunately, any smoothing may sometimes be
 deleterious, and, as the discussion of Section 2 showed, it will usually be the case that a
 smaller order of h is appropriate for the bootstrap estimation than for density estimation.
 Direct estimation of mean squared error must therefore be seen as the most appropriate
 means of choosing the smoothing parameter.

 Young (1988) considers empirical smoothing for the example of bootstrapping the
 correlation coefficient. A direct 'plug-in' procedure, based on the approximately
 equivalent linear functional, is used to estimate the mean squared error, and minimisation
 of this error estimate used to choose the smoothing parameter for the bootstrap
 estimation itself. Such a procedure does, however, require somewhat sophisticated use of
 the analytic form of the estimation being performed, and it seems in general simpler to
 estimate the mean squared error by application of the bootstrap paradigm.

 Use of the bootstrap to estimate the error of a statistical estimator, with the aim of
 choosing a suitable tuning or smoothing parameter, has been considered in general terms
 by L6ger & Romano (1989) and Hall (1990b), and for the specific case of kernel
 estimation of an underlying density function by Taylor (1989) and Marron (1990). In the
 latter context, the bootstrap estimator of error has a simple and explicit form. In our
 context this will rarely be the case, and our procedure for choosing h will then require two
 levels of bootstrap sampling, as described below. Double bootstrap procedures of this
 kind, though computationally expensive, have been advocated by a number of authors as
 procedures for reducing error in statistical problems. In particular, use has been made of
 iterated bootstrap methods as a means of constructing confidence intervals with accurate
 coverage: see, for example, Hall & Martin (1988b), Hinkley & Shi (1989) and Martin
 (1990).

 Consider bootstrap estimation of a general population functional ao(F). The bootstrap
 estimates the mean squared error of the smoothed bootstrap estimator ca(Fh) by

 BE(h;g) = E[{ac(Fg) - i(Fj)}2]. (4.1)
 Here Fg, for g to be specified, is constructed, as in (2.2) and (2.3), from the given sample
 data and

 F,(t) = fiZ(z) dz,
 with

 fh*(z) = (nh)-l K{(z - Y)/hh},
 i=1

 and { Y1,..., Y, } a random sample of size n from the distribution function FJ. Such a
 sample may be drawn by the method described in Section 2. The case g = 0, for which J
 is just F,, corresponds to an unsmoothed bootstrap estimator of the bootstrap mean
 squared error. Taking g > 0 gives a smoothed bootstrap estimator of the mean squared
 error.

 In certain cases it may be possible to compute BE(h;g) without resort to simulation. In

 particular, if a(F) = f a(t) dF(t) is linear, it is easily seen that

 Eg ()} = Eg{a * Kh(Y)} = n-' a * Kh * Kg(x,),
 i=1
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 and

 varf {ar(,)} = n-1 var {a * Kh(Y)} = n-2 (aKh)2 * K(x) - n-l[E)a()}. i=1

 These expressions can easily be combined into an explicit expression for BE(h; g) in
 terms only of the observed data {(x1,..., x,}. This should be readily obtained if a
 suitable choice of kernel function is used: the Gaussian kernel is particularly useful as it
 makes computation of the convolutions above straightforward.

 In less simple cases, BE(h; g) will have to be itself estimated. This is done by
 simulating a series of 'first level' bootstrap samples from Fg, replacing the expectation in
 (4.1) by a finite average. From the distribution F constructed from each such sample, a
 series of 'second level' bootstrap samples are drawn to estimate xa(fi',). Once BE(h; g)
 has been estimated over some suitable set of h values, and the minimising value of h
 obtained, a further bootstrap simulation is performed to construct the smoothed
 bootstrap estimator for the chosen value of the smoothing parameter.

 The operation of the method may be summarized by the following algorithm, expressed
 for simplicity in the case where g is fixed, rather than taken as a function of h, g -g(h).
 Modification of the algorithm to this latter case is straightforward.

 Step 1: Draw B bootstrap samples each of the form { Y1,. .. , Y, } from g, using
 (2.4) applied to the observed data {x, ..., x)} and with smoothing parameter value
 g.

 Step 2: Using the B resamples generated in Step 1, estimate a(x().
 Step 3: For each of the B resamples generated in Step 1, and for each of a set of
 values of h, generate B1 resamples from F* and use these resamples to estimate

 Step 4: For each of the values of h, average { f(Fi) - a(Fg)}2 over the B resamples
 from Step 1, to estimate BE(h; g).
 Step 5: Minimise the estimate of BE(h; g) over the set of values of h used in Step 3.
 Denote the minimising h by hBE.
 Step 6: By drawing B2 resamples from Fh,BE, estimate the final bootstrap estimator

 a(FhBE).

 In view of the discussion at the end of Section 2, little advantage is likely to be derived
 from using a smoothed estimator, g >0, of mean squared error when choosing the
 bandwidth for estimation of a linear functional or within the smooth function model. For

 such functionals it is most likely adequate to take g = 0 in (4.1). Otherwise it is natural to
 consider taking g = g(h) = h.

 Consider again estimation of a linear functional (2.1). Under the same conditions as
 assumed previously, BE(h; 0) admits an expansion of the form

 BE(h; 0) = Co/n + Clh2/n + C2h4 + Op(h4/n + h6), (4.2)

 as h - 0, n -- oc, where Go, C1 and C2 are the sample version of the population constants
 Co, C1 and C2. From the discussion of Section 2, a sensible empirical strategy for choice
 of smoothing parameter h is to minimise BE(h; 0), with respect to h, on the n-1 scale.
 The leading term in (4.2) does not depend on h. Also, recalling that Ci -* Ci almost surely

 as n-- c, i = 0, 1, 2, under suitable moment conditions, the remainder of (4.2) is
 Clh2/n + C2h4 + o(n-2) (4.3)

 almost surely, uniformly in En-fl h E-1n-1, for each E > 0. It follows straightforwardly
 from (2.6) and (4.3) that the optimal smoothing parameter hop, and the smoothing

 parameter h which minimises BE(h;O) satisfy /hoIhp-- 1 almost surely as n oo.
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 This result is readily seen to extend to the case where g g(h) = h and to choice of h
 for bootstrap estimation in any problem which falls within the smooth function model.
 More care is required when implementing the method to problems which do not fall
 within this model, such as the median example considered below. A number of other
 examples are considered by De Angelis (1990), illustrating the computational considera-
 tions in implementation of the smoothing method. Results show the bootstrap approach
 to bandwidth selection to work well in a variety of small sample contexts.

 5 An Example

 Consider the special case p = 2 of the variance estimation problem considered in
 Section 3. We noted that the optimal h in this example is of the same order as that which
 is optimal for estimation of the underlying density f. We might therefore expect that
 standard data-driven techniques for choosing the smoothing parameter in the kernel
 estimator (2.2), such as least-squares cross validation, would provide reasonable choices
 of smoothing parameter for the bootstrap estimation: this is specifically suggested by
 Hall, DiCiccio & Romano (1989). The least-squares cross validation method (Bowman,
 1984; Silverman, 1986, Section 3.4.2) consists of employing the value of h which
 minimises the function

 CV(h) = A(t)2 dt - 2n'-1 fh,(Xi), i=1

 where

 fh,i(t) = (n - 1)-'h-1' K((t - xj)/h}
 j i

 denotes the kernel estimator computed from the sample obtained by deleting the ith
 observation.

 From (3.2), we see that the mean squared error of the bootstrap estimator depends on
 local properties of the underlying distribution, specifically the density and its derivatives
 at the median. In estimating the mean squared error by BE(h; g), it is therefore
 appropriate to use a g > 0 rather than g = 0.

 In a simulation study three strategies for choice of h were compared. These are denoted
 by LSCV, BE and UNs respectively. The LSCV procedure chooses h to minimise cv(h), BE
 chooses h to minimise an estimate of BE(h; h) and UNS chooses h = 0 always.

 Simulations were carried out for five underlying distributions; uniform on [0, 1],
 standard normal, exponential with mean 1, double exponential, with f(x) = 1 exp (-|Ix),
 and the chi-squared distribution with 1 degree of freedom. Three sample sizes were
 considered; n = 11, 19 and 49. For each combination of distribution and sample size, 500
 simulations were performed. A Gaussian kernel function K was used throughout.

 In the study, simulation was used to estimate BE(h; h) over a grid of equally spaced
 values of h. In the simulations reported in Table 1, 100 values of h in [0, 1] were used,
 and CV(h) minimised over this same grid. Notice that by allowing the choice h =0 the
 BE method is, in effect, making the choice of whether to use a smoothed bootstrap or
 not.

 For each h, BE(h; h) was estimated by averaging {c ar(/) - o (F;)}2 over 50 datasets of
 size n generated from Fh. These datasets were obtained by using the same sequence of
 random numbers in the resampling algorithm (2.4) for each of the 100 values of h, in
 order to reduce the simulation variability of the 100 averages. Each bootstrap estimator

 c(fi/) required in the averaging was estimated by resampling 50 datasets of the

This content downloaded from 128.252.121.153 on Tue, 14 Jun 2016 19:49:55 UTC
All use subject to http://about.jstor.org/terms



 Smoothing the Bootstrap 53

 appropriate size n from F. Given the smoothing parameter values hcv and hBE chosen by

 the LSCV and BE methods respectively, the three bootstrap estimators &x(Fhcv), r(hBE) and
 cr(F,) were then estimated by sampling 50 datasets of size n from Phc, pBE and F,
 respectively. The mean squared errors obtained over the 500 simulations are given in
 Table 1 for each of the three methods. Estimated standard errors of the figures in the
 Table are such that the differences in mean squared error highlighted in the discussion
 below are seen as significant.

 Of the methods considered, the unsmoothed bootstrap procedure is, of course, the
 simplest computationally to apply. The cross validation method adds little computational
 cost to the bootstrap estimation. The bootstrap BE method, however, adds enormously to
 the computational cost, since it requires a further complete double bootstrap simulation.
 It is also worth noting that in this example a closed form expression (3.1) for the
 functional a(F) does exist. However, use of this formula to compute the bootstrap
 estimators analytically, and therefore eliminate the need for any simulation, requires
 numerical integration, and investigations show that this wholly analytic approach yields
 no computational advantage over the full simulation approach discussed above.

 The results in Table 1 show that while substantial reductions in mean squared error can
 be obtained from the smoothed bootstrap with the smoothing parameter being chosen
 empirically, the cross validation method is, in general, less effective at obtaining this
 reduction than the bootstrap procedure. In the simulation, cross validation gave smaller
 mean squared errors than the bootstrap approach only for an exponential underlying
 distribution. This is not, of course, completely surprising, as the LSCV method is targeted at
 choice of a bandwidth different from that appropriate to the bootstrap estimation, but
 does highlight that effective choice of h is crucial to the performance of the estimation
 procedure.

 The bootstrap procedure for choice of bandwidth displays excellent performance,
 except with a double exponential distribution, where the conditions assumed in the
 discussion of Section 3 are not satisfied. Though the procedure leads to a mean squared
 error greater than that of the unsmoothed bootstrap in this case, performance relative to
 the unsmoothed bootstrap improves with sample size.

 Further consideration of the asymptotics of this estimation problem, as given in Section

 Table 1

 Mean squared errors of bootstrap estimators, variance of
 sample median. Each figure is based on 500 simulations.

 METHOD
 F n LSCV BE UNS

 11 1-124E-4 6-356E-5 1-732E-4

 U[0, 1] 19 3-337E-5 1-721E-5 6-836E-5
 49 4-169E-6 1-524E-6 7-972E-6

 11 0.017612 0-009514 0-013254

 N(0, 1) 19 0-005377 0-002827 0-004895
 49 3-230E-4 2-205E-4 3-369E-4

 11 0-013545 0-012737 0.017616

 Exp (1) 19 0-002966 0-003564 0.004267
 49 1-479E-4 1-439E-4 2-133E-4

 11 0-046983 0-043498 0-031563

 D. Exp (1) 19 0-011712 0-009251 0-008030
 49 5-514E-4 4-177E-4 3-622E-4

 11 0-073690 0-061023 0-081155
 xi 19 0-008277 0-008129 0-009939

 49 4-608E-4 3-702E-4 5-195E-4
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 3, would indicate that the results shown in Table 1 may represent a suboptimal
 performance of the bootstrap smoothing idea. Following through the argument leading to
 (3.2) for the bootstrap case shows that the minimiser of BE(h; g) is asymptotic to that of

 (nh)- 1i1 + h41V2, (5.1)

 where 1 = KWg(~pg) and
 W2 = [Ki fj(p,g) - g2($,(,g)I(g,)g)} /2]2

 with &p,g = /,'(p). Recall that the discussion of Section 3 leads us to consider a strategy
 of minimising BE(h; g) with respect to h, on the n-1/5 scale. With g of order n-1/5, as is

 the case if we take, as above g = h, p,g--> almost surely. Further, fp($,g,)-f(p)
 almost surely and f'g(p,g)-->f'(p) almost surely. However, Silverman (1978) shows that
 a necessary condition for sup Ifg'(x)- f"(x)l-->0 almost surely as n m-> o, is that

 n-lg-5 log (1/g)_ 0 (5.2)

 as n-->oo. Hence, with g of order n-1/5 we cannot assert that fg(p,g)-->f"(p) almost
 surely. However, choosing a g to satisfy (5.2) is sufficient to ensure that the asymptotically

 optimal smoothing parameter hopt and that h which minimises BE(h; g) satisfy h/hop-, -> 1
 almost surely as n --> oo.

 In summary, to ensure asymptotic validity of our method, in constructing the bootstrap
 estimator of mean squared error, we should take g > h to satisfy (5.2). The problem then
 arises of how to choose g empirically: possibilities include reference to some standard
 family of distributions or use of data-driven procedures for bandwidth selection when
 estimating the derivatives of a density, as discussed by Hiirdle, Marron & Wand (1990).

 Our discussion above also provides a computationally simpler version of the bootstrap
 procedure for choosing h. We might seek to minimise (5.1) in h, for suitable estimates #W
 and W2 of W1 and W2. Here different bandwidths might be used in estimating the different
 derivatives of f, though again the question of how to choose these bandwidths empirically
 arises. Further, such a method makes implicit use of the assumptions on the underlying
 distribution which lead to (3.2). Such use is against the spirit of the bootstrap approach to
 functional estimation, which aims to perform the estimation without explicit assumptions
 on the form of the underlying distribution.

 6 Discussion

 We have considered here use of a smoothed version of the bootstrap when estimating
 parameters which are functionals of true underlying distributions. Wang (1989) compares
 the smoothed bootstrap approximation to the sampling distribution of a sample mean to
 that of the unsmoothed bootstrap approximation, using saddlepoint approximations. Hall
 (1990a) also considers briefly the question of smoothing when using the bootstrap to
 estimate the sampling distribution of a pivot. The conclusions are similar to those
 obtained when estimating simple functionals. There is, in general, no global preference
 for the smoothed bootstrap over the unsmoothed bootstrap. Further, smoothing may
 influence only the second order properties of the bootstrap estimation, while requiring
 greater computation and choice of a suitable amount of smoothing. Such choice may in
 practice be both crucial and difficult. In addition, how the smoothing is performed may
 affect greatly the accuracy of the resulting estimator.

 Nevertheless, it may often be the case, when estimating functionals which depend on
 local properties of the underlying distribution or in small sample sizes, that smoothing is
 theoretically worthwhile in terms of reducing mean squared error. Once again choice of
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 smoothing parameter is a delicate matter. In this respect, there is a strong preference for
 empirical methods which directly estimate the mean squared error of the bootstrap
 estimator. The bootstrap itself provides a simple means of estimating this error. In many
 simple problems the bootstrap estimator (4.1) of mean squared error will have an explicit
 form. In these cases there is little computational cost in investigating the sensitivity of the
 bootstrap estimator to choice of h via (4.1). In more complicated problems, such as our
 example of estimating the variance of the sample median, estimating the error is
 computationally expensive, but may lead to substantial improvement in terms of mean
 squared error in circumstances where smoothing is theoretically advantageous. However,
 such a method may not always improve on the unsmoothed estimator, even when
 implemented in a way that permits choice of no smoothing.

 Our discussion, and the literature to date, has assumed the case of an independent,
 identically distributed sample. For many practical applications this assumption is likely to
 be restrictive, and smoothing may well prove more generally advantageous in problems
 involving more complicated data structures.
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 Resume

 Cet article examine le probleme du lissage lors de l'utilisation de la version nonparametrique de
 l'auto-amorqage pour l'6valuation de fonctionelles de la population. En g6neral, il n'y a pas de pr6f6rence
 globale pour les procedures bas6es sur une version polie de la distribution empirique plut6t que sur la
 distribution empirique elle-meme. Dans la majorit6 des problemes le lissage influence seulement les propri6t6s
 de deuxieme ordre de l'estimation, tout en exigeant un plus grand calcul et un choix appropri6 du degr6 de
 lissage. Toutefois, il existe des problemes oti le lissage pourrait affecter le rythm de convergence de I'estimateur.
 Nous pr6sentons un exemple d'un tel probleme et nous consid6rons les questions qui portent sur le choix
 empirique de ne pas polir ou de polir et alors dans quelle mesure. Nous proposons et nous illustrons une
 proc6dure bas6e sur l'auto-amorqage pour le choix du paramrtre d'ajustement.
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