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A Simple Analysis of the Exact Probability Matching Prior in the Location-Scale Model
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ABSTRACT
It has long been asserted that in univariate location-scalemodels, when concernedwith inference for either
the location or scale parameter, the use of the inverse of the scale parameter as a Bayesian prior yields pos-
terior credible sets that have exactly the correct frequentist confidence set interpretation. This claim dates
to at least Peers, and has subsequently been noted by various authors, with varying degrees of justifica-
tion. We present a simple, direct demonstration of the exact matching property of the posterior credible
sets derived under use of this prior in the univariate location-scale model. This is done by establishing an
equivalence between the conditional frequentist and posterior densities of the pivotal quantities on which
conditional frequentist inferences are based.

1. A Brief History

The purpose of this note is to give a detailed and direct
account of an exact probability matching result for the univari-
ate location-scale model, that is, a result in which a particular
choice of prior for Bayesian inference results in posterior cred-
ible sets that have exactly the correct frequentist confidence set
interpretation. The setting we consider is that of an indepen-
dent and identically distributed sample Y = {Y1, . . . ,Yn} from
the family σ−1 f {(y − µ)/σ } where f (·) is a known probability
density function defined on R, −∞ < µ < ∞ and σ > 0. We
will consider inference for a scalar interest parameter, regarding
the other parameter as nuisance. Thus, we will investigate the
relevant frequentist coverage of themarginal posterior quantiles
of µ and σ , separately.

Various authors, including Fisher (1934) and Fraser (1979),
have argued that in location-scale models, from a frequentist
perspective there are strong reasons to draw inferences condi-
tionally on the observed value of an ancillary statistic. Conse-
quently, as noted by DiCiccio, Kuffner, and Young (2012), when
considering probability matching priors, the correct frequentist
inference to match is a conditional one. Suppose that σ is the
interest parameter and denote by σB,1−α ≡ σB,1−α(π (µ, σ ),Y)

the 1 − α marginal posterior quantile for σ under the prior
π (µ, σ ). A conditional probability matching prior, π (µ, σ ), is
one that satisfies

Prµ,σ |A=a{σ ≤ σB,1−α|A = a} = 1 − α + O(n−m/2)

for all α ∈ (0, 1) for m = 2 or 3, which correspond to first- or
second-order matching, n is the sample size and Prµ,σ |A=a is the
conditional frequentist probability under repeated sampling of
Y, conditioning on the observed value of an ancillary statistic
A. This states that the 1 − α quantile of the marginal posterior
density of σ under prior π (µ, σ ) has conditional frequentist
coverage probability 1 − α, to error of order O(n−m/2). Simple
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application of the law of iterated expectations shows that a con-
ditional matching prior is also an unconditional matching prior
to the same order. An identical definition of a conditional prob-
ability matching prior when µ is the interest parameter results
from reversing the roles of σ and µ in the above.

All smooth priors are probability matching in a weak sense
(m = 1 in the above); this is a consequence of the equivalence,
to O(n−1/2), of frequentist and Bayesian normal approxima-
tion. Datta andMukerjee (2004) and Datta and Sweeting (2005)
provided thorough reviews of known results, including both
approximate and exact matching results in the single parameter
and multiparameter settings.

The result that there is exact probability matching for infer-
ence about a scalar parameter in the location-scalemodel for the
prior π (µ, σ ) ∝ σ−1 has been stated by various authors. The
earliest reference is Peers (1965); others include Lawless (1972,
1982) and DiCiccio and Martin (1993). However, to the best of
our knowledge, a direct, general demonstration of this result is
missing from the literature.

Datta and Mukerjee (2004, p. 26) noted that in the univari-
ate normal location-scale model, the prior π (µ, σ ) ∝ σ−1 is
exact unconditional frequentist probabilitymatching, regardless
of whether µ or σ is the interest parameter. This is because,
under this prior, the unconditional frequentist and posterior
distributions of certain pivots coincide. Earlier references for
this observation include Guttman (1970, chap. 7), Box and Tiao
(1973, chap. 2), and Sun and Ye (1996). In the present note, we
show that such a result is actually true quite generally.

Severini, Mukerjee, and Ghosh (2002) proved a related result
about exact matching for predictive highest posterior density
regions in group transformationmodels, of which themultivari-
ate location-scalemodel is a particular example considered. This
result is due to an invariance property of the highest predictive
density region, and is essentially an extension of the invariance
results derived by Hora and Buehler (1966, 1967).
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Here, we are concerned with the conditional frequentist
matching property of posterior credible sets for a scalar inter-
est parameter, and present a detailed argument confirming the
exact matching property of the prior π (µ, σ ) ∝ σ−1. Note also
that in the location-scale model, Jeffreys (1961) recommended
use of this prior instead of the Jeffreys’ prior, π (µ, σ ) ∝ σ−2.
Thus, the results described here may be interpreted as support
for his recommendation.

2. Demonstrating Exactness

Property: The prior π (µ, σ ) ∝ σ−1 yields exact conditional
probability matching in the univariate location-scale model
whether µ or σ is the interest parameter.

We verify the property by establishing an equivalence
between, respectively, the marginal conditional frequentist con-
fidence limits and marginal posterior credible limits for the
parameter of interest. These limits are derived from the joint
conditional frequentist and joint posterior densities of suitable
pivotal quantities. The motivation for this approach is that in
the conditional frequentist framework, confidence sets are con-
structed using the conditional distributions of pivotals. In the
location-scale model, a particular choice of pivotal quantities
yields straightforward construction of confidence sets for either
parameter directly from the marginal distribution of the corre-
sponding pivotal. Bayesian and frequentist procedures for con-
structing credible and confidence sets using, respectively, the
joint posterior and joint conditional frequentist densities of suit-
able pivotal quantities, are exactly the same. Thus to establish the
result, it is sufficient to demonstrate that the Bayesian and fre-
quentist frameworks base inference on the same joint density.

We first summarize the procedure for exact conditional fre-
quentist inference as suggested by Fisher (1934) and more thor-
oughly examined by Fraser (1979, chap. 6); additional details
and references may be found in Lawless (1982, Appendix E) and
Pace and Salvan (1997, chap. 7). The joint density of the sample
for given values of (µ, σ ) is defined as

py(y;µ, σ ) = σ−n
n∏

i=1

f {(yi − µ)/σ }.

It is assumed that the maximum likelihood estimators for
(µ, σ ), denoted by (µ̂, σ̂ ), are unique and exist with probability
one. The configuration statistic,

A = (A1, . . . ,An) =
(
Y1 − µ̂

σ̂
, . . . ,

Yn − µ̂

σ̂

)
,

is an exact ancillary. This statistic is distribution constant, in
the sense that its distribution does not depend on any unknown
parameters, and only n − 2 elements of this random vector are
functionally independent. To appreciate this last property, sim-
ply write the likelihood in the form L(µ, σ ; µ̂, σ̂ , a), that is, in
terms of the minimal sufficient statistic (µ̂, σ̂ , a), and observe
that the likelihood equations give two constraints involving the
ancillary. In particular, An−1 and An may be expressed in terms
of (A1, . . . ,An−2). Moreover, the quantity

(Q1,Q2) =
(

µ̂ − µ

σ̂
,
σ̂

σ

)

is pivotal with respect to the parameters (µ, σ ) in the sense that
the joint distribution of (Q1,Q2), conditional on the ancillary
statistic, does not depend on (µ, σ ).

Standard joint density manipulations involving transforma-
tions from the joint density of (Y1, . . . ,Yn) to the joint density
of (µ̂, σ̂ ,A1, . . . ,An−2) shows that the exact joint conditional
frequentist density of (Q1,Q2), given A = a, is of the form

pQ1,Q2|A=a(q1, q2|A = a) = c(a)qn−2
2 pQ1,Q2 (q1, q2)

= c(a)qn−1
2

n∏

i=1

f (q1q2 + q2ai), (1)

where the normalizing constant c(a) depends on a only and is
defined by

c(a)
∫ ∞

0

∫ ∞

−∞
qn−1
2

n∏

i=1

f (q1q2 + q2ai)dq1dq2 = 1. (2)

Exact conditional frequentist inference makes use of (1) to con-
struct a confidence set for, respectively, µ or σ . Let q1,F,α denote
the α quantile of the conditional frequentist marginal distribu-
tion of q1. That is,

∫ q1,F,α

−∞

∫ ∞

0
pQ1,Q2|A=a(q1, q2|A = a)dq2dq1 = α. (3)

Similarly let q2,F,α denote the α quantile of the conditional fre-
quentist marginal distribution of q2,

∫ q2,F,α

0

∫ ∞

−∞
pQ1,Q2|A=a(q1, q2|A = a)dq1dq2 = α. (4)

Fix (µ, σ ). Conditioning on A = a, the event {q1 ≥ q1,F,α} is
equivalent to the event {µ̂ − σ̂q1,F,α ≥ µ}. Also, the event {q2 ≥
q2,F,α} ≡ {σ̂/q2,F,α ≥ σ }. Thus, an upper 1 − α one-sided con-
ditional frequentist confidence limit for µ, say µF,1−α may be
found directly from the corresponding limit for q1 and similarly
the limit for σ , say σF,1−α , may be obtained from the limit for
q2. Formally, under repeated sampling of Y, Prµ,σ |A=a{µ ≤ µ̂ −
σ̂q1,F,α|A = a} = 1 − α and Prµ,σ |A=a{σ ≤ σ̂/q2,F,α|A = a} =
1 − α.

Turning to the Bayesian perspective, inference is conditioned
on the full data y. The joint posterior density π (µ, σ |Y = y) is
defined by

π (µ, σ |Y = y) = π (µ, σ )p(y;µ, σ )∫ ∞
0

∫ ∞
−∞ π (µ′, σ ′)p(y;µ′σ ′)dµ′dσ ′ .

Expressing the likelihood in the form L(µ, σ ; µ̂, σ̂ , a) yields

π (µ, σ |Y = y) ∝ π (µ, σ )σ−n
n∏

i=1

f
{

σ̂

σ

(
ai +

µ̂ − µ

σ̂

)}
,

and using the prior π (µ, σ ) ∝ σ−1, we have the joint posterior
density of the parameters

π (µ, σ |Y = y) = sσ−n−1
n∏

i=1

f
{

σ̂

σ

(
ai +

µ̂ − µ

σ̂

)}
, (5)

where the normalizing constant s is determined by

s
∫ ∞

0

∫ ∞

−∞
σ−n−1

n∏

i=1

f
{

σ̂

σ

(
ai +

µ̂ − µ

σ̂

)}
dµdσ = 1. (6)
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We now find the joint posterior density of (Q1,Q2) that, con-
ditional on the data, is a one-to-one transformation of the
parameters (µ, σ ), treated as random quantities in the Bayesian
framework. To show that the posterior density of (Q1,Q2) is
exactly equal to the conditional frequentist density given by (1),
the relationship between the normalizing constants must be
discovered.We could start with the posterior density in (5), find
the posterior density of (Q1,Q2) via the usual route, and finally
solve for the relationship between normalizing constants, but
we instead choose to do everything at once.

We integrate (6) using the substitution (Q1,Q2) =
ϕ(µ, σ ) = ((µ̂ − µ)/σ̂ , σ̂/σ ) and, by setting this equal to
(2), establish a relationship between s and c(a). Explicitly,

1 =
∫ ∞

0

∫ ∞

−∞
π (µ, σ |Y = y)dµdσ

= s
∫ ∞

0

∫ ∞

−∞
σ−n−1

n∏

i=1

f
{

σ̂

σ

(
ai +

µ̂ − µ

σ̂

)}
dµdσ

= s
∫ ∞

0

∫ ∞

−∞
(σ̂/q2)−n−1 f (q1q2 + q2ai)| det J|dq1dq2

= s
∫ ∞

0

∫ ∞

−∞
σ̂−n+1qn−1

2

n∏

i=1

f (q1q2 + q2ai)dq1dq2,

where | det J| = (σ̂/q2)2 is the absolute value of the Jaco-
bian determinant of (µ, σ )(q1, q2) = ϕ−1(q1, q2) = (µ̂ − σ̂q1,
σ̂/q2). Comparison with (2) yields the relationship between the
normalizing constants,

s ≡ σ̂ n−1c(a). (7)

Thus, the joint posterior density of (Q1,Q2) is given by

π (q1, q2|Y = y) = sqn+1
2 σ̂−n−1

n∏

i=1

f (q1q2 + q2ai)| det J|

= c(a)qn−1
2

n∏

i=1

f (q1q2 + q2ai). (8)

Note that this is exactly equal to the joint conditional frequentist
density given in (1).

The α quantiles of the marginal posterior distributions,
denoted by q1,B,α and q2,B,α , are, respectively, defined by

∫ q1,B,α

−∞

∫ ∞

0
π (q1, q2|Y = y)dq2dq1 = α, (9)

and
∫ q2,B,α

0

∫ ∞

−∞
π (q1, q2|Y = y)dq1dq2 = α. (10)

Comparison with (3) and (4) confirms that q1,F,α = q1,B,α and
q2,F,α = q2,B,α . The construction of credible sets when either µ

or σ is the interest parameter exactly parallels the procedure
in the conditional frequentist setting. In particular, the 1 − α

upper credible limits forµ and σ , denoted byµB,1−α and σB,1−α ,
satisfy

Prµ,σ |A=a(µ ≤ µB,1−α|A = a) = 1 − α

and
Prµ,σ |A=a(σ ≤ σB,1−α|A = a) = 1 − α,

that is, the conditional frequentist coverage of the poste-
rior credible set under prior π (µ, σ ) ∝ σ−1, is exactly 1 − α,
whether µ or σ is the parameter of interest.

In summary, we have demonstrated that the formal equiv-
alence between the frequentist conditional density of (Q1,Q2)

and the Bayesian posterior density of (Q1,Q2) under the prior
π (µ, σ ) ∝ σ−1 allows us to deduce directly that this prior is
exact conditional probability matching, when either µ or σ

is the interest parameter. It follows immediately that this prior is
an exact probability matching prior in the usual, unconditional
sense. That Bayesian posterior quantiles under this prior act
as frequentist confidence limits both conditionally and uncon-
ditionally is a result that holds quite generally, even when the
marginal posterior of interest is analytically intractable.
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