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Abstract: Likelihood-based methods of statistical inference provide a useful general
methodology that is appealing, as a straightforward asymptotic theory can be ap-
plied for their implementation. It is important to assess the relationships between
different likelihood-based inferential procedures in terms of accuracy and adherence
to key principles of statistical inference, in particular those relating to conditioning
on relevant ancillary statistics. An analysis is given of the stability properties of
a general class of likelihood-based statistics, including those derived from forms of
adjusted profile likelihood, and comparisons are made between inferences derived
from different statistics. In particular, we derive a set of sufficient conditions for
agreement to Op(n

−1), in terms of the sample size n, of inferences, specifically p-
values, derived from different asymptotically standard normal pivots. Our analysis
includes inference problems concerning a scalar or vector interest parameter, in the
presence of a nuisance parameter.
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1. Introduction

A highly useful statistical methodology for inference on a scalar or vector
interest parameter in the presence of a nuisance parameter is furnished by proce-
dures based on the likelihood function, including tests and confidence sets based
on the likelihood ratio statistic. Though no explicit optimality criteria are in-
voked, a quite general asymptotic theory allows straightforward implementation
of such methodology in a wide range of settings. However, accuracy and what
may be termed inferential correctness are (Young (2009)) key desiderata of any
parametric inference. When constructing, say, a confidence set for a parameter
of interest in the presence of nuisance parameters, we desire high levels of cov-
erage accuracy from the confidence set. Further, it is important that procedures
are inferentially correct, meaning that they respect key principles of inference,
in particular those relating to appropriate conditioning on ancillary information
when this is relevant. The crucial issue here is the stability of the statistic used
for inference, the extent to which the unconditional distribution of the statistic
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agrees with the conditional distribution of the statistic, relevant for achieving
inferential correctness. Henceforth, when speaking of the stability of a pivot,
we mean whether or not its marginal distribution inherently respects ancillary
information. Specifically, a statistic which is stable to second-order is one whose
conditional distribution given the observed value of an ancillary statistic agrees
to second-order, O(n−1), in the sample size n with its marginal distribution. Our
objective in this paper is to both analyse and elucidate properties of likelihood-
based methods of statistical inference against these desiderata, and to provide
new results that shed light on what is achieved by alternative approaches to
implementation of likelihood-based methods of inference. We make two novel
contributions.

We provide a general assessment of the stability properties of likelihood-
based statistics commonly used for parametric inference. Our analysis considers
first the case of the signed root likelihood ratio statistic for inference on a scalar
interest parameter, in the presence of a nuisance parameter. In doing so, we
establish a generalization to the practically realistic context involving nuisance
parameters of results described by McCullagh (1984) and Severini (1990). We
then discuss this issue for asymptotically standard normal pivots more generally,
in particular those constructed from adjusted forms of profile likelihood, before
considering inference for vector interest parameters. The results presented here
allow comparisons to be drawn between the inferential properties of parametric
bootstrap procedures and techniques of higher-order inference based on asymp-
totic, analytic approximation.

We also provide an explicit comparison of inferences, specifically p-values,
obtained from different asymptotically standard normal pivots, including those
constructed from adjusted forms of profile likelihood, establishing certain higher-
order equivalences and differences. We derive a set of sufficient conditions ensur-
ing agreement of p-values derived from different asymptotically standard normal
pivots, to order Op(n−1).

2. Background

Suppose that Y = (Y1, . . . , Yn) is a continuous random vector and that the
distribution of Y depends on an unknown d-dimensional parameter θ, partitioned
as θ = (ψ,φ), where initially we suppose ψ = θ1 is a scalar interest parameter
and φ is a nuisance parameter of dimension d− 1. We later consider the case of
a vector interest parameter ψ.

Let L(θ) be the loglikelihood function for θ based on Y and let θ̂ = (ψ̂, φ̂)
be the global maximum likelihood estimator of θ. Further, let θ̃ = θ̃(ψ) =
(ψ, φ̃) = {ψ, φ̃(ψ)} be the constrained maximum likelihood estimator of θ for
given ψ. Then the profile loglikelihood function for ψ is M(ψ) = L{θ̃(ψ)}
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and the likelihood ratio statistic for ψ is W (ψ) = 2{M(ψ̂) − M(ψ)}, where
M(ψ̂) = L(θ̂), since θ̃(ψ̂) = θ̂. The signed root likelihood ratio statistic is
R(ψ) = sgn(ψ̂ − ψ){W (ψ)}1/2. Testing H0 : ψ = ψ0 against Ha : ψ > ψ0 or
Ha : ψ < ψ0 can be based on the test statistic R(ψ0). Asymptotically, as the
sample size n increases, the sampling distribution of R(ψ) tends to the standard
normal distribution. Heading the list of desiderata for refinement of the inference
procedures furnished by such first-order asymptotic theory is the achievement of
higher-order accuracy in distributional approximation, while respecting the need
for inferential correctness.

Two main routes (Young (2009)) to higher-order accuracy emerge from con-
temporary statistical theory. The most developed route is that which utilises
analytic procedures, based on ‘small-sample asymptotics’, such as saddlepoint ap-
proximation and related methods, to refine first-order distribution theory. The
second route involves simulation or bootstrap methods, which aim to obtain
refined distributional approximations directly, without analytic approximation:
see, for instance, DiCiccio, Martin, and Stern (2001), Lee and Young (2005),
DiCiccio and Young (2008).

A detailed account of analytic methods for distributional approximation
which yield higher-order accuracy is given by Barndorff-Nielsen and Cox (1994).
Two particular highlights of an intricate theory are especially important: Bartlett
correction of the likelihood ratio statistic W (ψ), which we discuss in Section 8,
and the construction of analytically modified forms of the signed root likeli-
hood ratio statistic R(ψ), designed to offer higher-order accuracy. These proce-
dures also provide inferential correctness, specifically conditional validity, to high
(asymptotic) order, in the two key settings where conditional inference is crucial,
namely multi-parameter exponential family and ancillary statistic contexts. Par-
ticularly central to the analytic approach to higher-order accurate inference on
a scalar interest parameter is Barndorff-Nielsen’s R∗ statistic (Barndorff-Nielsen
(1986)). In both the multi-parameter exponential family and ancillary statistic
contexts, the R∗ statistic is conditionally, and hence unconditionally, distributed
as standard normal, to error of third-order O(n−3/2) in the sample size. So,
analytic standard normal approximation of the sampling distribution of the R∗

statistic yields third-order accuracy under repeated sampling, while respecting
the requirements of conditioning to that same order.

Lawley (1956) showed that Eθ{R(ψ)} = n−1/2m(θ)+O(n−3/2) and varθ{R(θ)}
= 1+ n−1v(θ) +O(n−2), where m(θ) and v(θ) are both of order O(1), while the
third and higher-order cumulants are of order O(n−3/2) or smaller; see also Bickel
and Ghosh (1990). Therefore, {R(ψ)−n−1/2m(θ)}/{1+n−1v(θ)}1/2 has the stan-
dard normal distribution to error of order O(n−3/2). DiCiccio and Stern (1994a)
showed that {R(ψ)−n−1/2m(θ̃)}/{1+n−1v(θ̃)}1/2 also has the standard normal
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distribution to error of order O(n−3/2). This DiCiccio and Stern (1994a) result
asserts that [R(ψ) − Eθ̃{R(ψ)}]/[varθ̃{R(ψ)}]1/2 is also distributed as standard
normal to error of order O(n−3/2). In turn, this distributional result immediately
suggests the parametric bootstrap approaches to third-order accurate inference
discussed by DiCiccio, Martin, and Stern (2001) and Lee and Young (2005). For
testing H0 : ψ = ψ0 against one-sided alternatives, p−values distributed, under
repeated sampling, as uniform to error of order O(n−3/2), and hence yielding
error rate O(n−3/2), can be obtained by bootstrapping R(ψ0) at the parameter
value θ = (ψ0, φ̃0), where φ̃0 = φ̃(ψ0). DiCiccio and Young (2008) show that
this parametric bootstrap procedure respects the requirements of conditioning in
multi-parameter exponential family settings to third-order.

From a repeated sampling perspective, such third-order accurate inference
can be similarly obtained (Lee and Young (2005)) by bootstrap approximation
to the sampling distribution of other asymptotically standard normal pivots,
in particular, pivots constructed as standardized versions of the difference ψ̂ −
ψ0 or the score function ∂M(ψ)/∂ψ|ψ=ψ0 , that avoid calculation of both the
global and constrained maximum likelihood estimators, and may therefore may
be more appealing for use in a computationally-intensive bootstrap inference. A
fundamental question that arises concerns the inferential implications of choice
of a particular statistic: when do inferences based on different choices of statistic
agree to high-order? It is also necessary to ask whether such inference respects
the requirements of conditioning on relevant ancillary statistics, in models which
admit the existence of such. Since a bootstrap calculation involves unconditional
sampling at parameter value θ = (ψ0, φ̃0), the key question is the extent to which
the conditional and unconditional distributions of the statistic being used for the
inference differ.

In this paper we provide an analysis directed at these questions, providing
new results on the stability properties of likelihood-based statistics and agreement
of p-values derived from different asymptotically normal pivots. The implications
of the analysis for bootstrap methodology and detailed comparisons of the latter
with analytic procedures of inference will be described elsewhere.

We consider first the stability properties of the signed root statistic R(ψ);
in doing so, we establish a generalization to the nuisance parameter context of a
result of McCullagh (1984): see also Severini (2000, Sec. 6.4.4). We then discuss
the stability issue in problems involving nuisance parameters for asymptotically
standard normal pivots more generally, before examining conditions which ensure
that p-values derived from two different pivots agree to second-order. Extension
of the conclusions to test statistics based on general adjusted forms of profile
likelihood are described, before presenting results concerning inference for vector
interest parameters.
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Our analysis is concerned exclusively with inferential comparisons ‘under the
null’ so, for instance we examine the unconditional and conditional distributions
of the signed root statistic R(ψ) under the model in question when the true
parameter value is θ = (ψ,φ). Similarly, the analysis concerns comparison of
different p-values under assumed correctness of the null hypothesis being tested.

3. Notation

In the calculations that follow, arrays and summation are denoted by using
the standard conventions, for which the indices r, s, t, . . . are assumed to range
over 1, . . . , d. Summation over the range is implied for any index appearing
in an expression both as a subscript and as a superscript. Differentiation is
indicated by subscripts, so Lr(θ) = ∂L(θ)/∂θr, Lrs(θ) = ∂2L(θ)/∂θr∂θs, etc.
Then E{Lr(θ)} = 0; let λrs = E{Lrs(θ)}, λrst = E{Lrst(θ)}, etc., and put lr =
Lr(θ), lrs = Lrs(θ)−λrs, lrst = Lrst(θ)−λrst, etc. The constants λrs, λrst, . . ., are
assumed to be of order O(n). The variables lr, lrs, lrst, etc., each of which have
expectation 0, are assumed to be of order Op(n1/2). The joint cumulants of lr, lrs,
etc. are assumed to be of order O(n). These assumptions are usually satisfied in
situations involving independent observations. The observed information matrix
is J(θ) = [−Lrs(θ)], while the expected (Fisher) information matrix is I(θ) =
[−λrs(θ)]. It is useful to extend the λ-notation: let λr,s = E(LrLs) = E(lrls),
λrs,t = E(LrsLt) = E(lrslt), etc. The Bartlett identities involving the λ’s can
be derived by repeated differentiation of the identity

∫
exp{L(θ)}dy = 1; in

particular,

λrs + λr,s = 0, λrst + λrs,t + λrt,s + λst,r + λr,s,t = 0.

Differentiation of the definition λrs =
∫
Lrs(θ) exp{L(θ)}dy yields λrs/t = λrst +

λrs,t, where λrs/t = ∂λrs/∂θt. Further, let (λrs) be the d × d matrix inverse of
(λrs), and let η = −1/λ11, τ rs = ηλ1rλ1s, and νrs = λrs + τ rs. Thus, λrs, τ rs,
and νrs are of order O(n−1), while η is of order O(n). For clarity, we point out
that a superscript or subscript of ‘1’ refers to the scalar interest parameter ψ,
where ψ is the first component of θ.

Suppose that A is an ancillary, i.e., distribution constant, statistic such that
(θ̂, A) is sufficient. To distinguish conditional calculations from unconditional
ones, the accent symbol ˚ is used to denote quantities derived from the condi-
tional distribution of Y given A. Since the conditional loglikelihood L̊(θ) differs
from the unconditional loglikelihood L(θ) by a quantity that depends on A but
not on θ, it follows that W̊ (ψ) = W (ψ) and that L̊r = Lr, L̊rs = Lrs, etc. Let
λ̊rs = E̊{Lrs(θ)}, λ̊rst = E̊{Lrst(θ)}, etc., and put l̊r = lr(θ), l̊rs = Lrs(θ)− λ̊rs,
l̊rst = Lrst(θ) − λ̊rst, etc. The quantities λ̊rs, λ̊rst, etc. are random variables
depending on A, assumed to be of order Op(n). The variables l̊r, l̊rs, l̊rst, etc.
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have conditional expectation 0, so they also have unconditional expectation 0,
and they are assumed to be of order Op(n1/2). Further, the joint conditional
cumulants of l̊r, l̊rs, etc. depend on A, and they are assumed to be of order
Op(n). It is useful to extend the λ̊-notation by letting λ̊r,s = E̊(LrLs) = E̊(lrls),
λ̊rs,t = E̊(LrsLt) = E̊(lrslt), etc. Also, let (̊λrs) be the d × d matrix inverse of
(̊λrs), and let η̊ = −1/̊λ11, τ̊ rs = η̊λ̊1rλ̊1s, and ν̊rs = λ̊rs + τ̊ rs, so that λ̊rs, τ̊ rs,
and ν̊rs are of order Op(n−1), while η̊ is of order Op(n).

Following Barndorff-Nielsen and Cox (1994, Sec. 7.2), construction of an an-
cillary statistic A such that (θ̂, A) is sufficient is, except in rather special cases,
only possible for transformation models and, in a degenerate sense, for full ex-
ponential family models, where θ̂ itself is sufficient. It is therefore in general
necessary to consider conditioning on statistics A which are approximately an-
cillary in a suitable sense. Results presented here continue to hold under the
assumption that A is locally ancillary (Cox (1980)). Let θ0 be an arbitrary but
specified parameter value, and let A ≡ A(Y, θ0) be a candidate ancillary statistic.
If the density of A under parameter value θ0 + n−1/2δ satisfies

fA(a; θ0 + n−1/2δ) = fA(a; θ0){1 +O(n−q/2)},

then (Cox (1980), McCullagh (1987, Sec. 8.3)) A is said to be qth order local
ancillary in the vicinity of θ0. Note that this definition applies only to parameter
values in an O(n−1/2) neighbourhood of θ0: if θ0 is the true parameter value, as n
increases the likelihood function becomes negligible outside this neighbourhood.
The loglikelihood function based on A satisfies LA(θ0 + n−1/2δ) = LA(θ0) +
O(n−q/2). As is the case in the no nuisance parameter context considered by
Severini (1990) and McCullagh (1987, Sec. 8.4), results in Section 4 relating
to stability of asymptotically standard normal pivots continue to hold for any
second-order local ancillary A, as do results in Section 8 concerning stability
of an adjusted profile likelihood ratio statistic. Essentially, the assumption of a
second-order local ancillary is sufficient to ensure the relationships detailed below
between conditional and unconditional cumulants.

The technique of proof used here to compare the conditional and uncondi-
tional distributions of asymptotically standard normal pivots to second order is
a generalization of that described by Severini (2000, Chap. 6) in the case of a
scalar interest parameter without nuisance parameters. For this technique, it is
essential to compare the λ̊-quantities with their λ-counterparts.

We first investigate the difference between λ̊rs and λrs; note that λrs =
E(Lrs) = E{E̊(Lrs)} = E(̊λrs). Furthermore, var(̊λrs) = var{E̊(Lrs)} = var(Lrs)
−E{v̊ar(Lrs)} = O(n) − E{Op(n)} = O(n), and consequently, λ̊rs = λrs +
Op(n1/2). An identical argument shows that λ̊rst = λrst +Op(n1/2), etc.



STABILITY AND UNIQUENESS FOR LIKELIHOOD INFERENCE 1361

Assume that differentiation of the identity λ̊rs = λrs + Op(n1/2) yields
λ̊rs/t = λrs/t+Op(n1/2), where λ̊rs/t = ∂λ̊rs/∂θt and, as before, λrs/t = ∂λrs/∂θt.
We note that, as a rule, differentiation of an asymptotic relation will preserve
the asymptotic order, but that care is necessary; see Barndorff-Nielsen and Cox
(1994, Exercise 5.4) and Pace and Salvan (1994). The asymptotic order of
the difference between λ̊rs/t and λrs/t indicated here, therefore, actually con-
stitutes an additional assumption of our calculations. The preceding results
imply λ̊rs,t = λrs,t + Op(n1/2), since the Bartlett identities λ̊rs/t = λ̊rst + λ̊rs,t
and λrs/t = λrst + λrs,t yield λ̊rs,t = λ̊rs/t − λ̊rst = λrs/t − λrst + Op(n1/2) =

λrs,t + Op(n1/2). Define ∆̊rs = λ̊rs − λrs, so that ∆̊rs is a function of θ and A,
having order Op(n1/2). Then lrs = Lrs−λrs = (Lrs−λ̊rs)+(̊λrs−λrs) = l̊rs+∆̊rs.

4. Stability Result for R(ψ) and Other Pivots

We now consider the stability of R(ψ) and other asymptotically standard
normal pivots.

4.1. R(ψ) is a stable pivot to second order

Theorem 1. The conditional and unconditional distributions of R(ψ) agree to
error of order O(n−1), given the ancillary statistic A.

Proof. To error of order O(n−1), the variance of R(ψ) is 1 and the third- and
higher-order cumulants are 0; the mean is of order O(n−1/2). The conditional
distribution given A has the same cumulant structure as the unconditional dis-
tribution. Thus, to show that the conditional and unconditional distributions
agree to second-order, it suffices to show that E̊{R(ψ)} = E{R(ψ)}+Op(n−1).

Standard calculations, such as those given by Lawley (1956) and detailed in
the Appendix of DiCiccio and Stern (1994b), show that W (ψ) has the expansion

W (ψ) =τ rslrls − 2λrtτ sulrsltlu − τ rtτ sulrsltlu + λruνsvτ twλrstlulvlw

+ 1
3τ

ruτ svτ twλrstlulvlw +Op(n
−1).

DiCiccio and Stern (1994b) showed that R(ψ) may be decomposed as R(ψ) =
η1/2{R1 +R2 +Op(n−3/2)}, where R1 = −λ1rlr and

R2 = λ1rλstlrslt +
1

2
λ1rτ stlrslt −

1

2
λ1rλsuνtvλrstlulv −

1

6
λ1rτ suτ tvλrstlulv.

Here R1 is of order Op(n−1/2) and R2 is of order Op(n−1). Since E(R1) = 0, it
follows that

E{R(ψ)} = η1/2{λ1rλstλrs,t+
1

2
λ1rτ stλrs,t+

1

2
λ1rλstλrst+

1

3
λ1rτ stλrst}+O(n−1).
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Note also that R1 = −λ1rlr = −λ1r̊lr and

R2 =λ
1rλstlrslt +

1

2
λ1rτ stlrslt −

1

2
λ1rλsuνtvλrstlulv −

1

6
λ1rτ suτ tvλrstlulv

=λ1rλst̊lrs̊lt + λ1rλst∆̊rs̊lt +
1

2
λ1rτ st̊lrs̊lt +

1

2
λ1rτ st∆̊rs̊lt

− 1

2
λ1rλsuνtvλrst̊lůlv −

1

6
λ1rτ suτ tvλrst̊lůlv.

Thus, since E̊(R1) = 0,

E̊{R(ψ)}=η1/2{λ1rλstλ̊rs,t +
1

2
λ1rτ stλ̊rs,t +

1

2
λ1rλsuνtvλrstλ̊uv

+
1

6
λ1rτ suτ tvλrstλ̊uv +Op(n

−3/2)}

=η1/2{λ1rλstλrs,t +
1

2
λ1rτ stλrs,t +

1

2
λ1rλsuνtvλrstλuv

+
1

6
λ1rτ suτ tvλrstλuv +Op(n

−3/2)}

=η1/2
{
λ1rλstλrs,t+

1

2
λ1rτ stλrs,t+

1

2
λ1rλstλrst+

1

3
λ1rτ stλrst+Op(n

−3/2)
}

=E{R(ψ)}+Op(n
−1).

It follows that the conditional distribution of R(ψ) differs from its marginal
distribution by error of order O(n−1), given A.

McCullagh (1984) generalized the notion of the signed root statistic to the
case of a vector interest parameter and established this stability result in the
case of no nuisance parameters; Severini (1990) gave a further demonstration for
the case of a scalar interest parameter with no nuisance parameters. Therefore,
the result shown here extends the work of McCullagh and Severini to situations
where nuisance parameters are present.

This second-order stability of R(ψ) for the nuisance parameter context has
been discussed, but not demonstrated formally as we have here, by Pierce and
Bellio (2006). The methodological consequence of the result is immediate. Any
approximation to the unconditional distribution of R(ψ) having error of order
O(n−1) also approximates the conditional distribution of R(ψ) to the same order
of error. Such an approximation may (DiCiccio, Martin, and Stern (2001)) be
derived, for instance, from the bootstrap distribution of R(ψ). If that approxi-
mation is then used, say, to construct confidence limits for ψ, then those limits
have coverage error of order O(n−1), conditionally as well as unconditionally.
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4.2. Stability of other asymptotically standard normal pivots

We now consider general asymptotically standard normal pivots of the form
T (ψ) = η1/2{T1 + T2 + Op(n−3/2)}, where T1 = −λ1rlr and T2 is of the form
T2 = ξrstlrslt − ξrslrls, with ξrst and ξrs assumed to be of order O(n−2), so
that T1 is of order Op(n−1/2) and T2 is of order Op(n−1). We demonstrate
that commonly used pivots may all be expressed in this form; for example, for
R(ψ), the preceding expansions show that ξrst = λ1rλst + (1/2)λ1rτ st and ξrs =
(1/2)λ1tλurνvsλtuv+(1/6)λ1tτurτvsλtuv. Both conditionally and unconditionally,
the fourth- and higher-order cumulants of such a pivot are immediately seen to be
of order O(n−1) or smaller. Consequently, if we are to show that the conditional
and unconditional distributions of these pivots agree to error of order O(n−1)
given A, all we need to show is that the first three conditional cumulants agree
with the unconditional ones to error of order Op(n−1). We show that the first
and third conditional cumulants agree with the unconditional ones to the required
order of error without further restrictions on ξrs and ξrst. We demonstrate that
for the second conditional cumulant to agree to with the unconditional one a
sufficient condition is that ξrs1 = (1/2)λ1rλ1s. It is easy to see that R(ψ) satisfies
this criterion for, in this case,

ξrs1 =λ1rλs1 +
1

2
(λ1rηλ1sλ11)

=λ1rλ1s +
1

2
{λ1r(−1/λ11)λ1sλ11}

=λ1rλ1s − 1

2
λ1rλ1s =

1

2
λ1rλ1s.

Theorem 2. The unconditional and conditional distributions of T (ψ) agree to
error of order O(n−1) given the ancillary statistic A.

The result follows immediately from three lemmas concerning the stability of
the first three cumulants of T (ψ), beginning with the first cumulant, the mean.

Lemma 1. E̊{T (ψ)} = E{T (ψ)}+Op(n−1).

Proof. Recall that T1 = −λ1rlr = −λ1r̊lr and that T2 = ξrstlrslt − ξrslrls =
ξrst(̊lrs + ∆̊rs)̊lt − ξrs̊lr̊ls. Then, E{T (ψ)} = η1/2{ξrstλrs,t + ξrsλrs +O(n−3/2)}
and

E̊{T (ψ)} = η1/2{ξrstλ̊rs,t + ξrsλ̊rs +Op(n
−3/2)}

= η1/2{ξrstλrs,t + ξrsλrs +Op(n
−3/2)}.

Therefore, the conditional first cumulant agrees with the unconditional one to
error of order Op(n−1), as required.
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Lemma 2. If ξrs1 = (1/2)λ1rλ1s, then v̊ar{T (ψ)} = var{T (ψ)}+Op(n−1).

Proof. See Supplement.

Lemma 3. ˚skew{T (ψ)} = skew{T (ψ)}+Op(n−1).

Proof. See Supplement.
A sufficient condition for v̊ar{T (ψ)} = var{T (ψ)} + Op(n−1) is ξrs1 =

(1/2)λ1rλ1s; if this holds, we have skew{T (ψ)} = η3/2(λ1rλ1sλ1tλrst − 6ξ11) +
O(n−1).

5. Comparison of p-values

Our objective here is to utilize preceding calculations to examine conditions
which ensure that p-values based on two different asymptotically normal pivots
agree to second-order. Here we refer to the p-value calculated from the exact
sampling distribution of the pivot, or any approximation to the exact p-value
accurate to Op(n−1). Such accuracy of approximation is obtained, for instance,
quite generally for an asymptotically normal pivot by bootstrapping (Lee and
Young (2005)), but would not be obtained by the normal approximation.

Consider hypothesis testing for ψ based on a test statistic expressible as
T (ψ) = η1/2(T1 + T2) + Op(n−1), where T1 = −λ1rlr and T2 is of the form
T2 = ξrstlrslt−ξrslrls, with ξrst and ξrs assumed to be of order O(n−2). We have
shown that the first three cumulants of T (ψ) are

κ1 = E{T (ψ)} = η1/2(ξrstλrs,t + ξrsλrs) +O(n−1),

κ2 = var{T (ψ)} = 1 +O(n−1),

κ3 = skew{T (ψ)} = η3/2(λ1rλ1sλ1tλrst + 3λ1rλ1sλ1tλrs,t − 6ξrs1λ1tλrs,t − 6ξ11)

+O(n−1),

while the fourth- and higher-order cumulants are of order O(n−1) or smaller.
Consider another test statistic T̆ (ψ) = η1/2(T̆1 + T̆2) +Op(n−1), where T̆1 =

−λ1rlr = T1 and T̆2 is of the form T̆2 = ξ̆rstlrslt − ξ̆rslrls, with ξ̆rst and ξ̆rs

assumed to be of order O(n−2). Our goal is to establish conditions on the two
pivots T (ψ) and T̆ (ψ) which ensure that p-values agree to second-order.

Theorem 3. If the conditions

ξ̆rst = ξrst +O(n−5/2), (5.1)

ξ̆rs + ξ̆tuλtuτ
rs = ξrs + ξtuλtuτ

rs +O(n−5/2), (5.2)

are satisfied, then the p-value derived from the pivot T (ψ) agrees with that derived
from the pivot T̆ (ψ) to error of order Op(n−1).
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Proof. The p-value for testing against alternatives greater than ψ is the right-
hand tail probability for T (ψ). The normalizing Cornish-Fisher expansion shows
that the p-value is

1− Φ(η1/2T1 + η1/2T2 −
1

6
κ3ηT

2
1 − κ1 +

1

6
κ3) +Op(n

−1),

where Φ(·) denotes the standard normal cumulative distribution function.
Let the first three cumulants of T̆ (ψ) be denoted by κ̆1, κ̆2, κ̆3; the p-value

based on T̆ (ψ) is

1− Φ(η1/2T1 + η1/2T̆2 −
1

6
κ̆3ηT

2
1 − κ̆1 +

1

6
κ̆3) +Op(n

−1).

We now determine sufficient conditions on ξ̆rs and ξ̆rst to ensure that the p-
value obtained from T̆ (ψ) agrees with that obtained from T (ψ) to error of order
Op(n−1). Agreement of the p-values to this order occurs when

η1/2T̆2 −
1

6
κ̆3ηT

2
1 − κ̆1 +

1

6
κ̆3 = η1/2T2 −

1

6
κ3ηT

2
1 − κ1 +

1

6
κ3

to error of order Op(n−1), that is when

{η1/2(T̆2 − T2)−
1

6
(κ̆3 − κ3)ηT

2
1 }− {(κ̆1 − κ1)−

1

6
(κ̆3 − κ3)} = Op(n

−1).

The first term on the left-hand side of the preceding equation is random, as it
involves terms of the form lrslt and lrlt, while the second term is a constant.
Consequently, by separating the random and non-random components, we see
that the preceding equation actually stipulates two conditions:

η1/2(T̆2 − T2)−
1

6
(κ̆3 − κ3)ηT

2
1 = Op(n

−1),

(κ̆1 − κ1)−
1

6
(κ̆3 − κ3) = O(n−1).

The second of these equations gives (κ̆1 − κ1) = (1/6)(κ̆3 − κ3) +O(n−1), so we
can write the equations as

η1/2(T̆2 − T2)− (κ̆1 − κ1)ηT
2
1 = Op(n

−1), (5.3)

(κ̆1 − κ1)−
1

6
(κ̆3 − κ3) = O(n−1). (5.4)

Since ηT 2
1 = (−1/λ11)λ1rλ1slrls = τ rslrls, (5.3) yields

η1/2[(ξ̆rst−ξrst)lrslt−(ξ̆rs−ξrs)lrls−{(ξ̆tuv−ξtuv)λtu,v + (ξ̆tu−ξtu)λtu}τ rslrls]
= Op(n

−1). (5.5)
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The quantity η1/2{(ξ̆rst−ξrst)lrslt−(ξ̆tuv−ξtuv)λtu,v} in (5.5) is reduced to order
Op(n−1) if (5.1) holds.

The remaining term η1/2{(ξ̆rs−ξrs)+(ξ̆tu−ξtu)λtuτ rs}lrls in (5.5) is reduced
to order Op(n−1) if (5.2) holds. We show that (5.4) is satisfied when (5.1) and
(5.2) hold. Now (5.4) yields

η1/2{(ξ̆rst − ξrst)λrs,t + (ξ̆rs − ξrs)λrs}+ η3/2{(ξ̆rs1 − ξrs1)λ1tλrs,t

+ξ̆11 − ξ11} = O(n−1),

and (5.1) yields ξ̆rs1 = ξrs1 +O(n−5/2). Under this condition, (5.4) reduces to

η1/2{(ξ̆rs − ξrs)λrs}+ η3/2(ξ̆11 − ξ11) = O(n−1).

Since τ11=−λ11=η−1, (5.2) gives ξ̆11−ξ11=η−1(ξ̆rs − ξrs)λrs + O(n−5/2), and
hence, it follows that under (5.1) and (5.2), (5.4) is satisfied.

Note that (5.3) and (5.4) together constitute necessary and sufficient condi-
tions for the p-values to agree to order Op(n−1). The quantity on the left side of
(5.3) is of the form η1/2(Arstlrslt −Brslrls), where

Arst = ξ̆rst − ξrst, Brs = (ξ̆tuv − ξtuv)λtu,vτ
rs + ξ̆rs − ξrs + (ξ̆tu − ξtu)λtuτ

rs,

so a necessary condition for agreement in general of p-values to order Op(n−1) is
that Arst and Brs both be of order O(n−5/2). The condition that Arst is of order
O(n−5/2) is the same as (5.1) and, in light of this condition, that Brs be of order
O(n−5/2) is equivalent to (5.2). Thus, (5.1) and (5.2) are necessary for agreement
of p-values to order Op(n−1). Of course, it is possible that the p-values from two
test statistics T̆ (ψ) and T (ψ) fail to agree to order Op(n−1) for arbitrary models,
yet they do agree for some specific model owing to particular features of the
model. This situation could be revealed by verifying conditions (5.1) and (5.2)
for the specific model.

6. Examples

To illustrate the results of the previous sections, we consider eight asymp-
totically standard normal pivots, in addition to the signed root likelihood ratio
statistic R(ψ).

Consider four pivots that involve observed information. For R(ψ), we have
ξrstR = λ1rλst + (1/2)λ1rτ st and ξrsR = (1/2)λ1tλruνsvλtuv + (1/6)λ1tτ ruτ svλtuv,
and hence, ξrsR + ξtuR λtuτ

rs = (1/2)λ1tλruνsvλtuv + (1/2)λ1tνuvλtuvτ rs.

Example 1. Wald statistic with observed information. For the Wald statistic
defined by TWO(ψ) = (ψ̂ − ψ){−M̂11}1/2 = (ψ̂ − ψ){−L̂11}−1/2, we have ξrstWO =
ξrstR and ξrsWO = (1/2)λ1tλruνsvλtuv. Therefore, ξrs1WO = (1/2)λ1rλ1s and ξrsWO +
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ξtuWOλtuτ
rs = ξrsR + ξtuR λtuτ

rs. We deduce that, to error of second order, TWO(ψ)
is both stable in the sense discussed in Section 4 and produces the same p-values
as R(ψ).

Example 2. Score statistic with observed information. For the score statistic de-
fined by TSO(ψ) = M1(ψ){−M̂11}−1/2 = L1{θ̃(ψ)}{−L̂11}1/2, we have ξrstSO = ξrstR

and ξrsSO = (1/2)λ1tλruνsvλtuv + (1/2)λ1tτ ruτ svλtuv. Thus, ξrs1SO = (1/2)λ1rλ1s

and ξrsSO + ξtuSOλtuτ
rs = ξrsR + ξtuR λtuτ

rs. It follows that, to error of second order,
TWO(ψ) is also stable and again produces the same p-values as R(ψ).

The following two asymptotically standard normal pivots are not standard
components of likelihood-based inference. They involve pivots constructed by
evaluating the observed information at the constrained maximum likelihood,
rather than the global maximum likelihood estimator as in Examples 1 and 2.
Their use can be more cumbersome; they are included here to demonstrate the
theoretical results.

Example 3. Wald statistic with observed information evaluated at the con-
strained maximum likelihood estimator. For the pivot
TWOC(ψ) = (ψ̂ − ψ)[−M11{θ̃(ψ)}]1/2 = (ψ̂ − ψ)[−L11{θ̃(ψ)}]−1/2, we have
ξrstWOC = ξrstR and ξrsWOC = (1/2)λ1tλruνsvλtuv + (1/2)λ1tτ ruτ svλtuv = ξrsSO.
Hence, ξrs1WOC = (1/2)λ1rλ1s and ξrsWOC + ξtuWOCλtuτ

rs = ξrsR + ξtuR λtuτ
rs. Thus

TWOC(ψ) = TSO(ψ)+Op(n−1). To error of second order, TWOC(ψ) is stable and
produces the same p-values as R(ψ).

Example 4. Score statistic with observed information evaluated at the con-
strained maximum likelihood estimator. For TSOC(ψ) = M1(ψ)[−M11{θ̃(ψ)}]−1/2

= L1{θ̃(ψ)}[−L11{θ̃(ψ)}]1/2, the corresponding score statistic, we have ξrstSOC =
ξrstR and ξrsSOC = (1/2)λ1tλruνsvλtuv = ξrsWO. Thus, ξrs1SOC = (1/2)λ1rλ1s and
ξrsSOC + ξtuSOCλtuτ

rs = ξrsR + ξtuR λtuτ
rs. As in the previous example, TSOC(ψ) =

TWO(ψ) + Op(n−1). To error of second order, TWOC(ψ) is stable and produces
the same p-values as R(ψ).

We consider pivots corresponding to Examples 1−4 above, but based on
expected, rather than observed, information.

Example 5. Wald statistic with expected information. For the version of the
Wald statistic defined by TWE(ψ) = (ψ̂ − ψ){−λ̂11}−1/2, we have ξrstWE = λr1λst

and ξrsWE = (1/2)λ1tλruνsvλtuv + (1/2)λ1tτ ruλsvλtu,v. Then, ξrs1WE = λ1rλ1s and
ξrsWE + ξtuWEλtuτ

rs = ξrsR + ξtuR λtuτ
rs + (1/2)λ1tτ ruλsvλtu,v + (1/2)λ1tτuvλtu,vτ rs.

Example 6. Wald statistic with expected information evaluated at the con-
strained maximum likelihood estimator. For the pivot described in Example 5,
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but with the expected information evaluated at the constrained maximum likeli-
hood estimator, TWEC(ψ) = (ψ̂−ψ)[−λ11{θ̃(ψ)}]−1/2, we have ξrstWEC = ξrstWE and
ξrsWEC = (1/2)λ1tλruνsvλtuv + (1/2)λ1tλruνsvλtuv + (1/2)λ1tτ ruτ svλtu,v. Then,
ξrs1WEC = λ1rλ1s and ξrsWEC + ξtuWECλtuτ

rs = ξrsWE + ξtuWEλtuτ
rs.

Neither TWE(ψ) nor TWEC(ψ) generally satisfy the above sufficient condition
for stability to error of order O(n−1) and, of course, they do not generally provide
p-values that agree with those from R(ψ) to error of order Op(n−1). However,
the p-values calculated from TWE(ψ) agree with those from TWEC(ψ) to error of
order Op(n−1).

Example 7. Score statistic with expected information. For the version of the
score statistic defined by TSE(ψ) = M1(ψ){−λ̂11}1/2 = L1{θ̃(ψ)}{−λ̂11}1/2,
we have ξrstSE = λr1νst and ξrsSE = (1/2)λ1tλruνsvλtuv + (1/2)λ1tτ ruτ svλtuv −
(1/2)λ1tτ ruλsvλtu,v. Therefore, ξrs1SE = 0 and ξrsSE + ξtuSEλtuτ

rs = ξrsR + ξtuR λtuτ
rs−

(1/2)λ1tτ ruλsvλtu,v − (1/2)λ1tτuvλtu,vτ rs.

Example 8. Score statistic with expected information evaluated at the con-
strained maximum likelihood estimator. Evaluating the expected information
instead at the constrained maximum likelihood estimator, for TSEC(ψ) = M1(ψ)
[−λ11{θ̃(ψ)}]1/2 = L1{θ̃(ψ)}[−λ11{θ̃(ψ)}]1/2, we have ξrstSE = λr1νst and ξrsSEC =
(1/2)λ1tλruνsvλtuv−(1/2)λ1tτ ruνsvλtu,v. Thus, ξrs1SEC = 0 and ξrsSEC+ξ

tu
SECλtuτ

rs

= ξrsSE + ξtuSEλtuτ
rs.

Neither TSE(ψ) nor TSEC(ψ) generally satisfy the above sufficient condition
for stability to error of order O(n−1), and they do not generally provide p-values
that agree with those from R(ψ) to error of order Op(n−1). However, the p-values
calculated from TSE(ψ) agree with those from TSEC(ψ) to error of order Op(n−1),
although they do not generally agree with those from TWE(ψ) and TWEC(ψ) to
error of order Op(n−1).

Construction of the asymptotically normal pivot for inference on the interest
parameter ψ in the presence of a nuisance parameter using observed information
is therefore key to ensuring that p-values calculated from the marginal distribu-
tion of the pivot, as might be approximated in generality by parametric boot-
strapping, automatically respect, to second-order, the conditioning on ancillary
statistics required for inferential correctness. The importance of using observed
information instead of expected information for approximate conditional infer-
ence is, of course, well known, having been argued by Efron and Hinkley (1978),
who were partly inspired by the discussion given by Pierce (1975) to the paper
by Efron (1975) on the geometry of exponential families. Our analysis gives a
very direct operational interpretation, in terms of the p-values derived from the
marginal sampling distributions of commonly used pivots.
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Further discrimination between pivots may be based on the requirement
of parameterisation invariance, that inferential conclusions should not depend
on the parameterisation: see, for instance, Pace and Salvan (1997, Sec. 2.11).
Requirement of invariance of the inference under reparameterisations which are
(Barndorff-Nielsen and Cox (1994, Sec. 1.5)) interest-respecting would exclude
use of Wald statistics: see, for instance, McCullagh (1987, Sec. 7.4).

7. Extension to Adjusted Profile Likelihood

The general form of the asymptotically normal test statistic that we have
considered, where the statistic is expressible as T (ψ) = η1/2(T1 + T2) +Op(n−1),
where T1 = −λ1rlr and T2 is of the form T2 = ξrstlrslt − ξrslrls, with ξrst and
ξrs assumed to be of order O(n−2), covers important special cases which are
commonly applied. It does not, however, include asymptotically standard normal
pivots based on adjusted forms of profile likelihood. Fortunately, only a simple
change to the analysis is necessary is accommodate pivots based on adjusted
likelihoods. The criteria for second-order stability and equivalence of p-values are
unchanged since, to the order being considered, the version of the pivot based on
the adjusted profile likelihood is obtained by a constant, additive adjustment of
that based on the unadjusted profile likelihood.

There have been many suggestions to replace the usual profile likelihood
function M(ψ) by an adjusted version M̄(ψ) = M(ψ) + B(ψ), where B(ψ) is
an adjustment function which is a function of Y and ψ only, whose derivatives
with respect to ψ are of order Op(1). The likelihood ratio statistic based on the
adjusted profile likelihood is W̄ (ψ) = 2{M̄(ψ̄)− M̄(ψ)}, where ψ̄ is the point at
which M̄(ψ) is maximized. The signed root of the likelihood ratio statistic based
on the adjusted profile likelihood is R̄(ψ) = sgn(ψ̄ − ψ){W̄ (ψ)}1/2.

Following our previous notation, we write B1(ψ) = ∂B(ψ)/∂ψ, B11(ψ) =
∂2B(ψ)/∂ψ2, etc. Let β1 = E{B1(ψ)}, β11 = E(B11), etc.; these quantities are
assumed to be of order O(1). Further, let b1 = B1(ψ)− β1, b11 = B11(ψ)− β11,
etc., with these quantities assumed to be of order Op(n−1/2). Assume also that
the joint cumulants of nb1, nb11, lr, lrs, etc. are of order O(n).

In many instances, a specific adjustment function B(ψ) has been proposed to
take into account the effect of nuisance parameters for inference about ψ, notably
the modified profile likelihood of Barndorff-Nielsen (1983) and the adjusted pro-
file likelihood of Cox and Reid (1987). Other adjustments with the same structure
as described above are detailed by Skovgaard (1996), Severini (1998), DiCiccio
and Martin (1993), and Barndorff-Nielsen and Chamberlin (1994). These adjust-
ment functions have the effect of reducing the mean of the profile score from order
O(1) to order O(n−1): see, for instance, DiCiccio et al. (1996). The adjustment
functions have β1 = ρ + O(n−1), where ρ = −ηλ1rνst((1/2)λrst + λrs,t). Since,
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in general, E{M1(ψ)} = −ρ+O(n−1), it follows that E{M̄1(ψ)} = O(n−1): see
McCullagh and Tibshirani (1990), DiCiccio et al. (1996).

Another version of the adjustment function that derives from Bayesian in-
ference based on a prior density π(θ) is

B(ψ) = −1

2
log

(
det[−Lab{θ̃(ψ)}]
det{−Lab(θ̂)}

)
+ log

[
π{θ̃(ψ)}
π(θ̂)

]
,

where a, b = 2, . . . , d. Here {Lab(θ)} is the (d−1)× (d−1) submatrix of {Lrs(θ)}
corresponding to the nuisance parameters. This adjustment function arises from
the Laplace approximation to πψ|Y (ψ), the posterior marginal density function
for ψ, developed by Tierney and Kadane (1986), who showed that πψ|Y (ψ) =

cM̄(ψ){1 + O(n−3/2)}, for values of ψ such that ψ − ψ̂ is of order O(n−1/2).
In this case, W̄ (ψ) corresponds to the posterior ratio statistic to error of order
Op(n−3/2), and β1 = ηλ1r((1/2)νstλrst − πr/π): see DiCiccio and Stern (1994a).
Firth (1993) developed particular adjustment functions motivated by the specific
aim that ψ̄ be unbiased to error of order O(n−3/2).

For a general adjustment function B(ψ), DiCiccio and Stern (1994a) showed
that R̄(ψ) = η1/2{R̄1 + R̄2 + Op(n−3/2)}, where R̄1 = R1 = −λ1rlr and R̄2 =
R2 − λ11β1; in particular, R̄(ψ) = R(ψ) + η−1/2β1 +Op(n−1).

Pierce and Bellio (2006), considering the adjustment functions related to
modified profile likelihood and Bayesian inference, also observed that, to error of
order Op(n−1), R̄(ψ) differs from R(ψ) by only a constant, although they did not
detail the associated formulae involving β1. Having made this observation, Pierce
and Bellio (2006) conclude that, to error of order Op(n−1), both R̄(ψ) and R(ψ)
induce the same orderings of datasets for evidence against the null hypothesis,
and they conclude that, to this order of error, ideal frequentist p-values can be
based on the distribution of R(ψ).

We generalize our preceding results by considering hypothesis testing for
ψ based on a test statistic T̄ (ψ) = η1/2(T̄1 + T̄2) + Op(n−1) where, as before,
T̄1 = T1 = −λ1rlr, and T̄2 is assumed to be of the form T̄2 = ξrstlrslt−ξrslrls+ς =
T2+ς, with ξrst and ξrs of order O(n−2) and the constant ς assumed to be of order
O(n−1). Therefore, T̄ (ψ) = T (ψ)+η1/2ς+O(n−1). We provide illustrations which
demonstrate how statistics constructed from adjusted profile likelihood may be
expressed in this form.

Since T̄ (ψ) only differs, to the second-order being considered, from T (ψ) by
a constant, the condition for T̄ (ψ) to be stable to error of order O(n−1) is the
same as the condition for T (ψ), namely ξrs1 = (1/2)λ1rλ1s.

The first three cumulants of T̄ (ψ) = T (ψ) + η1/2ς + O(n−1) are κ̄1 = κ1 +
η1/2ς+O(n−1), κ̄2 = κ2+O(n−1), κ̄3 = κ3+O(n−1), where κ1, κ2, and κ3 are as
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described before for T (ψ), and the fourth- and higher-order cumulants of T̄ (ψ)
are of order O(n−1), or smaller.

Consider two versions of T̄ (ψ), say T (ψ)+η1/2ς+O(n−1) and T̆ (ψ)+η1/2ς̆+
O(n−1). The preceding Cornish-Fisher argument for comparing p-values shows
that the p-values from the two test statistics differ by order Op(n−1) provided

{η1/2(T̆2 + ς̆ − T2−ς)−
1

6
(κ̆3 − κ3)ηT

2
1 }− {(κ̆1 + η1/2ς̆−κ1−η1/2ς)−

1

6
(κ̆3 − κ3)}

= Op(n
−1).

The crucial point is that the terms involving ς and ς̆ cancel from the left side of
this expression, irrespective of their values, so (5.1) and (5.2) continue to specify
necessary and sufficient conditions for the two test statistics to yield p-values
that differ by order Op(n−1).

Example 9. Signed root likelihood ratio statistic constructed from adjusted profile
likelihood. For the signed root likelihood ratio statistic constructed from the
adjusted profile likelihood, R̄(ψ), standard calculations show that ξrst

R̄
= ξrstR ,

ξrs
R̄

= ξrsR , ςR̄ = η−1β1. It follows that, to error of order Op(n−1), R̄(ψ) and R(ψ)
produce the same p-values, as noted by Pierce and Bellio (2006).

Example 10. Wald statistic with observed information constructed from adjusted
profile likelihood. For the pivot TAWO(ψ) = (ψ̄ − ψ){−M̄11(ψ̄)}1/2, we have
ξrstAWO = ξrstWO = ξrstR , ξrsAWO = ξrsWO, and ςAWO = η−1β1. Then, since to error
of order Op(n−1), TWO(ψ) and R(ψ) produce the same p-values, it follows that
TAWO(ψ) and R(ψ) produce the same p-values to that order of error.

Example 11. Score statistic with observed information constructed from ad-
justed profile likelihood. For the statistic TASO(ψ) = M̄1(ψ){−M̄11(ψ̄)}1/2, we
have ξrstASO = ξrstSO = ξrstR , ξrsASO = ξrsSO, and ςASO = η−1β1. Since, to error of order
Op(n−1), TSO(ψ) and R(ψ) produce the same p-values, it follows that TASO(ψ)
and R(ψ) produce the same p-values to that order of error.

The interesting feature here is that although R̄(ψ), TAWO(ψ), and TASO(ψ)
differ from one another by non-constant terms of order Op(n−1/2) in general, they
all produce the same p-values to error of order Op(n−1).

8. Vector-valued Interest Parameter

Consider again the partition θ = (ψ,φ), but now allow for the possibility
that the interest parameter ψ is vector-valued, having dimension q. The likeli-
hood ratio statistic W (ψ) is routinely used for hypothesis testing about ψ. The
asymptotic distribution of W (ψ) is chi-squared with q degrees of freedom. In-
deed, for regular problems, the χ2

q-approximation to the distribution of W (ψ)
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has error of order O(n−1), and moreover, the mean of W (ψ) has the expansion
E{W (ψ)} = q(1 + n−1ω) + O(n−2), where ω ≡ ω(θ) is of order O(1). Lawley
(1956), Barndorff-Nielsen and Cox (1984), and Bickel and Ghosh (1990) showed
that W (ψ) is distributed as (1+n−1ω)χ2

q to error of order O(n−2): the Bartlett-
corrected statistic W (ψ)/(1+n−1ω) is distributed as χ2

q to error of order O(n−2).
Further, W (ψ) is stable.

Theorem 4. The unconditional and conditional distributions of W (ψ) agree to
error of order O(n−3/2), given the ancillary statistic A.

Proof. By applying identical arguments to the conditional distribution of Y
given A, we have that E̊{W (ψ)} = q(1 + n−1ω̊) + O(n−2), where ω̊ is of order
O(1) given A, and that W (ψ) is conditionally distributed as (1 + n−1ω̊)χ2

q to
error of order O(n−2) given A. Barndorff-Nielsen and Cox (1984) showed that
ω̊ = ω + Op(n−1/2), and hence it follows that W (ψ) is stable to error of order
O(n−3/2). Extending the arguments of McCullagh (1987, Sec. 8.4) to the nuisance
parameter case, ω̊ = ω + Op(n−1/2) continues to hold provided the conditioning
statistic A is a second-order local ancillary statistic.

Inference based on an approximation to the marginal distribution of W (ψ)
accurate to error of order O(n−3/2) therefore automatically respects conditioning
on the ancillary statistic to that same order.

Bickel and Ghosh (1990) explicitly recommended that the Bartlett adjust-
ment factor (1 + n−1ω) be estimated by simulation; this may be done by either
fixing θ = θ̂ or θ = θ̃, so that inference is based on a χ2

q approximation to the

sampling distribution of, say, W (ψ)/{1 + n−1ω(θ̃)}. Alternatively, the entire
distribution of W (ψ) may be approximated by simulation at either of these pa-
rameter values: such an approximation is, however, likely to be computationally
more expensive than estimation of just the Bartlett adjustment factor. In view
of the stability result above, these inference procedures not only provide p-values
that are uniformly distributed to error of order Op(n−3/2) (actually, the error is
of order Op(n−2) - see Barndorff-Nielsen and Hall (1988)), but these p-values are
uniformly distributed conditionally to the same order of error.

DiCiccio and Stern (1994b) demonstrated the efficacy of Bartlett correction
for likelihood ratio statistics based on adjusted profile likelihoods. They showed
that E{W̄ (ψ)} = q(1 + n−1ω̄) + O(n−2) and that W̄ (ψ) is distributed as (1 +
n−1ω̄)χ2

q to error of order O(n−2). Moreover, their calculations can be applied
to the conditional distribution of Y given A to show that these results also hold
conditionally, as for W (ψ).

Theorem 5. The unconditional and conditional distributions of W̄ (ψ) agree to
order O(n−3/2), given the ancillary statistic A.
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Proof. See Supplement.

The operational consequences of this stability result are again straightfor-
ward. Similar stability results hold for other test statistics that are asymptoti-
cally distributed as χ2

q , such as (ψ̄a−ψa)(ψ̄b−ψb)S̄ab and M̄a(ψ)M̄b(ψ)S̄ab, where
S̄ab = −M̄ab(ψ̄) and (S̄ab) is the q× q matrix inverse of (S̄ab). The marginal dis-
tribution function of such a statistic X typically has the expansion

Pr(X ≤ x) = Pr(χ2
q ≤ x) +

k∑

j=0

αjPr(χ2
q+2j ≤ x) +O(n−3/2),

where the αj are functions of the λ’s and β’s and typically k = 3; see, for exam-
ple, Harris (1985) and Cordeiro and Ferrari (1991). The same manipulations of
likelihood quantities that produce the approximation to the marginal distribution
of X can be applied to conditional likelihood quantities to yield the expansion

Pr(X ≤ x | A) = Pr(χ2
q ≤ x) +

k∑

j=0

α̊jPr(χ2
q+2j ≤ x) +Op(n

−3/2),

where the α̊j are functions of the λ̊’s and β̊’s. The preceding calculations that
demonstrate the stability of W̄ (ψ) can also be used to show that α̊j = αj +
Op(n−3/2), and it follows that X is stable to error of order O(n−3/2).

9. Discussion

Focus here has been on inference on an interest parameter in the presence
of a nuisance parameter in ancillary statistic models. We have shown that com-
monly used, asymptotically standard normal, likelihood-based pivots, including
the signed root statistic R(ψ), are second-order stable. When applied with such
a pivot, procedures such as the parametric bootstrap, which approximate the
marginal distribution of the pivot to second-order, achieve the same order of
accuracy, O(n−1), in approximation of the relevant exact conditional inference.
Our motivation for the analysis here is as a preliminary to full evaluation of
the properties of such parametric bootstrap procedures as an alternative to more
awkward analytic approaches to approximation of exact conditional inference. In
this regard, of importance for future investigation is analysis of large deviation
properties of procedures based on marginal simulation of a likelihood-based pivot.
Analytic procedures, such as normal approximation to R∗(ψ), or the approxima-
tion of Skovgaard (1996), confer large deviation protection, typically providing
accurate approximation of the conditional distribution of the associated pivot far
into its tails. The requirement of such large deviation behaviour may be judged
an important discriminant between competing methodologies. Discussion of this
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and related issues is currently in preparation in DiCiccio, Kuffner, and Young
(2014).

Pivots stable to third-order do, of course, exist: R∗(ψ) is distributed as stan-
dard normal to third-order, conditionally on the ancillary statistic, and hence
unconditionally as well. Second-order approximation to an exact conditional
inference through the bootstrap is seen (see, for example, DiCiccio and Young
(2010), Young and Smith (2005, Chap. 10)) to give good results in practice in an-
cillary statistic settings. Basing inference on a pivot stable to third-order seems
unwarranted. In addition, ancillary statistics are typically not unique and (see,
for instance, McCullagh (1992)), different conditional inferences typically only
agree to second-order, so it can be argued that third-order approximation to an
exact conditional inference is, in itself, unwarranted. By our analysis, inference
based on second-order (or higher-order) approximation of the marginal distribu-
tion of a pivot stable to second-order approximates any conditional inference to
O(n−1).

Our study of uniqueness of p-values yielded simple conditions under which
p-values derived from different asymptotically standard normal pivots agree to
order Op(n−1). In cases we have considered where the conditions fail to be
satisfied, a more detailed analysis shows that p-values agree only to an actual
order Op(n−1/2).
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S1 Proof of Lemma 2

The unconditional variance of T ( ) is

var{T ( )} = E[{T ( )}2]� [E{T ( )}]2 = E[{T ( )}2] +O(n�1)

= ⌘E{T 2
1 + 2T1T2 +Op(n

�2)}+O(n�1)

= ⌘E{�1r�1slrls � 2�1r⇠stulrlstlu + 2�1r⇠stlrlslt +Op(n
�2)}+O(n�1)

= �⌘{�1r�1s�rs +O(n�2)}+O(n�1)

= 1 +O(n�1).

Correspondingly, the conditional variance of T ( ) is

v̊ar{T ( )} = E̊[{T ( )}2]� [E̊{T ( )}]2 = E̊[{T ( )}2] +Op(n
�1)

= ⌘E̊{T 2
1 + 2T1T2 +Op(n

�2)}+Op(n
�1)

= ⌘E̊{�1r�1s̊lr̊ls � 2�1r⇠stůlr (̊lst + �̊st)̊lu + 2�1r⇠st̊lr̊ls̊lt +Op(n
�2)}+Op(n

�1)

= �⌘{�1r�1s�̊rs � 2�1r⇠stu�̊ru�̊st +Op(n
�2)}+Op(n

�1)

= �⌘{�1r�1s(�rs + �̊rs)� 2�1r⇠stu�ru�̊st}+Op(n
�1)

= 1� ⌘(�1r�1s�̊rs � 2⇠st1�̊st) +Op(n
�1)

= 1� ⌘{(�1r�1s � 2⇠rs1)�̊rs}+Op(n
�1).

It follows that v̊ar{T ( )} = var{T ( )}+Op(n
�1) provided ⇠rs1 = 1

2�
1r�1s. ⇤
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S2 Proof of Lemma 3

The unconditional skewness of T ( ) is

skew{T ( )} = E([T ( )� E{T ( )}]3) = E[{T ( )}3]� 3E[{T ( )}2]E{T ( )}+O(n�1)

= ⌘3/2[E{(T1 + T2)
3}� 3E{(T1 + T2)

2}E(T1 + T2)] +O(n�1)

= ⌘3/2[E{T 3
1 + 3T 2

1 T2 +Op(n
�5/2)}� 3E{T 2

1 +Op(n
�3/2)}E(T2)] +O(n�1)

= ⌘3/2[E{��1r�1s�1tlrlslt + 3�1r�1s(⇠tuvltulv � ⇠tultlu)lrls +Op(n
�5/2)}

� 3E{�1r�1slrls +Op(n
�3/2)}{⇠rst�rs,t + ⇠rs�rs +Op(n

�3/2)}] +O(n�1)

= ⌘3/2{E(��1r�1s�1tlrlslt + 3�1r�1s⇠tuvlrlsltulv � 3�1r�1s⇠tulrlsltlu

� 3�1r�1s⇠tuvlrls�tu,v � 3�1r�1s⇠tulrls�tu)}+O(n�1).

To continue the calculation, we make use of the following identities:

�E(lrlslt) = �rs,t + �rt,s + �st,r + �rst,

E(lrlsltulv) = ��rs�tu,v � �rv�tu,s � �sv�tu,r +O(n3/2),

E(lrlsltlu) = �rs�tu + �rt�su + �ru�st +O(n3/2).

By using these identities, we obtain

skew{T ( )} = ⌘3/2(3�1r�1s�1t�rs,t + �1r�1s�1t�rst

� 3�11⇠tuv�tu,v � 3�1s⇠tu1�tu,s � 3�1r⇠tu1�tu,r

� 3�11⇠tu�tu � 3⇠11 � 3⇠11

+ 3�11⇠tuv�tu,v + 3�11⇠tu�tu) +O(n�1)

= ⌘3/2(�1r�1s�1t�rst + 3�1r�1s�1t�rs,t � 6⇠rs1�1t�rs,t � 6⇠11) +O(n�1).

Similar reasoning shows that the conditional skewness of T ( ) is

˚skew{T ( )} = ⌘3/2[E̊{��1r�1s�1tlrlslt + 3�1r�1s⇠tuvlrlsltulv � 3�1r�1s⇠tulrlsltlu

� 3�1r�1s⇠tuvlrls�tu,v � 3�1r�1s⇠tulrls�tu +Op(n
�5/2)}] +Op(n

�1)

= ⌘3/2[E̊{��1r�1s�1t̊lr̊ls̊lt + 3�1r�1s⇠tuv l̊r̊ls(̊ltu + �̊tu)̊lv � 3�1r�1s⇠tůlr̊ls̊lt̊lu

� 3�1r�1s⇠tuv l̊r̊ls�tu,v � 3�1r�1s⇠tůlr̊ls�tu}] +Op(n
�1)

= ⌘3/2{E̊(��1r�1s�1t̊lr̊ls̊lt + 3�1r�1s⇠tuv l̊r̊ls̊ltůlv � 3�1r�1s⇠tůlr̊ls̊lt̊lu

� 3�1r�1s⇠tuv l̊r̊ls�tu,v � 3�1r�1s⇠tůlr̊ls�tu)}+Op(n
�1).
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Now we use the following identities:

�E̊(̊lr̊ls̊lt) = �̊rs,t + �̊rt,s + �̊st,r + �̊rst

= �rs,t + �rt,s + �st,r + �rst +Op(n
1/2)

= �r,s,t +Op(n
1/2)

= �E(lrlslt) +Op(n
1/2),

E̊(̊lr̊ls̊ltůlv) = ��̊rs�̊tu,v � �̊rv�̊tu,s � �̊sv�̊tu,r +Op(n
3/2)

= ��rs�tu,v � �rv�tu,s � �sv�tu,r +Op(n
3/2)

= E(lrlsltulv) +Op(n
3/2),

E̊(̊lr̊ls̊lt̊lu) = �̊rs�̊tu + �̊rt�̊su + �̊ru�̊st +Op(n
3/2)

= �rs�tu + �rt�su + �ru�st +Op(n
3/2)

= E(lrlsltlu) +Op(n
3/2).

By using these identities in the preceding expression for ˚skew{T ( )}, it is apparent that
˚skew{T ( )} = skew{T ( )}+Op(n

�1), and hence, the conditional third cumulant agrees
with the unconditional one to error of order Op(n

�1), as required. ⇤

S3 Proof of Theorem 5

To establish the stability of W̄ ( ) to error of order O(n�3/2), we need only show that
E̊{W̄ ( )} = E{W̄ ( )} + Op(n

�3/2). For full generality, the previous notation, which
is applicable when  is a scalar, must be extended. In the expressions that follow,
it is assumed that subscripts and superscripts a, b, . . . have the range 1, . . . , q, while
r, s, . . . range over 1, . . . , d. Let (⌘ab) be the q ⇥ q matrix inverse of (��ab), let ⌧ rs =
⌘ab�

ar�bs, and let ⌫rs = �rs + ⌧ rs. In addition, let Ba( ) = @B( )/@ a, Bab( ) =
@2B( )/@ a@ b,�a = E{Ba( )},�ab = E{Bab( )}, ba = Ba( ) � �a, bab = Bab( ) �
�ab, and so forth. The constants �a,�ab etc. are assumed to be of order O(1) and the
variables ba, bab etc. are assumed to be of order Op(n

�1/2). Finally, it is assumed that
the joint cumulants of nba, nbab, lr, lrs, and so forth are of order O(n).

DiCiccio & Stern (1994b) showed that

W̄ ( ) = W ( )� 2�ar�alr � 2�arbalr + 2�ar�st�alrslt � �ar�su�tv�a�rstlulv

+ �ar�bs�ablrls � �ab�a�b +Op(n
�3/2),

and it follows that

E{W̄ ( )} = E{W ( )}� 2�arE(balr) + �ar�st�a(2�rs,t + �rst)� �ab(�ab + �a�b) +O(n�3/2)

= E{W ( )}+ �ar�st�a(2�rs,t + �rst)� 2�ar�a/r + �ab(�ab � �a�b) +O(n�3/2),
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where �a/r = @�a/@✓
r. For calculating E{W̄ ( )}, we assume that B( ) is a function

of Y and  only, so, in particular, it does not depend on �. Thus, di↵erentiation of the
identity �a = E{Ba( )} yields �a/b = E(balb)+�ab and �a/i = E(bali) for i = q+1, . . . , d.

It follows that �arE(balr) = �ar�a/r � �ab�ab.

To calculate E̊{W ( )}, some care is required about the conditional properties of

Ba( ), Bab( ), and so forth. The quantities �̊a = E̊{Ba( )}, �̊ab = E̊{Bab( )}, etc.
are assumed to be of order Op(1), while b̊a = Ba( ) � �̊a, b̊ab = Bab( ) � �̊ab, etc.
are assumed to be of order Op(n

�1/2). Finally, it is assumed that the joint conditional

cumulants of n̊ba, n̊bab, l̊r, l̊rs, and so forth are of order Op(n).

Under the preceding assumptions, it is possible to determine the orders of the dif-
ferences �̊a � �a and �̊ab � �ab. Since E(�̊a) = E[E̊{Ba( )}] = E{Ba( )} = �a and

var(�̊a) = var[E̊{Ba( )}] = var{Ba( )} � E[v̊ar{Ba( )}] = O(n�1) � E{v̊ar(̊ba)} =

O(n�1)� E{Op(n
�1)} = O(n�1), it follows that �̊a = �a + Op(n

�1/2). A similar argu-

ment shows that �̊ab = �ab +Op(n
�1/2). We assume that di↵erentiation of the identity

�̊a = �a +Op(n
�1/2) yields �̊a/r = �a/r +Op(n

�1/2).

Now, define �̊a = �̊a � �a, so that �̊a is a function of ✓ and A of order Op(n
�1/2).

Furthermore, ba = Ba( )� �a = Ba( )� �̊a + �̊a = b̊a + �̊a. To calculate E̊{W̄ ( )}, we
observe that

W̄ ( ) = W ( )� 2�ar�alr � 2�arbalr + 2�ar�st�alrslt � �ar�su�tv�a�rstlulv

+ �ar�bs�ablrls � �ab�a�b +Op(n
�3/2)

= W ( )� 2�ar�ålr � 2�ar (̊ba + �̊a)̊lr + 2�ar�st�a(̊lrs + �̊rs)̊lt � �ar�su�tv�a�rst̊lůlv

+ �ar�bs�ab̊lr̊ls � �ab�a�b +Op(n
�3/2),

and thus

E̊{W̄ ( )} = E̊{W ( )}� 2�ar̊bålr + 2�ar�st�a�̊rs,t + �ar�su�tv�a�rst�̊uv

� �ar�bs�ab�̊rs � �ab�a�b +Op(n
�3/2).

Barndor↵-Nielsen & Cox (1984) showed that E̊{W ( )} = E{W ( )}+Op(n
�3/2) ; recall

that �̊rs = �rs + Op(n
1/2) and �̊rs,t = �rs,t + Op(n

1/2). Then, �ru�st�̊ut = �rs +
Op(n

�3/2), and

E̊{W̄ ( )} = E{W ( )}+�ar�st�a(2�rs,t+�rst)�2�arE̊(̊bålr)��ab(�ab+�a�b)+Op(n
�3/2).

Now, using the result that �arE̊(̊bålr) = �ar�̊a/r��ab�̊ab = �ar�a/r��ab�ab+Op(n
�3/2),

which holds since �̊a/r = �a/r +Op(n
�1/2) and �̊ab = �ab +Op(n

�1/2), we have

E̊{W̄ ( )} = E{W ( )}+ �ar�st�a(2�rs,t + �rst)� 2�ar�a/r + �ab(�ab � �a�b) +Op(n
�3/2)

= E{W̄ ( )}+Op(n
�3/2),

as required. ⇤
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