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SUMMARY

Bayesian properties of the signed root likelihood ratio statistic are analysed. Conditions for
first-order probability matching are derived by the examination of the Bayesian posterior and
frequentist means of this statistic. Second-order matching conditions are shown to arise from
matching of the Bayesian posterior and frequentist variances of a mean-adjusted version of the
signed root statistic. Conditions for conditional probability matching in ancillary statistic models
are derived and discussed.
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1. INTRODUCTION

In problems concerning inference on a scalar interest parameter in the presence of a nuisance
parameter, the signed root likelihood ratio statistic is a fundamental object of statistical method-
ology. The focus of this paper is an analysis of the signed root statistic from an objective Bayes
perspective, where the issue of identification of prior distributions that display the property of
probability matching is central. Under probability matching, quantiles of the Bayesian posterior
distribution have the property of being confidence limits in the conventional, frequentist sense.

Considering inference based on a sample of size n, we establish a number of results. If we
choose the prior distribution in a Bayesian analysis so that the frequentist and Bayesian posterior
means of the signed root statistic match to Op(n−1), then the prior achieves first-order probability
matching: the Bayesian 1 − α posterior quantile has frequentist coverage 1 − α + O(n−1). It is
observed that such matching of frequentist and Bayesian posterior means occurs when the prior
satisfies the conditions noted by Peers (1965), who extended to the nuisance parameter case work
of Welch & Peers (1963). We further obtain a simple condition, related to the Bayesian posterior
and frequentist variances of a mean-adjusted version of the signed root statistic, under which
the prior is second-order probability matching, so that the frequentist coverage of the Bayesian
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1 − α quantile is 1 − α + O(n−3/2). This condition is shown to be equivalent to that established
by Mukerjee & Dey (1993) and Mukerjee & Ghosh (1997) by an analytically more elaborate
shrinkage argument. Our analysis therefore provides a transparent and intuitive interpretation,
in terms of the distributional properties of the signed root statistic, for existing conditions for
probability-matching priors.

In particular statistical problems, specifically those involving inference on canonical
parameters in multi-parameter exponential family models and in models admitting ancillary
statistics, the appropriate frequentist inference is a conditional one, so that the relevant objective
Bayesian notion is that of a conditional probability-matching prior. We further provide an analysis
of the conditional frequentist behaviour of Bayesian posterior quantiles in ancillary statistic
models, as was carried out for the exponential family context by DiCiccio & Young (2010).
Their approach involves matching of higher-order conditional frequentist and Bayesian asymp-
totics, yielding simple conditions for probability matching. In the ancillary statistic context, this
approach does not, however, yield any general, easily interpretable conditions, unlike the method-
ologies applied here. By considering the distributional properties of the signed root statistic, we
note first that if the unconditional first-order probability-matching condition of Peers (1965),
which we refer to as the Welch–Peers condition, is satisfied, then the prior automatically enjoys
the property of first-order conditional probability matching. We then establish our key result,
which identifies a simple condition involving the Bayesian posterior and conditional frequen-
tist means of the signed root statistic, under which the conditions for second-order probability
matching in an unconditional sense ensure also second-order conditional probability matching.

2. NOTATION

Consider a random vector Y = (Y1, . . . , Yn) having continuous probability distribution that
depends on an unknown (q + 1)-dimensional parameter θ = (θ1, . . . , θq+1), and denote the
loglikelihood function for θ based on Y by L(θ). Suppose that θ is partitioned in the form
θ = (ψ, φ), where ψ is a scalar interest parameter and φ is a q-dimensional nuisance parame-
ter. Let θ̂ = (ψ̂, φ̂) be the overall maximum likelihood estimator of θ , and let θ̃ (ψ)= {ψ, φ̃(ψ)}
be the constrained maximum likelihood estimator of θ for given ψ . The log profile likelihood
function for ψ is M(ψ)= L{θ̃ (ψ)}.

In the asymptotic calculations that follow, standard conventions for denoting arrays and
summation are used. For these conventions, it is understood that indices i, j, k, . . . range over
2, . . . , q + 1, and that indices r, s, t, . . . range over 1, . . . , q + 1. Summation over the relevant
range is implied for any index appearing in an expression both as a subscript and as a super-
script. Differentiation of the functions L(θ) and M(ψ) is indicated by subscripts, so Lr (θ)=
∂L(θ)/∂θr , Lrs(θ)= ∂2L(θ)/∂θr∂θ s , M1(ψ)= ∂M(ψ)/∂ψ , M11(ψ)= ∂2 M(ψ)/∂ψ2, etc. In
this notation, Lr (θ̂)= 0 (r = 1, . . . , q + 1) and M1(ψ̂)= 0. Evaluation of the derivatives of
L(θ) at θ̂ and the derivatives of M(ψ) at ψ̂ is indicated by placing a circumflex above the
appropriate quantity; for example, L̂r = Lr (θ̂)= 0, L̂rs = Lrs(θ̂), M̂1 = M1(ψ̂)= 0, M̂11 =
M11(ψ̂), etc. Let λr = E{Lr (θ)} = 0, λrs = E{Lrs(θ)}, λrst = E{Lrst (θ)}, etc., and define lr =
Lr (θ)− λr = Lr (θ), lrs = Lrs(θ)− λrs , lrst = Lrst (θ)− λrst , etc. The constants λrs , λrst , etc.
are assumed to be of order O(n); the variables lr , lrs , lrst , etc. have expectation zero and they
are assumed to be of order Op(n1/2). The joint cumulants of lr , lrs , etc. are assumed to be of
order O(n). These assumptions are usually satisfied in regular situations involving independent
observations.
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Objective Bayes and the signed root statistic 677

In subsequent calculations, it is useful to extend the λ-notation: let

λr,s = E{Lr (θ)Ls(θ)}, λrs,t = E{Lrs(θ)Lt (θ)}, λr,s,t = E{Lr (θ)Ls(θ)Lt (θ)},

etc. Identities involving the λs can be derived by repeated differentiation of the identity∫
exp{L(θ)}dy = 1; in particular,

λrs + λr,s = 0, λrst + λrs,t + λr t,s + λst,r + λr,s,t = 0.

Differentiation of the definition λrs = ∫
Lrs(θ) exp{L(θ)} dy yields λrs/t = λrst + λrs,t , where

λrs/t = ∂λrs/∂θ
t .

Let (λrs), (Lrs) and (L̂rs) be the (q + 1)× (q + 1) matrix inverses of (λrs), (Lrs) and
(L̂rs), respectively. Define τ rs = λr1λs1/λ11, T̂ rs = L̂r1 L̂s1/L̂11, νrs = λrs − τ rs and V̂ rs =
L̂rs − T̂ rs . Note that λrs , τ rs and νrs are all of order O(n−1), and L̂rs , T̂ rs and V̂ rs are all
of order Op(n−1). Furthermore, 1/λ11 = λr1λs1τ

rs is of order O(n) and 1/L̂11 = L̂r1 L̂s1T̂ rs is
of order Op(n). Note that τ r1 = λr1 and νr1 = 0; thus, the entries of (q + 1)× (q + 1) matrices
(νrs) and (V̂ rs) are all 0 except for the lower right-hand submatrices (νi j ) and (V̂ i j ), which are
the inverses of (λi j ) and (L̂i j ), respectively.

3. SIGNED ROOT STATISTIC AND PROBABILITY MATCHING

The likelihood ratio statistic W (ψ)= 2{M(ψ̂)− M(ψ)} is useful for testing the null
hypothesis H0 :ψ =ψ0 against the two-sided alternative Ha :ψ |=ψ0 or for constructing
two-sided confidence intervals. However, for a scalar interest parameter, it is natural to conduct
one-sided tests, where the alternative is either Ha :ψ >ψ0 or Ha :ψ <ψ0, or to construct
one-sided, upper or lower, confidence limits. One-sided inferences can be achieved by con-
sidering the signed square root of the likelihood ratio statistic R(ψ)= sgn(ψ̂ − ψ){W (ψ)}1/2,
which has the standard normal distribution, N (0, 1), to error of order O(n−1/2), so that the
N (0, 1) approximation produces one-sided confidence limits having coverage error of that order.
The order of the error in the N (0, 1) approximation to the distribution of R(ψ) can be reduced
(DiCiccio & Stern, 1994a) to O(n−1) by correcting for the mean of R(ψ).

The signed root R(ψ) behaves (DiCiccio & Stern, 1994b) identically from a Bayesian
perspective: the posterior distribution of R(ψ) is standard normal to error of order O(n−1/2), and
the order of the error in the N (0, 1) approximation to the posterior distribution of R(ψ) can be
reduced to O(n−1) by correcting for the posterior mean. These order statements are asserted con-
ditionally, given the data, so it is appropriate to use O(·) rather than Op(·) to describe the errors
associated with the N (0, 1) approximation. To distinguish frequentist and Bayesian inference, let
μF =μF(θ) denote the frequentist mean of R(ψ) and letμB =μB(Y ) denote the posterior mean.
Applying the N (0, 1) approximation to the posterior distribution of R(ψ)− μB yields approx-
imate posterior percentage points for ψ having a posterior probability error of order O(n−1).
If the prior distribution is chosen so that μB =μF + Op(n−1), then the posterior distribution
of R(ψ)− μB coincides with the frequentist one to an error of order O(n−1). Thus, for such
a prior distribution, the upper 1 − α posterior percentage point is necessarily an approximate
upper 1 − α frequentist confidence limit having a coverage error of order O(n−1). As noted,
Peers (1965) derived a condition that the prior distribution must satisfy in order for it to have
this first-order probability-matching property, although not by the method considered here of
matching the Bayesian posterior and frequentist means of the signed root statistic.
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DiCiccio & Stern (1994a) showed that μF is

μF = −1
2ηλrstλ

r1λst − 1
6η

3λrstλ
r1λs1λt1 + ηλrs/tλ

r1λst + 1
2η

3λrs/tλ
r1λs1λt1 + O(n−3/2),

where η= (−λ11)−1/2. A general expression for μB is derived in the Appendix.
To compare μB and μF, note that

μB = −1
2ηλrstλ

r1λrs − 1
6η

3λrstλ
r1λs1λt1 + η

∂ logπ(θ)

∂θr
λr1 + Op(n

−1)

in the frequentist sense; hence, Op(·) is used for the error term in place of O(·). Thus, the
condition μB =μF + Op(n−1) is met when the prior satisfies

η
∂ logπ(θ)

∂θr
λr1 = ηλrs/tλ

r1λst + 1
2η

3λrs/tλ
r1λs1λt1.

A standard result of matrix algebra gives (λuv)/t = −λrs/tλ
ruλsv, so it follows that

∑
r

∂λr1

∂θr
= −λrs/tλ

r1λst ,
∂η

∂θr
= −1

2η
3λst/rλ

s1λt1;

consequently, the condition on the prior can be written as

η
∂ logπ(θ)

∂θr
λr1 = −

∑
r

∂(ηλr1)

∂θr
, (1)

which is what we have termed the Welch–Peers condition.
In many cases, Welch–Peers priors are not unique; for example, under parameter orthogonality,

the prior is (Tibshirani, 1989) essentially the Jeffreys prior on the interest parameter, multi-
plied by an arbitrary function of the nuisance parameter. As a means to choose among the
Welch–Peers priors, it is natural to attempt to determine those that are second-order probabil-
ity matching, i.e., those for which the percentage points are one-sided confidence limits having a
coverage error of order O(n−3/2). This problem has been well studied, and Mukerjee & Dey
(1993) and Mukerjee & Ghosh (1997) have given a differential equation, auxiliary to the
Welch–Peers condition, that the prior must satisfy for it to be second-order probability matching;
see Datta & Mukerjee (2004, Theorem 2.4.1). Here we demonstrate that the auxiliary condition
can be developed by considering a mean-adjusted version of the signed root statistic.

DiCiccio & Stern (1993) showed that the posterior expectation of {R(ψ)}2 is 1 + aB +
O(n−3/2), where

aB = 1
4(L̂

rs L̂ tu − V̂ rs V̂ tu)L̂rstu − 1
4(L̂

ru L̂st L̂vw − V̂ ru V̂ st V̂ vw)L̂rst L̂uvw

− 1
6(L̂

ru L̂sw L̂ tv − V̂ ru V̂ sw V̂ tv)L̂rst L̂uvw + (L̂rs L̂ tu − V̂ rs V̂ tu)L̂rst�̂u

− (L̂rs − V̂ rs)�̂rs,

and �̂r =�r (θ̂), �̂rs =�rs(θ̂), with �r (θ)= πr (θ)/π(θ), �rs(θ)= πrs(θ)/π(θ), πr (θ)=
∂π(θ)/∂θr , πrs(θ)= ∂2π(θ)/∂θr∂θ s . It follows that the posterior variance of R(ψ)− μB is

σ 2
B = 1 + aB − μ2

B + O(n−3/2).
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Objective Bayes and the signed root statistic 679

When the prior satisfies condition (1), from a frequentist perspective, since μB is of order
Op(n−1/2) and μB =μF + Op(n−1), where μF is of order O(n−1/2), it follows that μ2

B =
μ2

F + Op(n−3/2), where μ2
F is of order O(n−1); hence, the posterior variance satisfies σ 2

B =
1 + aB − μ2

F + Op(n−3/2).
DiCiccio & Stern (1994b) showed that the frequentist expectation of {R(ψ)}2 is 1 + aF +

O(n−3/2), where

aF = (λrsλtu − νrsνtu)(1
4λrstu − λrst/u + λr t/su)

− (λruλstλvw − νruνstνvw)(1
4λrstλuvw − λrstλuv/w + λrs/tλuv/w)

− (λruλswλtv − νruνswνtv)(1
6λrstλuvw − λrstλuv/w + λrs/tλuv/w)+ O(n−3/2).

It is shown in the Appendix that E(μB)=μF + O(n−3/2), and so it follows as a particular case
of the results of DiCiccio & Stern (1994a) that the frequentist variance of R(ψ)− μB is

σ 2
F = 1 + aF + 2ημF/rλ

r1 − μ2
F + O(n−3/2),

where μF/r = ∂μF/∂θ
r .

From both the Bayesian and frequentist perspectives, the third- and higher-order cumulants
of R(ψ)− μB are (DiCiccio & Stern, 1994a) of order O(n−3/2) or smaller. Thus, the marginal
distribution of {R(ψ)− μB}/σF and the posterior distribution of {R(ψ)− μB}/σB are both stan-
dard normal to an error of order O(n−3/2); moreover, if π(θ) is a prior density such that σ 2

B =
σ 2

F + Op(n−3/2), then π(θ) is a second-order probability-matching prior: a formal proof follows
the same argument as that used in our main result in § 4. The condition under which π(θ)will be a
second-order probability-matching prior is therefore aB = aF + 2ημF/rλ

r1 + Op(n−3/2). Since

aB = 1
4(λ

rsλtu − νrsνtu)λrstu − 1
4(λ

ruλstλvw − νruνstνvw)λrstλuvw

− 1
6(λ

ruλswλtv − νruνswνtv)λrstλuvw + (λrsλtu − νrsνtu)λrst�u

− (λrs − νrs)�rs + Op(n
−3/2),

this condition can be expressed as

aF + 2ημF/rλ
r1 = 1

4(λ
rsλtu − νrsνtu)λrstu − 1

4(λ
ruλstλvw − νruνstνvw)λrstλuvw

− 1
6(λ

ruλswλtv − νruνswνtv)λrstλuvw + (λrsλtu − νrsνtu)λrst�u

− (λrs − νrs)�rs .

By assuming that the prior density π(θ) satisfies the first-order probability-matching condition
(1), the condition for second-order probability matching reduces to

τ rs�rs − τ rsλtuλrst�u = (τ rsνtu + 1
3τ

rsτ tu)λrst/u − λruτ stλvwλrstλuv/w

− (λruνswτ tv + νruνswτ tv)λrstλuv/w

+ (τ ruλstνvw + 1
2τ

ruτ stτvw)λrs/tλuv/w

+ τ ruλswνtvλrs/tλuv/w,
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which may be written more succinctly as

∑
r

∂{π(νrs + 1
3τ

rs)τ tuλstu}
∂θr

+
∑
r,s

∂2(πτ rs)

∂θr∂θ s
= 0. (2)

This condition is that given by Mukerjee & Dey (1993), who considered a scalar nuisance
parameter, and by Mukerjee & Ghosh (1997), who considered a vector nuisance parameter.

4. CONDITIONAL INFERENCE

The main motivation for our analysis is to investigate the conditional frequentist properties of
approximate confidence limits obtained from Welch–Peers priors. Suppose that A is an ancillary
statistic such that (θ̂ , A) is sufficient. To undertake calculations with respect to the conditional
distribution of Y given A, or equivalently, with respect to the conditional distribution of (θ̂ , A)
given A, it is useful to consider the versions of the λs obtained by applying their definitions to the
conditional distribution. The resulting conditional quantities are distinguished notationally from
the unconditional ones by the inclusion of the accent symbol, ˚. Since the conditional loglike-
lihood function L̊(θ) differs from the unconditional loglikelihood function L(θ) by a constant,
i.e., a quantity that depends on A but not on θ , it follows that L̊r = Lr , L̊rs = Lrs , etc. Thus,
λ̊r = EY |A(Lr ), λ̊rs = EY |A(Lrs), etc. Note that λ̊r = 0. The quantities λ̊rs , λ̊rst , etc. are random
variables depending on A, and they are assumed to be of order Op(n). The variables l̊r = Lr ,
l̊rs = Lrs − λ̊rs , etc. all have zero conditional expectation and hence they have zero unconditional
expectation, and they are assumed to be of order Op(n1/2). The joint conditional cumulants of
l̊r , l̊rs , etc. depend on A, and they are assumed to be of order O(n) given A and of order Op(n)
unconditionally. The identities that hold for the λs immediately carry over to the λ̊s.

In the calculations that follow, it is necessary to take into account the differences between the
λs and the λ̊s. To describe the difference between λrs and λ̊rs , first note that

E A(λ̊rs)= E A{EY |A(Lrs)} = EY (Lrs)= λrs;

moreover,

varA(λ̊rs)= varA{EY |A(Lrs)} = varY (Lrs)− E A{varY |A(Lrs)}
= varY (lrs)− E A{varY |A(l̊rs)} = O(n)− E A{Op(n)} = O(n).

With respect to the distribution of A, λ̊rs has mean λrs and variance of order O(n); thus, λ̊rs −
λrs , λ̊rst − λrst , etc. have zero expectation and variance of order O(n). It is assumed that these
quantities are of order Op(n1/2) and have joint cumulants of order O(n) with respect to the
distribution of A. In particular, λ̊rs = λrs + Op(n1/2), λ̊rst = λrst + Op(n1/2), etc.

Assume that the differentiation of the identity λ̊rs = λrs + Op(n1/2) yields λ̊rs/t = λrs/t +
Op(n1/2). As a rule, differentiation of an asymptotic relation will preserve the asymptotic order,
but care is necessary; see Barnforff-Nielsen & Cox (1994, Exercise 5.4). The difference between
λ̊rs/t and λrs/t indicated here constitutes an additional assumption of our calculations, though
validity is immediate in particular cases, such as the example considered in § 5. Then

λ̊rs,t = λ̊rs/t − λ̊rst = λrs/t − λrst + Op(n
1/2)= λrs,t + Op(n

1/2).
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Objective Bayes and the signed root statistic 681

By working with the conditional density of Y given A in place of the marginal density of Y ,
it follows that R(ψ) is conditionally N (0, 1) to an error of order O(n−1/2) and that the error
in the N (0, 1) approximation to the conditional distribution of R(ψ) can be reduced to order
O(n−1) by adjusting for the conditional mean of R(ψ). Denote the conditional mean by μ̊F;
then R(ψ)− μ̊F has conditionally the N (0, 1) distribution to the error of order O(n−1).

The calculations of DiCiccio & Stern (1994a) can be applied to the conditional distribution of
R(ψ) to show that

μ̊F = −1
2 η̊λ̊rst λ̊

r1λ̊st − 1
6 η̊

3λ̊rst λ̊
r1λ̊s1λ̊t1 + η̊λ̊rs/t λ̊

r1λ̊st + 1
2 η̊

3λ̊rs/t λ̊
r1λ̊s1λ̊t1 + O(n−3/2),

where η̊= (−λ̊11)−1/2. Furthermore, the preceding comparisons of the λs and the corresponding
λ̊s show that μ̊F =μF + Op(n−1), and hence μB = μ̊F + Op(n−1), provided the condition (1)
holds. It follows that Welch–Peers priors satisfying (1) produce approximate confidence
limits having a conditional coverage error of order O(n−1). This result is implicit in
DiCiccio & Martin (1993), who compare the Bayesian percentage points under an objective prior
with the approximate, conditional confidence limits derived from Barndorff-Nielsen’s r∗ statistic
(Barndorff-Nielsen, 1986); see also Nicolau (1993).

Since μB = μ̊F + Op(n−1), it follows that EY |A(μB)= μ̊F + O(n−1). In resolving the
conditional properties of second-order probability-matching priors, the crucial issue turns out
to be to examine circumstances under which EY |A(μB)= μ̊F + O(n−3/2) holds. Since λ̊r = 0,
an argument analogous to that given in the Appendix for f (θ) defined in (A1) shows that
EY |A(μB)= EY |A{ f (θ)} + O(n−3/2), so the crucial criterion reduces to EY |A{ f (θ)} = μ̊F +
O(n−3/2), which holds provided

η̊
∂ logπ(θ)

∂θr
λ̊r1 = η̊λ̊rs/t λ̊

r1λ̊st + 1
2 η̊

3λ̊rs/t λ̊
r1λ̊s1λ̊t1 + O(n−3/2). (3)

Suppose that π is a first-order probability-matching prior, so that (1) holds, that satisfies
further the condition EY |A(μB)= μ̊F + O(n−3/2). Let σ̊ 2

F denote the conditional frequentist
variance of R(ψ)− μB. From arguments similar to the ones given previously that showed
μ̊F =μF + Op(n−1), it follows that σ̊ 2

F = σ 2
F + Op(n−3/2). To be specific, recall that

σ 2
F = 1 + aF + 2ημF/rλ

r1 − μ2
F + O(n−3/2),

where aF + 2ημF/rλ
r1 − μ2

F is of order O(n−1) and can be expressed, to error of order
O(n−3/2), as a function of the λs. By applying identical calculations, which require the con-
dition EY |A(μB)= μ̊F + O(n−3/2), to the conditional distribution, it follows that

σ̊ 2
F = 1 + åF + 2η̊μ̊F/r λ̊

r1 − μ̊2
F + O(n−3/2),

where åF + 2η̊μ̊F/r λ̊
r1 − μ̊2

F is of order Op(n−1) and can be expressed, to error of order
Op(n−3/2), as the identical function as can its unconditional version, with each λ being replaced
by its corresponding λ̊. Since by assumption each λ̊ differs from its corresponding λ by
Op(n−1/2), it follows that σ̊ 2

F = σ 2
F + Op(n−3/2). Hence, the condition that ensures that π(θ)

is a second-order probability-matching prior in the marginal frequentist sense also ensures that
it is a second-order probability-matching prior in the conditional frequentist sense.

Thus, if π(θ) is a second-order probability-matching prior in the marginal frequentist
sense, then it is also a second-order probability-matching prior in the conditional frequentist
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sense, provided EY |A(μB)= μ̊F + O(n−3/2), i.e., provided (3) holds. This is satisfied if

∂ logπ(θ)

∂θr
λ̊r1 = λ̊rs/t λ̊

r1λ̊st + 1
2 η̊

2λ̊rs/t λ̊
r1λ̊s1λ̊t1. (4)

We summarize our conclusions in the following theorem.

THEOREM 1. Suppose that the prior π is such that (4) holds, so that EY |A(μB)= μ̊F +
O(n−3/2). If the prior also satisfies (1) and (2), so that σ 2

B = σ̊ 2
F + O(n−3/2), then the Bayesian

quantile is second-order conditional probability matching.

Proof. Given Y , let ψl ≡ψ1−α(π, Y ) be the posterior 1 − α quantile for the interest
parameter, so that pr{ψ �ψ1−α(π, Y ) | Y } = 1 − α. Also, given Y and provided that the log-
likelihood is unimodal, R(ψ) is a monotonic decreasing function of ψ . Therefore, pr{R(ψ)�
R(ψl) | Y } = 1 − α, where R(ψ) is the signed root statistic constructed from Y . That is,

pr

{
R(ψ)− μB

σB
� R(ψl)− μB

σB
| Y

}
= 1 − α.

Since the posterior distribution of {R(ψ)− μB}/σB is N (0, 1) to an error of order Op(n−3/2),
it follows that, by the delta method from Hall (1992, § 2.7), pr[N (0, 1)� {R(ψl)− μB}/σB] =
1 − α + O(n−3/2), so that {R(ψl)− μB}/σB = zα + O(n−3/2), in terms of the N (0, 1) quantile
zα defined by �(zα)= α.

By the monotonicity of R(ψ) given Y , the event ψ �ψl is equivalent to the event R(ψ)�
R(ψl). Thus, from a conditional frequentist perspective, given an ancillary statistic A = a, we
have, again using the delta method and by the frequentist distributional result for the mean-
adjusted signed root statistic,

pr(ψ �ψl | A = a)= pr

{
R(ψ)− μB

σB
� R(ψl)− μB

σB
| A = a

}

= pr

{
R(ψ)− μB

σ̊F
+ Op(n

−3/2)� R(ψl)− μB

σB
| A = a

}

= pr

{
R(ψ)− μB

σ̊F
� zα + Op(n

−3/2) | A = a

}
+ O(n−3/2)

= pr{N (0, 1)� zα} + O(n−3/2)= 1 − α + O(n−3/2). �

5. DISCUSSION

Conditions under which a Bayesian prior on a scalar interest parameter in the presence of a
nuisance parameter achieves probability matching have been shown in this paper to have direct
interpretation in terms of the frequentist and Bayesian distributional properties of the signed root
likelihood ratio statistic. A prior that is first-order probability matching in a marginal sense is
necessarily first-order conditional probability matching. A prior that is second-order probabil-
ity matching in the marginal sense yields second-order conditional probability matching, pro-
vided a simple condition (4), which may be interpreted as a conditional version of the marginal
Welch–Peers condition (1), holds. Second-order unconditional matching is seen to correspond
to matching of the frequentist and Bayesian variances of a specific mean-adjusted version of the
signed root statistic, where the adjustment is by the Bayesian mean, under a prior that ensures
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first-order matching. Similarly, conditional probability matching is typically achieved only under
a very particular prior specification. These conclusions indicate, to our mind, that second-order
probability matching is too stringent a criterion to be useful in practice.

For illustration, consider a location-scale model, with Y1, . . . , Yn an independent sample from
a density of the form

f (y;μ, σ)= 1

σ
g

(
y − μ

σ

)
.

The appropriate conditioning ancillary is the configuration statistic A = (A1, . . . , An)= {(Y1 −
μ̂)/σ̂ , . . . , (Yn − μ̂)/σ̂ }, and the loglikelihood is of the form

L(μ, σ )= −n log σ +
n∑

i=1

h

(
μ̂− μ

σ
+ Ai

σ̂

σ

)
,

with h(·)= log g(·). Then, since the conditional distribution of {(μ̂− μ)/σ, σ̂ /σ }, given A =
a = (a1, . . . , an), does not depend on (μ, σ ), simple calculations show λ̊μμ = B/σ 2, λ̊μσ =
C/σ 2, λ̊σσ = D/σ 2, where B,C, D are nonzero functions of a. The corresponding uncon-
ditional quantities are of the form λμμ = Bg/σ

2, λμσ = Cg/σ
2, λσσ = Dg/σ

2 for constants
Bg,Cg and Dg depending only on g and n. In the notation of § 4, it is then immediate that
the differentiation of the relation λ̊rs = λrs + Op(n1/2) yields the assumed relation λ̊rs/t =
λrs/t + Op(n1/2) in this case.

Consider the case where the location parameter μ is the interest parameter, with σ as the
nuisance parameter. Then the right-hand side of the matching condition (4) is easily seen after
some algebra to reduce to σC/E , where E = B D − C2. The left-hand side of (4) is, after some
manipulation,

σ 2 D

E

∂ logπ

∂μ
− σ 2C

E

∂ logπ

∂σ
,

so that the matching condition is satisfied if and only if

∂ logπ

∂μ
= 0,

∂ logπ

∂σ
= − 1

σ
,

which gives π(μ, σ)∝ 1/σ . This prior is easily seen to satisfy (1) and (2), and is therefore
second-order conditional probability matching. In fact, the prior is (Lawless, 1982, Appendix
G) exact conditional probability matching, and is (Datta & Mukerjee, 2004, § 2.5.2) the unique
second-order unconditional matching prior.

Analogous calculations yield the same conclusion in the case where the scale parameter σ
is the interest parameter, with μ the nuisance parameter: the unique solution to the conditional
matching condition (4) is π(μ, σ)∝ 1/σ , which is again exact conditional probability matching.
Now, however, second-order marginal-matching priors are not necessarily unique. In the Cauchy
location-scale model, for example, any prior of the form π(μ, σ)∝ d(μ)/σ , for any smooth
positive function d(·), is second-order unconditional matching; see Datta & Mukerjee (2004,
§ 2.5.2).

In general, therefore, second-order conditional probability matching is only achieved by
the exact conditional probability-matching prior π(μ, σ)∝ 1/σ . We have noted, however,
that first-order conditional probability matching is achieved by any first-order unconditional
probability-matching prior in the class satisfying the Welch–Peers condition (1).

 at A
m

erican U
niversity of B

eirut on N
ovem

ber 8, 2012
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


684 T. J. DICICCIO, T. A. KUFFNER AND G. A. YOUNG

APPENDIX

Derivation of μB

Repeated differentiation of the definition M(ψ)= L{θ̃ (ψ)} yields M1(ψ̂)= 0, M11(ψ̂)= 1/L̂11,
M111(ψ̂)= L̂rst L̂r1 L̂s1 L̂ t1/(L̂11)3. Taylor expansion about ψ̂ yields

W (ψ)= −M̂11(ψ̂ − ψ)2 + 1
3 M̂111(ψ̂ − ψ)3 + Op(n

−1).

Consequently,
W (ψ)= {Z(ψ)}2 − 1

3 Ĥ 3 L̂rst L̂r1 L̂s1 L̂ t1{Z(ψ)}3 + Op(n
−1),

where Z(ψ)= (−M̂11)
1/2(ψ̂ − ψ)= Ĥ(ψ̂ − ψ) and Ĥ = (−M̂11)

1/2. Since M̂111 = −Ĥ 6 L̂rst L̂r1 L̂s1 L̂ t1,
the signed root statistic R(ψ) has the expansion

R(ψ)= Z(ψ)− 1
6 Ĥ 3 L̂rst L̂r1 L̂s1 L̂ t1{Z(ψ)}2 + Op(n

−1).

The Laplace approximation to the marginal posterior density function of ψ given by Tierney & Kadane
(1986) can be written as

πψ |Y (ψ)= c exp{B(ψ)+ M(ψ)− M(ψ̂)}{1 + O(n−3/2)}

for values of the argument ψ such that ψ = ψ̂ + O(n−1/2), where c is a normalizing constant, π(θ)=
π(ψ, φ) is the prior density and

B(ψ)= − 1
2 log

{
| − Li j (ψ, φ̃ψ)|
| − Li j (ψ̂, φ̂)|

}
+ log

{
π(ψ, φ̃ψ)

π(ψ̂, φ̂)

}
.

Differentiation of B(ψ) yields

B̂1 = 1
2 Ĥ 2 L̂rst L̂r1 L̂rs + 1

2 Ĥ 4 L̂rst L̂r1 L̂s1 L̂ t1 − Ĥ 2 ∂ logπ(θ)

∂θ r

∣∣∣∣
θ=θ̂

L̂r1,

which is of order O(1). By Taylor expansion about ψ̂ ,

πψ |Y (ψ)= (2π)−1/2 Ĥ exp{− 1
2 Ĥ 2(ψ̂ − ψ)2}{1 − B̂1(ψ̂ − ψ)− 1

6 M̂111(ψ̂ − ψ)3 + O(n−1)}
so the marginal posterior density of Z(ψ) has the expansion

πZ(ψ)|Y (z)= (2π)−1/2 e−z2/2{1 − Ĥ−1 B̂1z − 1
6 Ĥ−3 M̂111z3 + O(n−1)},

from which it follows that

μB = −Ĥ−1 B̂1 − 1
2 Ĥ−3 M̂111 − 1

6 Ĥ 3 L̂rst L̂r1 L̂s1 L̂ t1 + O(n−1)

= − 1
2 Ĥ L̂rst L̂r1 L̂rs − 1

6 Ĥ 3 L̂rst L̂r1 L̂s1 L̂ t1 + Ĥ
∂ logπ(θ)

∂θ r

∣∣∣∣
θ=θ̂

L̂r1 + O(n−1).

A more careful analysis that takes higher-order terms into account, i.e., that includes terms of order O(n−1),
shows that the error term in the preceding formula is actually O(n−3/2).

To be specific, a higher-order expansion of R(ψ) would involve a term in {Z(ψ)}3 with a coefficient
that is of order O(n−1). Moreover, a higher-order expansion of the marginal posterior density of Z(ψ)
would involve terms in z4 and z6, each having coefficients of order O(n−1). Now, when calculating the
contribution to the expectation from the Z(ψ) term in R(ψ), the z4 and z6 terms in the marginal posterior
density of Z(ψ) would yield 0. When calculating the contribution to the expectation from the {Z(ψ)}2

term in R(ψ), which has a coefficient of order O(n−1/2), the z4 and z6 terms in the marginal posterior
density of Z(ψ), which have coefficients of order O(n−1), would yield a term of order O(n−3/2). When
calculating the contribution to the expectation from the {Z(ψ)}3 term in R(ψ), which has a coefficient
of order O(n−1), the z and z3 terms in the marginal posterior density of Z(ψ), which have coefficients
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Objective Bayes and the signed root statistic 685

of order O(n−1/2), would yield terms of order O(n−3/2), while the z4 and z6 terms in the marginal pos-
terior density of Z(ψ) would yield 0. Similar calculations, to an error of order O(n−3/2), were given
by DiCiccio & Stern (1993).

Higher-order analysis of the Bayesian mean

Since the focus here is the frequentist mean ofμB, it is appropriate to describe error terms in expansions
by using the Op(·) notation instead of the O(·) notation. To simplify subsequent calculations, μB is con-
veniently written in the form μB = f (θ̂)+ Op(n−3/2), where

f (θ)= − 1
2 H Lrst Lr1Lrs − 1

6 H 3Lrst Lr1Ls1 Lt1 + H
∂ logπ(θ)

∂θ r
Lr1, (A1)

and H = (−L11)−1/2. Recall that f (θ) is Op(n−1/2). If the prior density π(θ) satisfies the Welch–Peers
condition, then μB =μF + Op(n−1), and hence E(μB)=μF + O(n−1). We establish here that E(μB)=
μF + O(n−3/2).

Note that, by Taylor expansion about θ ,

f (θ̂)= f (θ)+ fr (θ)(θ̂
r − θ r )+ Op(n

−3/2)= f (θ)− fr (θ)λ
rsls + Op(n

−3/2),

since θ̂ r − θ r = λrsls + Op(n−1). Now fr (θ) is Op(n−1/2), and it is a function of the likelihood derivatives.
Let f λr (θ) be the quantity obtained when each of the likelihood derivatives in fr (θ) is replaced by its
corresponding expectation, so f λr (θ) is a nonrandom quantity depending on θ . Then fr (θ)= f λr (θ)+
Op(n−1), and hence

E{ fr (θ)λ
rsls} = E{ f λr (θ)λ

rsls + Op(n
−3/2)} = O(n−3/2).

It follows that E(μB)= E{ f (θ)} + O(n−3/2), so it is required to show that E{ f (θ)} =μF + O(n−3/2).
We have Lrs = λrs − λr tλsultu + Op(n−2), so that

H = (−L11)−1/2 = η − 1
2η

3λr1λs1lrs + Op(n
−1/2), H 3 = η3 − 3

2η
3λr1λs1lrs + Op(n

−1/2).

Consider first the final term of f (θ); the other terms can be handled similarly. It follows from the
preceding equations that

H
∂ logπ(θ)

∂θ r
Lr1 = η

∂ logπ(θ)

∂θ r
λr1 − 1

2η
3 ∂ logπ(θ)

∂θ r
λr1λs1λt1lst

− η
∂ logπ(θ)

∂θ r
λrsλt1lst + Op(n

−3/2).

Hence,

E

{
H
∂ logπ(θ)

∂θ r
Lr1

}
= η

∂ logπ(θ)

∂θ r
λr1 + O(n−3/2)

= ηλrs/tλ
r1λst + 1

2η
3λrs/tλ

r1λs1λt1 + O(n−3/2),

by virtue of the Welch–Peers condition (1). The other terms in f (θ) have

E(− 1
2 H Lrst Lr1Lrs)= − 1

2ηλrstλ
r1λrs + O(n−3/2),

E(− 1
6 H 3Lrst Lr1Ls1 Lt1)= − 1

6η
3λrstλ

r1λs1λt1 + O(n−3/2),

and combining these expressions yields the desired result, namely E{ f (θ)} =μF + O(n−3/2).
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