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a b s t r a c t

Accurate inference on a scalar interest parameter in the presence of a nuisance parameter
may be obtained using an adjusted version of the signed root likelihood ratio statistic, in
particular Barndorff-Nielsen’s R⇤ statistic. The adjustment made by this statistic may be
decomposed into a sum of two terms, interpreted as correcting respectively for the possi-
ble effect of nuisance parameters and the deviation from standard normality of the signed
root likelihood ratio statistic itself. We show that the adjustment terms are determined to
second-order in the sample size by their means. Explicit expressions are obtained for the
leading terms in asymptotic expansions of these means. These are easily calculated, allow-
ing a simple way of quantifying and interpreting the respective effects of the two adjust-
ments, in particular of the effect of a high dimensional nuisance parameter. Illustrations are
given for a number of examples, which provide theoretical insight to the effect of nuisance
parameters on parametric inference. The analysis provides a decomposition of the mean
of the signed root statistic involving two terms: the first has the property of taking the
same value whether there are no nuisance parameters or whether there is an orthogonal
nuisance parameter, while the second is zerowhen there are no nuisance parameters. Sim-
ilar decompositions are discussed for the Bartlett correction factor of the likelihood ratio
statistic, and for other asymptotically standard normal pivots.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We are concernedwith inference on a scalar interest parameter in the presence of a, possibly high dimensional, nuisance
parameter, based on a data sample of size n, and with identification of procedures which yield repeated sampling accuracy.
In this setting, inference accurate to third order, that is with repeated sampling error of order O(n�3/2), may be obtained
using an adjusted version of the signed root likelihood ratio statistic, in particular through use of Barndorff-Nielsen’s R⇤
statistic (Barndorff-Nielsen, 1986).

The R⇤ statistic is particularly useful in two contexts. In full, multi-parameter exponential family models inference
based on standard normal approximation to the sampling distribution of the R⇤ statistic approximates to third order the
optimal, conditional, but generally intractable, inference, which is based on conditioning on the sufficient statistic for the
nuisance parameter. Inmore generalmodelswhich admit an ancillary statistic, taken tomean an approximately distribution
free statistic which together with the maximum likelihood estimator constitutes a minimal sufficient statistic for the full
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parameter in the model, the normal approximation approximates to the same third order an exact inference based on
conditioning on the ancillary statistic. A practical limitation of the use of R⇤ is in the requirement of explicit specification of
the appropriate ancillary, and the need to express the likelihood directly in terms of the maximum likelihood estimator and
the ancillary statistic.When calculation of the R⇤ statistic is tractable, inferencewith repeated sampling accuracyO(n�3/2) is
obtained through the normal approximation. This same level of repeated sampling accuracy may be obtained by parametric
bootstrap procedures, in particular those based on simulation estimation of the sampling distribution of the unadjusted
signed root statistic: see DiCiccio et al. (2001), Lee and Young (2005). Key to this bootstrap approach is appropriate handling
of the nuisance parameter: third order repeated sampling accuracy is obtained by considering the sampling distribution of
the signed root statistic when the nuisance parameter is specified as the constrained maximum likelihood value calculated
from the observed data sample.

Inference based on the R⇤ statistic and the parametric bootstrap alternative sketched above are analytically related.
DiCiccio and Young (2008) observe that in the problem of inference on a scalar component of the canonical parameter in the
multi-parameter exponential family context, inference based on normal approximation to R⇤ may be viewed as an analytic,
saddlepoint approximation to the bootstrap inference. In the same way, it is readily seen that in the ancillary statistic
context, inference based on R⇤ may be regarded as a saddlepoint approximation to a conditional bootstrap calculation,which
simulates the distribution of the signed root statistic conditional on the observed value of the ancillary statistic, with the
nuisance parameter fixed at its constrainedmaximum likelihood value. Simulation of this conditional bootstrap distribution
will be infeasible in many circumstances, though in certain cases, such as regression-scale models, simple methods of
conditional simulation, employing MCMC, are possible: see Brazzale and Davison (2008). Alternatively, and more simply,
the conditional distribution may be replaced by simulation of the marginal distribution of the signed root statistic. DiCiccio
et al. (in press) demonstrate that the marginal bootstrap distribution approximates the conditional bootstrap distribution
to second order, O(n�1), given the ancillary statistic.

The adjustment made by the R⇤ statistic may be decomposed into a sum of two terms, interpreted as correcting re-
spectively for the possible effect of nuisance parameters and an information adjustment, representing the deviation from
standard normality of the signed root likelihood ratio statistic itself. Pierce and Peters (1992) proposed such a decomposition
in the case where the interest parameter is a component of the canonical parameter in a full exponential family model. A
generalisation of the decomposition is detailed by Barndorff-Nielsen and Cox (1994, Section 6.6.4). Starting from numerical
investigations by Pierce and Peters (1992), it has been noted that the information adjustment is typically small when the
adjusted information for the interest parameter, which we define formally in Section 2, is large. By contrast, the nuisance
parameter adjustment can be appreciable when information on the nuisance parameter is small, as will usually occur when
its dimension is large. Crucially, however, the magnitude of the nuisance parameter adjustment relative to the information
adjustment also depends on the structure of the statistical model in question, and a simple methodology for measurement
of nuisance parameter effects for a given model is lacking.

In this paper we note that the adjustment terms are, from a repeated sampling perspective, determined to second-order,
O(n�1), in the sample size by their means. The precise definitions of the adjustment terms themselves are unimportant
to our strategy for quantifying nuisance parameter effects, though we note that, except for full exponential family and
transformation models, they must generally be approximated, leading to only second-order accuracy from the resulting
adjusted signed root statistic. Approximations to R⇤ which yield second-order accuracy include those described by DiCiccio
and Martin (1993) and Skovgaard (1996): for a summary see Severini (2000, Section 7.5).

We obtain explicit expressions for the leading terms in asymptotic expansions of the repeated sampling means of the
nuisance parameter and information adjustments. These involve calculation only of expectations of certain low-order log-
likelihood derivatives, and are therefore easily evaluated for quite general models, even when the R⇤ statistic itself is
intractable. The adjustment terms have variances of low order O(n�2) and the asymptotic means therefore allow a simple,
effective and general way of quantifying and interpreting the respective effects of the two adjustments. Of particular
methodological interest is analysis of the effect of a high dimensional nuisance parameter on the inference based on the
R⇤ statistic, and by extension its bootstrap alternative. Inference based on the R⇤ statistic, when tractable, represents a
‘gold standard’ in what is achievable in the inference problem and we have noted a close relationship between inference
based on the R⇤ statistic and parametric bootstrap inference. It is reasonable therefore to expect that the calculations are
useful too in shedding light on operation of the parametric bootstrap. The repeated sampling properties of the bootstrap
are, modulo Monte Carlo error introduced by the need in practice to construct the bootstrap estimate of the sampling
distribution of the signed root statistic from a finite simulation, determined entirely by nuisance parameter effects, through
substitution of unknownvalues by estimates. A central recommendation of this paper is that valuable insights to operation of
the parametric bootstrapmay be obtained by identification of the explicitway inwhich themeans of the nuisance parameter
and information adjustments depend on the nuisance parameter. As we shall see in Section 4, in certain key problems these
quantities depend only on the dimension of the nuisance parameter, and not on its actual value. In such cases we may
reasonably expect good repeated sampling accuracy from the bootstrap, as precise specification of the nuisance parameter
values in the calculation is unimportant. In other situations, we observe that the value of the nuisance parameter has amore
substantial effect on the adjustment means, in which case we may be alert to impaired accuracy from the bootstrap and its
analytic alternatives, especially with small sample sizes.

Our analysis provides a decomposition of the mean of the signed root statistic involving two terms: the first has the
property of taking the same value whether there are no nuisance parameters or whether there is an orthogonal nuisance
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parameter, while the second is zero when there are no nuisance parameters. Similar decompositions are discussed for the
Bartlett correction factor of the likelihood ratio statistic, and for other asymptotically standard normal pivots, in Sections 5
and 6 respectively.

2. The inferential problem

Suppose that Y = (Y1, . . . , Yn) is a continuous random vector and that the distribution of Y depends on an unknown
d-dimensional parameter ✓ = (✓1, . . . , ✓d), partitioned as ✓ = ( ,�), where  = ✓1 is a scalar interest parameter and �
is a nuisance parameter of dimension d � 1. Let L(✓) be the log-likelihood function for ✓ based on Y and let ✓̂ = ( ̂, �̂) be
the global maximum likelihood estimator of ✓ . Further, let ✓̃ = ✓̃( ) = ( , �̃) = { , �̃( )} be the constrained maximum
likelihood estimator of ✓ for given  . Then the profile log-likelihood function for  is M( ) = L{✓̃( )} and the likelihood
ratio statistic for  is W ( ) = 2{M( ̂) � M( )}, where M( ̂) = L(✓̂), since ✓̃( ̂) = ✓̂ . The signed root likelihood ratio
statistic is R( ) = sgn( ̂ �  ){W ( )}1/2. Then, for example, testing H0 :  =  0 against Ha :  >  0 or Ha :  <  0
can be based on the test statistic R( 0). Asymptotically, as the sample size n increases, the sampling distribution of R( )
tends to the standard normal distribution. Specifically, R( ) is distributed as standard normal to first order, to error of order
O(n�1/2). By contrast, the R⇤ statistic is distributed as standard normal to error of order O(n�3/2).

The R⇤ statistic is defined by

R⇤( ) = R( ) + R( )�1 log(v( )/R( )), (1)

where v( ) is given (Barndorff-Nielsen, 1986) by

v( ) =
�����
L;✓̂ (✓̂) � L;✓̂ (✓̃)

L�;✓̂ (✓̃)

����� /{|j��(✓̃)|
1/2|j(✓̂)|1/2}. (2)

Here, it is supposed that the log-likelihood function has been written as L(✓; ✓̂ , a), with (✓̂ , a) minimal sufficient and a
ancillary, that is with a distribution which, at least approximately, does not depend on ✓ . Further,

L;✓̂ (✓) ⌘ L;✓̂ (✓; ✓̂ , a) = @

@✓̂
L(✓; ✓̂ , a), L�;✓̂ (✓) ⌘ L�;✓̂ (✓; ✓̂ , a) = @2

@�@✓̂
L(✓; ✓̂ , a).

Also, j denotes the observed information matrix, j(✓) = (�Lrs(✓)), with Lrs(✓) = @2L(✓)/@✓ r@✓ s, and j�� denotes its (�,�)
component. The sampling distribution of R⇤( ) is standard normal conditionally on a, and hence, as noted, unconditionally,
to error of third order O(n�3/2). Note that in a full exponential family model, ✓̂ is already itself sufficient, and no ancillary
statistic a is required. The expression for v( ) given by (2) therefore simplifies somewhat: see, for example, Barndorff-
Nielsen and Cox (1994, Example 6.19).

Barndorff-Nielsen and Cox (1994, Section 6.6.4), generalising Pierce and Peters (1992), introduce quantities NP( ) and
INF( ), both of order Op(n�1/2), such that R⇤( ) = R( ) + NP( ) + INF( ). Explicitly, we have

NP( ) = � 1
R( )

log C( ),

where

C( ) = {|j��(✓̂)||j��(✓̃)|}1/2
|L�;�̂(✓̃)|

,

with L�;�̂(✓) ⌘ L�;�̂(✓; ✓̂ , a) = @2L(✓; ✓̂ , a)/@�@�̂ and, as before, j�� denoting the (�,�) component of the observed infor-
mation j. Also,

INF( ) = 1
R( )

log{u( )/R( )},
where

u( ) = jp( ̂)�1/2 @

@ ̂
{M( ̂) � M( )}.

Here jp is the profile observed information, jp( ) = �@2M( )/@ 2, and the derivative with respect to  ̂ is calculated with
M( ̂) � M( ) considered as a function of  ,  ̂, �̃( ) and a.

Calculation of R⇤( ) supposes explicit representation of the log-likelihood as a function of (✓̂ , a). Other formulations
of the adjustment v( ), due to Fraser and co-workers, are possible. The tangent exponential model introduced by Fraser
(1990) avoids the need to specify the transformation Y ! (✓̂ , a), though still requires awkward analytic calculation: a useful
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summary is given by Brazzale et al. (2007, Chapter 8). In general, however, it is necessary to approximate to the quantity
v( ). Replacing v( ) in the definition (1) ofR⇤( ) by an estimate ṽ( ) typically yields an adjusted version of the signed root
likelihood ratio statistic distributed as standard normal only to error of second order, O(n�1). A computationally attractive
approximation based on orthogonal parameterisation (Cox and Reid, 1987) is described by DiCiccio and Martin (1993). The
approximation due to Skovgaard (1996) is theoretically attractive in that it also provides large deviations protection.

To develop our analysis, some further notation is required. Let L✓ (✓) denote the score function, the vector with
components Lr(✓) = @L(✓)/@✓ r , r = 1, . . . , d. In the calculations that follow, arrays and summation are denoted by using
the standard conventions, for which the indices r, s, t, . . . are assumed to range over 1, . . . , d. Summation over the range
is implied for any index appearing in an expression both as a subscript and as a superscript. As above, differentiation is
indicated by subscripts. Then E{Lr(✓)} = 0; let �rs = E{Lrs(✓)}, �rst = E{Lrst(✓)}, etc., and put lr = Lr(✓), lrs = Lrs(✓) � �rs,
lrst = Lrst(✓)��rst , etc. The constants �rs, �rst , . . . , are assumed to be of orderO(n). The variables lr , lrs, lrst , etc., each of which
has expectation 0, are assumed to be of orderOp(n1/2). The joint cumulants of lr , lrs, etc. are assumed to be of orderO(n). These
assumptions will usually be satisfied in situations involving independent observations, or structured dependence, such as in
time series contexts. It is useful to extend the �-notation: let �r,s = E(LrLs) = E(lr ls), �rs,t = E(LrsLt) = E(lrslt), etc. Bartlett
identities involving the �’s can be derived by repeated differentiation of the identity

R
exp{L(✓)}dy = 1; in particular,

�rs + �r,s = 0, �rst + �rs,t + �rt,s + �st,r + �r,s,t = 0.

Differentiation of the definition �rs = R
Lrs(✓) exp{L(✓)}dy yields �rs/t = �rst + �rs,t , where �rs/t = @�rs/@✓

t . Further, let
(�rs) be the d ⇥ d matrix inverse of (�rs), and let ⌘ = �1/�11, ⌧ rs = ⌘�1r�1s, and ⌫rs = �rs + ⌧ rs. Thus, �rs, ⌧ rs, and ⌫rs are
of order O(n�1), while ⌘, which is what we have termed the adjusted information for  , is of order O(n).

DiCiccio and Stern (1994a) showed that R( ) = ⌘1/2{R1 + R2 + Op(n�3/2)}, where R1 = ��1r lr and
R2 = �1r�st lrslt + 1

2�
1r⌧ st lrslt � 1

2�
1r�su⌫tv�rst lulv � 1

6�
1r⌧ su⌧ tv�rst lulv.

Note that R1 is of order Op(n�1/2) and R2 is of order Op(n�1). Since E(R1) = 0, it follows that

E{R( )} = ⌘1/2{�1r�st�rs,t + 1
2�

1r⌧ st�rs,t + 1
2�

1r�st�rst + 1
3�

1r⌧ st�rst} + O(n�1). (3)

3. Expectations of adjustments

Detailed analysis given in the Appendix shows that we may approximate E{INF( )} to O(n�1) by

gINF(✓) = ⌘1/2�1r⌧ st( 1
2�rs,t + 1

6�rst),

and E{NP( )} to the same order by

gNP(✓) = �⌘1/2�1r⌫st(�rs,t + 1
2�rst).

These expansions permit a full statistical interpretation of the adjustment termsNP( ) and INF( ), whichwedo through
a series of remarks.

Remark 1. We begin by examining E{R( )} when there are no nuisance parameters. If nuisance parameters are absent,
then �11 = (�11)

�1, ⌘ = ��11, ⌧ 11 = (��11)�1, and ⌫11 = 0, and it follows that

E{R( )} = (��11)�3/2( 1
2�11,1 + 1

6�111) + O(n�1).

Remark 2. The quantities gINF(✓) and gNP(✓) are related to asymptotic quantities detailed by Efron (1987) in description of
the ‘bias corrected accelerated’, BCa, method of construction of bootstrap confidence intervals, which is analysed in detail
by DiCiccio and Efron (1996). Specifically, we have gINF(✓) = a0 and gNP(✓) = z0 � a0, where a0 = a0(✓) and z0 = z0(✓) are
respectively acceleration and bias-correction quantities. The quantity a0 satisfies (DiCiccio and Efron, 1996)

a0 = �1
6
{skew(U) + skew(T )} + O(n�1),

where U = ( ̂ �  )/� , with � 2 the variance of  ̂ , given by � 2 ⌘ � 2(✓) = �1,1 + O(n�2), and T = ( ̂ �  )/�̂ , with
�̂ 2 = � 2(✓̂). Further, z0 is interpreted by

�(z0) = Pr( ̂   ) + O(n�1),

where� is the standard normal distribution function.

DiCiccio and Efron (1996) note that the quantities a0 and z0 are invariant under reparameterisations of the model.
Therefore, in using the asymptotic adjustment expectations gINF(✓) and gNP(✓) to interpret nuisance parameter effects on
the inference on  , there is no restriction in assuming that the model under analysis is parameterised so that the interest
parameter  and the nuisance parameter � are orthogonal (Cox and Reid, 1987). Therefore, now suppose there is a vector
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nuisance parameter � present, but assume that the interest parameter  and the nuisance parameter � are orthogonal;
then �11 = (�11)

�1, ⌘ = ��11, �1a = 0 (a = 2, . . . , d), ⌧ rs = 0 except when r = s = 1, in which case ⌧ 11 = (��11)�1, and

E{INF( )} = �(��11)�3/2( 1
2�11,1 + 1

6�111) + O(n�1).

Therefore, following Remark 1, to error of order O(n�1), E{INF( )} is seen to correspond to a mean adjustment for the
signed root statistic R( ) in the problem where the orthogonal nuisance parameter � is known. Since the standard normal
approximation to the distribution ofR( ) is typically rather accurate in scalar parameter caseswithout nuisance parameters,
the mean adjustment should be quantitatively small quite generally, so we can anticipate that INF( ) is typically small.

Remark 3. For general parameterisations, we have ⌫11 = ⌫a1 = ⌫1b = 0 for a, b = 2, . . . , d, and thus,

E{NP( )} = �⌘1/2�1r⌫ab(�ra,b + 1
2�rab) + O(n�1)

= ⌘1/2�1r⌫ab( 1
2�rab � �ra/b) + O(n�1),

where �ra/b = @�ra/@✓
b and �ra/b = �ra,b + �rab.

Under orthogonality, ⌫ab = �ab for a, b = 2, . . . , d, and the condition �1a = 0 for a = 2, . . . , d implies that �1a/b = 0 for
b = 2, . . . , d, so that the identity �1a/b = �1a,b + �1ab yields �1a,b = ��1ab for a, b = 2, . . . , d. Hence, nuisance parameter
effects may be quantified from the expression

E{NP( )} = � 1
2 (��11)�1/2�ab�ab1 + O(n�1).

Note that this gives �1 = ⌘1/2E{NP( )} + O(n�1/2) = � 1
2�

ab�ab1 + O(n�1/2). Since the expansion for E{NP( )} involves a
multiple sum over the nuisance parameters, we see that NP( ) can be anticipated to be large when the number of nuisance
parameters is large.

Remark 4. Some further insight into NP( ) in the orthogonal case can be gleaned by noting that

@ log det[�Lab{✓̃( )}]
@ 

= Lab(✓)Lab1(✓) + Op(n�1/2) = �ab�ab1 + Op(n�1/2),

which further relates E{NP( )} to the specific adjustment function of Cox and Reid (1987). Thus, in this orthogonal case, if
log det{�Lab(✓)} does not change rapidly with , such as when L(✓) = g( )+h(�), in which case det{�Lab(✓)} is constant
with respect to , then �ab�ab1 is small in magnitude, and hence, wewould expect NP( ) to be small in magnitude; see also
the discussion in Cox and Reid (1987).

Remark 5. There is one further interpretation of NP( ) that is worth noting. DiCiccio and Stern (1994a) showed that the
difference between  ̄ and  ̂ is

 ̄ �  ̂ = ��11�1 + Op(n�3/2) = ⌘�1�1 + Op(n�3/2) = ⌘�1/2E{NP( )} + Op(n�3/2),

and hence, this difference, when in expressed in terms of standard deviations of  ̂ , is

 ̄ �  ̂

⌘�1/2 = E{NP( )} + Op(n�1).

Remark 6. Note that the quantities gNP(✓) and gINF(✓) are both of order O(n�1/2). As we shall illustrate, calculation of the
individual values provides important statistical insight. We propose further that a simple measure of the relative influence
within the assumed model of the nuisance parameter on inference on the interest parameter , independent of the sample
size n, might be obtained by considering their ratio gNP(✓)/gINF(✓).

Remark 7. In general, the quantities gNP(✓) and gINF(✓) depend on the unknown parameter ✓ . In practice, following the
bootstrap principle, theymay be estimated by gNP(✓̃) and gINF(✓̃) respectively. An adjusted version of the signed root statistic
R( ), easily calculated in practice, once gNP(✓) and gINF(✓)have been calculated, is given by Ra( ) = R( )+gNP(✓̃)+gINF(✓̃).
Since gNP(✓̃)�gNP(✓) = Op(n�1), we have that Ra( ) = R⇤( )+Op(n�1), and therefore that Ra( ) has the standard normal
distribution to error of order O(n�1). DiCiccio and Efron (1996) previously remarked that R( ) + z0(✓̂) is standard normal
to error of order O(n�1), but did not investigate practical use of this statistic for inference: an alternative is the statistic
Ra( ) = R( ) + z0(✓̃). Although no claim of desirable large deviation properties of the kind enjoyed by the method of
Skovgaard (1996) can be made for this statistic, empirical evidence, not reported here, suggests that it nevertheless yields
highly accurate inference in many settings.

Remark 8. Note that the asymptotic regime adopted here is one in which the dimensionality d � 1 of the nuisance param-
eter � remains fixed as the sample size n increases. However, we propose that examination of the quantities gNP(✓) and
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gINF(✓) and their ratio is a useful device to quantify the effect of an increasing dimension of nuisance parameter on the in-
ference, as we shall illustrate in the next Section. For stratified models, such as those in Examples 2 and 4–6, Sartori (2003)
noted that, when both the sample size n within each stratum and the number of nuisance parameters q tend to infinity,
NP( ) = Op(qm�1/2), while INF( ) = Op(m�1/2), where m = nq is the total sample size, irrespective of the nature of
the sequence {q, n}. Hence, the ratio NP( )/INF( ) = Op(q) in such an asymptotic regime, is consistent with calculations
given in Examples 2 and 4–6. Relative to the inference adjustment, the nuisance parameter adjustment increases at a rate
proportional to the dimension of the nuisance parameter.

4. Examples

We consider here a number of theoretical and numerical examples.

Example 1 (Normal Linear Regression). Let Y1, . . . , Yn denote independent random variables of the form Yi = xTi � + �✏i,
where x1, . . . , xn are known covariate vectors of length q, � is an unknown scalar interest parameter and � is an unknown
nuisance parameter vector of length q, so that ✓ = (� ,�). The ✏i are assumed to be independent standard normal random
variables.

In this case, n1/2gINF(✓) = 21/2/3 and n1/2gNP(✓) = q/21/2. Note that these quantities do not depend on the parameter
value ✓ , while ⌘ = 2n/� 2. Nuisance parameter effects are determined, to second order, only by the dimensionality of
the nuisance parameter � , not its value. This observation in turn would suggest that inference based on the bootstrap
distribution of R(� ) should be highly accurate. In fact, R(� ) is a simple function of �̂ 2/� 2, which has a distribution free of
✓ : (n � q)�̂ 2/� 2 is distributed as chi-squared on n � q degrees of freedom. A bootstrap calculation will, modulo simulation
variability, reproduce the exact sampling distribution of R(� ).

Example 2 (Neyman–Scott Model). Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent Gaussian random variables,
with Yij being distributed as N(µj, �

2). The interest parameter is � , with nuisance parameter (µ1, . . . , µq), so that ✓ =
(� , µ1, . . . , µq).

Nowwe calculate n1/2gINF(✓) = 1/{1.5(2q)1/2}, with n1/2gNP(✓) = (q/2)1/2, so that gNP(✓)/gINF(✓) = 1 · 5q. Again, these
quantities do not depend on the value of ✓ , only the dimension q of the nuisance parameter. The adjusted information is
given by ⌘ = 2nq/� 2. As in Example 1, the signed root statistic R(� ) has a distribution free of the parameter value: it is a
function of the pivotal quantity �̂ 2/� 2, and its exact sampling distribution can be constructed by bootstrapping.

A related problem concerns a generalisation of the Behrens–Fisher problem, in whichwe observe Yij, for i = 1, . . . , n and
j = 1, . . . , q to be independent Gaussian random variables, with Yij being distributed as N(µ, � 2

j ). The interest parameter
is the common mean µ, with (� 2

1 , . . . , � 2
q ) as nuisance. In this case, we see that E{INF( )} and E{NP( )} are both O(n�1),

not O(n�1/2). Nuisance parameter effects are quantitatively slight though, by contrast with what is noted above, in this case
the signed root statistic R(µ) is not exactly pivotal, and the bootstrap inference is not exact. Limited numerical results given
by Young (2009) for the case q = 2 would indicate, however, that the bootstrap inference is highly accurate even for small
sample size n.

Example 3 (Exponential Regression). Suppose Y1, . . . , Yn are independent exponential random variables, with means de-
pending on given covariate values. We suppose for simplicity the case of two covariates, though our conclusions extend
immediately to the case with a general number of covariates. So, we suppose Yi is exponentially distributed with mean
�1 exp(� zi � �2wi), with

P
zi = P

wi = 0, and  the interest parameter. Routine calculations show that gINF(✓) and
gNP(✓), though complicated functions of the covariate values, are again free of the parameter ✓ = ( ,�1,�2). Further, the
signed root statistic R( ) is again easily seen to be exactly pivotal, and bootstrap inference is once more exact.

In the simple case of a single covariate, with E(Yi) = � exp(� zi), with
P

zi = 0, we have

E{NP( )} = 0 + O(n�1), E{INF( )} = �
⇣X

z2i
⌘�3/2 ⇣

1
6

X
z3i

⌘
+ O(n�1) :

the nuisance parameter adjustment has expectation of smaller order of magnitude than that of the information adjustment.
We consider now from a numerical perspective three examples withmany nuisance parameters previously discussed by

Sartori et al. (1999). In each, we provide illustration of dependence of the measure gNP(✓)/gINF(✓) on the dimensionality of
the nuisance parameter.

Example 4 (Inverse Gaussian Model). Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent, inverse Gaussian random
variables, with Yij having probability density

f (y; ,�j) = { /(2⇡)}1/2y�3/2 exp{� 1
2 ( y�1 + �jy) + ( �j)

1/2}, y > 0,

where  > 0 and �j > 0, so that ✓ = ( ,�1, . . . ,�q) and the overall sample size ism = nq.
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Table 1

Dependence of ratio gNP(✓)/gINF(✓) on q, multi-sample exponential model. Case (a) has �i = 1, i = 1, . . . , q, case (b) has �1 = · · · = �q�1, with
exp(��qt0) = q /2.

q 2 5 10 20 50

(a) 2.25 9.00 20.25 42.75 110.25
(b) �2.10 �5.50 �8.56 �15.76 �130.29

Table 2

Dependence of ratio gNP(✓)/gINF(✓) on q, multi-sample curved exponential family model. Case (a) has  = 1, µi = i, i = 1, . . . , q, case (b) has
 = 1, µi = 1, i = 1, . . . , q.

q 1 2 5 10 20 50

(a) 1.11 2.45 6.77 14.17 29.09 74.01
(b) 1.11 2.21 5.53 11.05 22.11 55.26

Simple algebraic manipulations show that, independently of the parameter value ✓ , n1/2gINF(✓) = �1/{1.5(2q)1/2}, and
n1/2gNP(✓) = �(q/2)1/2, so that gNP(✓)/gINF(✓) = 1.5q in this model. We note that in this model the adjusted information
for  is given by ⌘ = nq/(2 2).

Example 5 (Multi-sample Exponential Model). Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent, exponential random
variables, with Yij having mean 1/�j. The parameter of interest is

 = q�1
qX

j=1

exp(��jt0),

where t0 > 0 is a fixed constant and ✓ = ( ,�), with the nuisance parameter � = (�2, . . . ,�q). As noted by Sartori
et al. (1999), q may be interpreted as the expected number of items failing by t0 in a parallel system with failures rates
�1, . . . ,�q.

The interest parameter is therefore a nonlinear function of the canonical parameter in a full exponential family model.
Again, construction of the information and nuisance parameter adjustments INF( ) and NP( ) is straightforward, though
the constrained maximum likelihood estimator ✓̃ must be calculated numerically.

By contrast with previous examples, in this model the ratio gNP(✓)/gINF(✓) depends on the value of the parameter ✓ .
Values illustrating the effect of increasing nuisance parameter dimension are given in Table 1 for two cases. In both t0 = 0.5:
case (a) considers �i = 1, i = 1, . . . , q, so that  = 0.6065; case (b) fixes  = 0.0333 for each dimension of nuisance
parameter, sets exp(��qt0) = q /2 and fixes �1 = · · · = �q�1, the common value being determined by the specified
 . Acute dependence of the ratio on the actual parameter values, rather than just the nuisance parameter dimension as in
previous examples, is apparent.

Example 6 (Curved Exponential Family Model). Our final example concerns a model for which calculation of R⇤( ) is in-
tractable: the sample space derivatives, derivatives of the log-likelihood with respect to themaximum likelihood estimator,
required by the construction (2) of R⇤( ), must be approximated. By contrast, the calculations required to evaluate gINF(✓)
and gNP(✓) are no more complex than in the other examples.

Let Yij, for i = 1, . . . , n and j = 1, . . . , q be independent normal random variables with means µj > 0 and variances
 µ

1/2
j . This model constitutes a curved exponential family. The parameter of interest is  , with µ1, . . . , µq as nuisance

parameters, ✓ = ( , µ1, . . . , µq).
Again, the ratio gNP(✓)/gINF(✓) depends on the value of the parameter ✓ . Illustrative values are given in Table 2, for two

cases: case (a) has  = 1, µi = i, i = 1, . . . , q, while case (b) has  = 1, µi = 1, i = 1, . . . , q.

5. Decomposition of the Bartlett correction factor

Recall that the sum of gINF(✓) and gNP(✓) is, to O(n�1), equal to

E{�R( )} = �⌘1/2 �
�1r�st�rs,t + 1

2�
1r⌧ st�rs,t + 1

2�
1r�st�rst + 1

3�
1r⌧ st�rst

�

= �⌘1/2�1r�st ��rs,t + 1
2�rst

� � ⌘1/2�1r⌧ st
� 1
2�rs,t + 1

3�rst
�
.

To decide how we might choose gINF(✓) and gNP(✓) in a decomposition of this sum, consider imposing two conditions:
first, gINF(✓) must take the same value whether we have no nuisance parameters or we have orthogonal nuisance parame-
ters; and second, gNP(✓)must be 0whenwehave nonuisance parameters. These conditions suggest that ⌧ rs and ⌫rs play a key
role. Note that ⌧ 11 = (��11)�1 when there are no nuisance parameters, while for orthogonal nuisance parameters ⌧ rs = 0
except when r = s = 1, in which case ⌧ 11 = (��11)�1. Thus, ⌧ rs is the same in the orthogonal nuisance parameter case as it
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is when nuisance parameters are absent. On the other hand, since ⌫rs = 0 whenever either or both of r and s are 1, we have
that ⌫11 = 0 when there are no nuisance parameters. It is readily seen that the decomposition of the sum into gINF(✓) and
gNP(✓) according to the two conditions can be achieved ifwe substitute�st = ⌫st�⌧ st in the sumand then take gINF(✓) to con-
sist of those terms involving ⌧ st and take gNP(✓) to consist of those terms involving ⌫st . We demonstrate here that the same
reasoning may be applied to obtain a decomposition of the Bartlett correction factor for the likelihood ratio statisticW ( ).

Lawley (1956) showed (see also DiCiccio and Stern, 1994a) that the expectation of W ( ) is E{W ( )} = 1 + b(✓) +
O(n�3/2), where

b(✓) = (�rs�tu � ⌫rs⌫tu)( 1
4�rstu � �rst/u + �rt/su)

� (�rs�tu�vw � ⌫rs⌫tu⌫vw)( 1
4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

� (�ru�sw�tv � ⌫ru⌫sw⌫tv)( 1
6�rst�uvw � �rst�uv/w + �rs/t�uv/w).

We now decompose b(✓) into the sum b(✓) = bINF(✓)+ bNP(✓), where bINF(✓) is the same whether we have no nuisance
parameters or whether we have orthogonal nuisance parameters, and bNP(✓) is 0 when there are no nuisance parameters.
We make the substitution �rs = ⌫rs � ⌧ rs in b(✓): bINF(✓) consists of those terms involving the ⌧ rs but not the ⌫rs; bNP(✓)
consists of those terms that involve the ⌫rs in any way.

Succinct expressions for bINF(✓) and bNP(✓) derived this way are

bINF(✓) = ⌧ rs⌧ tu( 1
4�rstu � �rst/u + �rt/su)

+ ⌧ rs⌧ tu⌧ vw( 1
4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

+ ⌧ ru⌧ sw⌧ tv( 1
6�rst�uvw � �rst�uv/w + �rs/t�uv/w),

and

bNP(✓) = (�rs�tu � ⌧ rs⌧ tu � ⌫rs⌫tu)( 1
4�rstu � �rst/u + �rt/su)

� (�rs�tu�vw + ⌧ rs⌧ tu⌧ vw � ⌫rs⌫tu⌫vw)( 1
4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

� (�ru�sw�tv + ⌧ ru⌧ sw⌧ tv � ⌫ru⌫sw⌫tv)( 1
6�rst�uvw � �rst�uv/w + �rs/t�uv/w).

If there are no nuisance parameters or there are orthogonal nuisance parameters, then

bINF(✓) = (�11)
�2( 1

4�1111 � �111/1 + �11/11)

� (�11)
�3( 1

4�111�111 � �111�11/1 + �11/1�11/1)

� (�11)
�3( 1

6�111�111 � �111�11/1 + �11/1�11/1).

Note that if there are no nuisance parameters, ⌫11 = 0 and ⌧ 11 = ��11, so that bNP(✓) is identically zero. It is useful to
evaluate bNP(✓) in the case of orthogonal nuisance parameters to show better the effect of nuisance parameters. Now, by
making the substitution �rs = ⌫rs � ⌧ rs, we have

bNP(✓) = {(⌫rs � ⌧ rs)(⌫tu � ⌧ tu) � ⌧ rs⌧ tu � ⌫rs⌫tu}( 1
4�rstu � �rst/u + �rt/su)

� {(⌫rs � ⌧ rs)(⌫tu � ⌧ tu)(⌫vw � ⌧ vw) + ⌧ rs⌧ tu⌧ vw � ⌫rs⌫tu⌫vw}
⇥ ( 1

4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

� {(⌫ru � ⌧ ru)(⌫sw � ⌧ sw)(⌫tv � ⌧ tv) + ⌧ ru⌧ sw⌧ tv � ⌫ru⌫sw⌫tv}
⇥ ( 1

6�rst�uvw � �rst�uv/w + �rs/t�uv/w)

= �(⌧ rs⌫tu + ⌫rs⌧ tu)( 1
4�rstu � �rst/u + �rt/su)

� (⌧ rs⌧ tu⌫vw + ⌧ rs⌫tu⌧ vw + ⌫rs⌧ tu⌧ vw � ⌧ rs⌫tu⌫vw � ⌫rs⌧ tu⌫vw � ⌫rs⌫tu⌧ vw)

⇥ ( 1
4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

� (⌧ ru⌧ sw⌫tv + ⌧ ru⌫sw⌧ tv + ⌫ru⌧ sw⌧ tv � ⌧ ru⌫sw⌫tv � ⌫ru⌧ sw⌫tv � ⌫ru⌫sw⌧ tv)

⇥ ( 1
6�rst�uvw � �rst�uv/w + �rs/t�uv/w).

We consider each of the terms in bNP(✓) separately under orthogonality:

�(⌧ rs⌫tu + ⌫rs⌧ tu)( 1
4�rstu � �rst/u + �rt/su)

= (�11)
�1�ab( 1

2�11ab � �1ab/1 � �11a/b);
� (⌧ rs⌧ tu⌫vw + ⌧ rs⌫tu⌧ vw + ⌫rs⌧ tu⌧ vw � ⌧ rs⌫tu⌫vw � ⌫rs⌧ tu⌫vw � ⌫rs⌫tu⌧ vw)

⇥ ( 1
4�rst�uvw � �rst�uv/w + �rs/t�uv/w)

= �(�11)
�2�ab( 1

2�111�1ab + 1
4�11a�11b � �1ab�11/1 + �11/1�ab/1)
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� (�11)
�1�ab�cd( 1

2�11a�bcd + 1
4�1ab�1cd � �11a�bc/d � �1ab�1c/d + �11/a�bc/d);

� (⌧ ru⌧ sw⌫tv + ⌧ ru⌫sw⌧ tv + ⌫ru⌧ sw⌧ tv � ⌧ ru⌫sw⌫tv � ⌫ru⌧ sw⌫tv � ⌫ru⌫sw⌧ tv)

⇥ ( 1
6�rst�uvw � �rst�uv/w + �rs/t�uv/w)

= �(�11)
�2�ab( 1

2�11a�11b � �11a�11/b � �11a�1b/1)

� (�11)
�1�ab�cd( 1

2�1ac�1bd � �1ac�bd/1).

The resulting formula for bNP(✓) in the presence of orthogonal nuisance parameters is

bNP(✓) = (�11)
�1�ab( 1

2�11ab � �1ab/1 � �11a/b)

� (�11)
�2�ab(�111�1ab + 3

4�11a�11b

� �11a�11/b � �11a�1b/1 � �1ab�11/1 + �11/1�ab/1)

� (�11)
�1�ab�cd( 1

2�11a�bcd + 1
4�1ab�1cd + 1

2�1ac�1bd

� �11a�bc/d � �1ab�1c/d � �1ac�bd/1 + �11/a�bc/d).

Just as for gNP(✓) in the case of orthogonal nuisance parameters, we see that bNP(✓) involves multiple sums over the indices
for the nuisance parameters, so bNP(✓) can be expected to be large when the number of nuisance parameters is large.

An interesting feature emerges from comparing the formulas for gNP(✓) and bNP(✓) in the orthogonal nuisance parameter
case. While the expression for gNP(✓) involves a double sum over the indices for the nuisance parameters, the expression
for bNP(✓) involves both double and quadruple sums. Consequently, we might reasonably expect the ratio bNP(✓)/bINF(✓)
to grow more rapidly with the number of nuisance parameters than does the ratio gNP(✓)/gINF(✓). This phenomenon is ap-
parent in Example 1, for which gNP(✓)/gINF(✓) = 3q/2. It turns out that bINF(✓) = n�1 1

3 and bNP(✓) = n�1(q2 + q), so
bNP(✓)/bINF(✓) = 3(q2 + q). In this example, the ratio bNP(✓)/bINF(✓) grows quadratically with the number of nuisance
parameters, while the ratio gNP(✓)/gINF(✓) only grows linearly.

6. Decompositions for other pivots

So far, our focus has been on inference based on an adjusted version of the signed root likelihood ratio statistic; however,
other pivots that are asymptotically standard normal also find widespread use, notably the Wald-type pivots based on the
difference  ̂ �  and the score-type pivots based on the derivative M1( ) = dM( )/d = L1{✓̃( )}. DiCiccio et al.
(in press) provide analysis of circumstanceswhere inference, such as p-values, obtained by bootstrapping various first-order
asymptotically equivalent pivots will agree to higher-order with that obtained from the signed root statistic. It is of interest
to assess the impact that nuisance parameters have on higher-order adjustments obtained by Cornish–Fisher transformation
to these other pivots. We examine the structure of these adjustments in terms of the quantities gINF(✓) and gNP(✓), to allow
explicit comparisons with inference based on R( ).

Let T ( ) denote an asymptotically standard normal pivot, and let its cumulants be denoted by 1, 2, etc. Typically, the
mean 1 and skewness 3 are of order O(n�1/2), while the variance 2 = 1+O(n�1); the fourth and higher-order cumulants
are of order O(n�1) or smaller. Central to higher-order inference based on T ( ) is the Cornish–Fisher transformation
T � 163T 2 � 1 + 163, which has the standard normal distribution to error of order O(n�1). The Cornish–Fisher
transformation of R( ) agrees with the R⇤( ) statistic to error of order O(n�1). The adjustment terms 1

63 and �1 + 163
that appear in the Cornish–Fisher transformation depend on ✓ , so they would need to be estimated to achieve higher-order
inference in practice. An interpretation of the adjustmentmadeby the Cornish–Fisher transformation is thatwhether or not a
mean adjustment suffices tomake the desired correction hinges on the order of 3. This is an important factor differentiating
the signed root statistic from other asymptotically standard normal pivots.

We report 1 and 3 for some common choices of T ( ). For T ( ) = R( ), we have seen that 1 = �gINF(✓) � gNP(✓) +
O(n�1); in this case, 3 = O(n�1). Consequently, higher-order inference based on R( ) requires estimation of 1 only, and
estimation of 3 is not necessary.

To report 1 and 3 for other pivots T ( ), it is convenient to introduce one further asymptotic quantity in addition
to gINF(✓) and gNP(✓). This quantity is d ⌘ d(✓) = �⌘1/2 1

6�
1r⌧ st�rst , which arises quite naturally from the profile log-

likelihood function. It turns out that the third derivative of the profile log-likelihood function evaluated at  ̂ is M3( ̂) =
⌘3/26d + Op(n1/2). The quantity d is also related to Efron’s (1987) asymptotic adjustments a0 and cq, which were discussed
by DiCiccio and Efron (1996): d = 2a0 + cq. Furthermore, in terms of gINF(✓), gNP(✓), and d, the mean of  ̂ is E( ̂) =  �
(2gINF(✓) + gNP(✓) � d)⌘�1/2 + O(n�3/2).

A key property of the quantity d is that it is the same whether there are no nuisance parameters or there are orthogonal
nuisance parameters. In both cases, the formula for d becomes d = �(��11)�3/216�111. Thus, d is similar to gINF(✓): we
would not expect d to grow with the number of nuisance parameters. The quantity d does differ from gINF(✓) and gNP(✓) in
one important respect: while gINF(✓) and gNP(✓) are invariant under reparameterisations ✓ = ( ,�) ! {g( ), h( ,�)},
where � = (✓2, . . . , ✓d) contains the nuisance parameters and g( ) is a monotonically increasing function, d does not
enjoy the property of invariance.
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We next consider theWald statistic with observed information, T ( ) = ( ̂ � )/(�L̂11)1/2, and theWald statistic with
expected information, T ( ) = ( ̂ �  )/(��̂11)1/2 = ( ̂ �  )⌘̂1/2. The distributions of these pivots are the same to error
of order O(n�1). For bothWald statistics, 1 = �{gINF(✓)+gNP(✓)+d}+O(n�1) and 3 = �6d+O(n�1). Consequently, the
Wald statistics are similar to the signed root of the likelihood ratio statistic in that nuisance parameters affect the higher-
order adjustment terms through gNP(✓), which is involved in 1.

Finally, we consider the score statistic with observed information, T ( ) = M1( )(�L̂11)1/2, and the score statistic with
expected information, T ( ) = M1( )(��̂11)1/2 = M1( )⌘̂�1/2. Just as for the Wald statistics discussed above, the distri-
butions of these pivots agree to error of order O(n�1); for these score statistics, 1 = �{gINF(✓) + gNP(✓) � 2d} + O(n�1)
and 3 = 12d + O(n�1). Again, nuisance parameters influence the higher-order adjustment terms through gNP(✓), which is
a component of 1.

An important property of the profile log-likelihood function M( ) is that the expectation of the profile score is
E{M1( )} = �⌘1/2gNP(✓) + O(n�1). Thus, E{M1( )} is of order O(1); the expectation of the profile score does even
vanish asymptotically. Adjusted profile likelihood is discussed in the Appendix. Most of the adjustment functions B( )
that have been proposed to construct an adjusted profile log-likelihood M̄( ) = M( ) + B( ) have the property that
E{B1( )} = ⌘1/2gNP(✓)+O(n�1), so the expectation of the adjusted profile score is E{M1( )} = O(n�1), which does vanish
asymptotically.

For T ( ) = R̄( ) = sgn( ̄� )[2{M̄( ̄)�M̄( )}]1/2, as detailed in the Appendix, we have 1 = �gINF(✓)+O(n�1) and
3 = O(n�1). Thus, at order O(n�1/2), the difference between the distribution of R̄( ) and the standard normal distribution
depends on gINF(✓), a term which is the same whether there are no nuisance parameters present or there are orthogonal
nuisance parameters. Consequently, we expect the difference between the distribution of R̄( ) and the standard normal
distribution not to grow inordinately as the number of nuisance parameters increase.

Similar comments apply to Wald statistics and score statistics based on the adjusted profile log-likelihood function. For
example, for T ( ) = ( ̄ �  ){�M̄11( ̄)}1/2, we have 1 = �{gINF(✓) + d} + O(n�1) and 3 = �6d + O(n�1), while for
T ( ) = M1( ̄){�M̄11( ̄)}�1/2, we have 1 = �{gINF(✓) � 2d} + O(n�1) and 3 = 12d + O(n�1).

Implementation of higher-order inference to error of order O(n�1) requires that we estimate the adjustment terms 163
and �1 + 163; we might, for example, use plug-in estimates or derive estimates from a simulation procedure such as
the parametric bootstrap. If these adjustment terms change rapidly with the value of the parameter ✓ , then there is greater
scope for error in the estimation process than if possible if the adjustment terms are stable across ✓ values. This observation
points to the use of asymptotically standard normal pivots T ( ) that are derived from the adjusted profile log-likelihood
function, since the adjustment terms for such pivots depend only on gINF(✓) and d. If the adjustment terms are small in
magnitude, then they are unlikely to vary unduly with ✓ , and the adjustments can be estimated more reliably. Situations
can arise, as is the case in thenormal regression example, that the quantity gNP(✓) is large yet it remains constantwith respect
to ✓ . In these circumstances, the need to use the adjusted profile log-likelihood is not so pressing; indeed, for the normal
regression model, the parametric bootstrap affords exact inferences, except for simulation error. Since such situations are
not commonplace, there is strong motivation for using generally procedures that ensure the magnitudes of the adjustment
terms are controlled. However, it could be useful to develop conditions that easily identifymodels, such as the normal linear
regression model, for which the adjustment terms, especially gNP(✓), are constant or nearly so, since, in such models, the
benefit of using adjusted profile likelihood for accurate inference is not so pronounced and procedures based on the regular
profile likelihood are likely to suffice.

7. Discussion

Accurate inference on a scalar interest parameter  in the presence of a nuisance parameter may be obtained using the
signed root likelihood ratio statistic R( ). A computationally intensive, but analytically simple, approach bases the inference
on a bootstrap estimate of the sampling distribution of R( ), constructed by fixing the nuisance parameter at its observed
constrained maximum likelihood value. Alternatively, inference can be based on a standard normal approximation to the
sampling distribution of an analytically adjusted version of R( ). For this latter approach, the gold standard is represented
by Barndorff-Nielsen’s R⇤ statistic. The adjustmentmade by this statisticmay be decomposed into a sum of two terms. These
adjustments INF( ) and NP( ) are determined to second order, Op(n�1), by their expectations.

We have provided an explicit evaluation of these expectations, allowing new theoretical interpretation of the relative
importance of the two adjustments and to the intrinsic difficulty of the inference problem within any specified model.

In particular, quantifying the dependence of the expectations on the nuisance parameter provides insight to circum-
stances where the bootstrap and analytic approaches might be expected to perform well in terms of accuracy, even in high
dimensional problems andwith small sample sizes.Wehave demonstrated thatwithin a particularmodel, the importance of
the nuisance parameter adjustmentmay depend not only on the structure of themodel, as expressed by the nuisance param-
eter dimension, but the parameter values themselves. In key problems, dependence lies only on the parameter dimension.
Calculation of the approximations gINF(✓) and gNP(✓) of E{INF( )} and E{NP( )} involves only evaluation of expectations
of low order log-likelihood derivatives, and has been demonstrated to give useful theoretical insight to the degree of the
adjustment to the signed root statistic R( ) given by the statistic R⇤( ) for any specified inference problem, and therefore
to the likely value in use of R⇤( ) or bootstrapping as a means of improving accuracy.
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We note that empirical estimation of themeans, through the bootstrap principle of estimation of the nuisance parameter,
furnishes a simple procedure for adjustment of the signed root likelihood ratio statistic. A thorough analysis of this empirical
adjustment method for the purposes of inference with higher-order accuracy, as well as a comparison of such an empirical
adjustment method with alternative approximations, is beyond the scope of this paper.

Appendix

A.1. Adjusted profile likelihood

There have beenmany suggestions to replace the usual profile likelihood functionM( ) by an adjusted version M̄( ) =
M( ) + B( ), where B( ) is an adjustment function whose derivatives with respect to  are of order Op(1). The likeli-
hood ratio statistic based on the adjusted profile likelihood is W̄ ( ) = 2{M̄( ̄) � M̄( )}, where  ̄ is the point at which
M̄( ) is maximised. The signed root of the likelihood ratio statistic based on the adjusted profile likelihood is R̄( ) =
sgn( ̄ �  ){W̄ ( )}1/2.

Following our previous notation, we write B1( ) = @B( )/@ , B11( ) = @2B( )/@ 2, etc. Let �1 = E{B1( )}, �11 =
E(B11), etc.; these quantities are assumed to be of order O(1). Further, let b1 = B1( ) � �1, b11 = B11( ) � �11, etc., with
these quantities assumed to be of order Op(n�1/2). Assume also that the joint cumulants of nb1, nb11, lr , lrs, etc. are of order
O(n).

In many instances, the adjustment function B( ) has been proposed to take into account the effect of nuisance parame-
ters for inference about  ; see, notably, Cox and Reid (1987), Barndorff-Nielsen (1983), Skovgaard (1996), Severini (1998),
DiCiccio andMartin (1993), Barndorff-Nielsen and Chamberlin (1994). These adjustment functions have the effect of reduc-
ing the expectation of the profile score from order O(1) to order O(n�1). Specifically, these functions have �1 = ⇢+O(n�1),
where ⇢ = �⌘�1r⌫st( 1

2�rst + �rs,t). Since, in general, E{M1( )} = �⇢ + O(n�1), it follows that E{M̄1( )} = O(n�1): see
McCullagh and Tibshirani (1990), DiCiccio et al. (1996).

For a general adjustment function B( ), DiCiccio and Stern (1994b) showed that R̄( ) = ⌘1/2{R̄1 + R̄2 + Op(n�3/2)},
where R̄1 = R1 = ��1r lr and R̄2 = R2 � �11�1; in particular, R̄( ) = R( ) + ⌘�1/2�1 + Op(n�1). Below, we use this result
with a particular adjustment function to obtain a representation of the nuisance parameter adjustment NP( ), from which
E{NP( )} is then determined to O(n�1). Combined with (3), this enables calculation to O(n�1) of E{INF( )}.

A.2. Expectations of adjustments

We have,

E{NP( )} + E{INF( )} = �E{R( )} + O(n�1)

= �⌘1/2{�1r�st�rs,t + 1
2�

1r⌧ st�rs,t + 1
2�

1r�st�rst + 1
3�

1r⌧ st�rst} + O(n�1). (4)

It is easily seen that NP( ) and INF( ) are of the form NP( ) = E{NP( )} +Op(n�1) and INF( ) = E{INF( )} +Op(n�1).
Here we develop explicit approximations for E{NP( )} and E{INF( )}.

The quantityNP( ) is related to themodified profile likelihood of Barndorff-Nielsen (1983), an adjusted profile likelihood
which reduces the bias of the profile score. Following Sartori et al. (1999) and Pierce and Bellio (2006), we have that, up to
an additive constant, the log modified profile likelihood is

LMP( ) = �R( )NP( ) � {R( )}2/2
= �R( )NP( ) � M( ̂) + M( )

= �1
2
{R( ) + NP( )}2 + Op(n�1).

Themodified profile likelihood therefore corresponds to an adjustment function of the form B( ) = �R( )NP( ). Further,
the signed square root of the modified profile likelihood ratio statistic is equivalent, to Op(n�1), to R( ) + NP( ), as noted
by Sartori et al. (1999). The general result of DiCiccio and Stern (1994b) then gives NP( ) = ⌘�1/2�1 + Op(n�1).

Observing that R( ) = ( ̂ �  )⌘̂1/2 + Op(n�1/2) and NP( ) = NP( ̂) + Op(n�1), we have

LMP( ) = �R( )NP( ) � M( ̂) + M( )

= ( �  ̂)⌘̂1/2NP( ̂) � M( ̂) + M( ) + Op(n�1),

and differentiation with respect to  yields

LMP
1 ( ) = ⌘̂1/2NP( ̂) + M1( ) + Op(n�1/2) = ⌘1/2NP( ) + M1( ) + Op(n�1/2).

Since (see, for example DiCiccio et al., 1996) E{LMP
1 ( )} = O(n�1) and E{M1( )} = �⇢ + O(n�1/2), it follows that

E{NP( )} = ⌘�1/2⇢ + O(n�1) = �⌘1/2�1r⌫st(�rs,t + 1
2�rst) + O(n�1),
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so that �1 = ⌘1/2E{NP( )} + O(n�1/2) = �⌘�1r⌫st(�rs,t + 1
2�rst) + O(n�1/2). It follows from (4) that

E{INF( )} = ⌘1/2�1r⌧ st( 1
2�rs,t + 1

6�rst) + O(n�1).

We observe also that this analysis confirms E{NP( )} = ⌘�1/2�1 + O(n�1) = NP( ) + Op(n�1), as noted earlier.
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