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Abstract: Asymptotic approximations of marginal densities and tail probabilities for smooth functions of a continuous random 

vector, developed by Tiemey, Kass and Kadane (1989) and DiCiccio and Martin (1991) respectively, in general fail to be invariant 

under transformations of the underlying random vector. This lack of invariance raises the complex issue of which choice of variables 

yields the most accurate approximations. However, in this paper, we show that the density and tail probability approximations 

remain invariant under transformations of the underlying variables if the joint density of the transformed variables is specified 

appropriately. The invariance property allows approximations to be computed using a convenient choice of variables, thereby 

avoiding the need for explicit nonlinear transformation of the underlying joint density. The utility of the invariance property is 

illustrated in an example involving the Studentized mean. 
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1. Introduction 

Asymptotic approximations of marginal densities and marginal tail probabilities for smooth functions of a 
continuous random vector have been developed recently by Tierney, Kass and Kadane (1989) and 
DiCiccio and Martin (1991) respectively. These approximations have broad applicability to Bayesian and 
frequentist inference, as well as for approximating sampling distributions. Important features of the 
approximations are that they are easily computed and circumvent numerical integration in high dimen- 
sions. Moreover, both the density and the tail probability approximations have been shown to be very 
accurate in a wide range of problems. 

Unfortunately, as Tierney, Kass and Kadane (1989) and DiCiccio and Martin (1991) observe, the 
approximations are generally not invariant under different choices of the underlying random vector. That 
is, if X = (Xi,. . . , XP) and Z = (Z’, . . . , ZP) are distinct continuous random p-vectors, and we wish to 
estimate the density and tail probabilities of a real-valued random variable Y = g(X) = S(Z) for smooth 
functions g and jj, then the density and tail probability approximations for Y based on the variables X do 
not coincide, typically, with approximations constructed using the variables Z. In this paper we develop an 
approach to constructing the density and tail probability approximations so that results obtained for 
different choices of the underlying variables are identical. 
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The general lack of invariance raises the difficult question as to which choice of variables yields the 
most accurate approximations. Our result is significant because it implies that the most convenient choice 
of variables can be used to construct the approximations, and hence explicit nonlinear transformation of 
the underlying joint density is avoided. 

Section 2 of the paper contains a development and proof of the invariance property. In Section 3, we 
provide an example of how the invariance property may be used to allow the construction of approxima- 
tions to the density and tail probabilities of a Studentized mean under a convenient choice of variables. 

2. Derivation of the invariance property 

Consider a continuous random vector X = (X’, . . . , Xp) having probability density function of the form 

fx(x) ah(x) exp{f(x)}, x=(x’,...,x~). (I) 

Suppose that the function 1 takes its maximum value at 2 = (a’,. _ . ,I?~) and that X, - 2, (j = 1,. . . , p) is 

o&+2) as some parameter n, usually sample size, increases to infinity. For each fixed x, assume that 
I(x) and its partial derivatives are O(n) and that b(x) is O(1). Suppose we are interested in estimating the 
density and distribution functions of a real-valued random variable Y = g(X), where the function g is 
assumed to have continuous gradient that is non-zero at z?. Tierney, Kass and Kadane (1989) have given 
an asymptotic approximation to the true density fY( y) of Y, and DiCiccio and Martin (1991) have derived 
an approximation to the distribution function of Y. An important feature of these approximations is that 

they do not require numerical integration. 
To describe the approximations, let 2 = Z(y) be the value of x that maximizes I(x) subject to the 

constraint g(x) =y. Let I,(x) = af(x)/ax’, I,,(x) = i3’f(x)/ax’ ax’, g,(x) = ag(x)/axl, g,,(x) = 
a2g(x)/a2 axI, etc. (i, j= l,..., p). Put 

J,,(Y) = -4,{-qY)} + ;g;; &{~(Y)L i, j=l ,...,p, 

where k is any index for which gk{ a( y)} is non-zero. Our assumptions about g guarantee the existence of 
such an index k. Define the p x p matrices J(y) = {J,,(y)} and J(y)-’ = {J”(y)}, and let 

Q(Y) =J”(Y)g,{~‘(Y)}g,{x”(Y)}, D(Y)= { Q(~)lJ(y)l/lJ(P)l}~~'~. 

In the expression for the quadratic form Q(y), and in forthcoming expressions, the notational convention 
is used whereby summation over the range 1,. . . , p is understood for each index appearing as both a 
subscript and a superscript. Tierney, Kass and Kadane’s (1989) asymptotic approximation to the marginal 

density of Y = g(X) for p >, 1 is 

(2) 

See also Tierney, Kass and Kadane’s (1991) correction note to their 1989 paper. A normalizing constant c 
may be computed so that f,?(y) integrates to 1 + O(U-~/~). Provided y -J is 0(n-‘/2), the renormalized 
approximation has relative error of order n- 3/2; that is, 

f,(Y) =GG){l+ OW3’*)}. 

Leonard, Hsu and Tsui (1989) also describe the saddlepoint accuracy of f,?(y). The derivation of 
approximation (2) involves the application of a Laplace approximation to the joint density of X* = 
(Y, AZ,..., A “), where Al = A’( X’, . . . , Xp) (j = 2,. . . , p), to obtain an approximation to the marginal 
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density of Y = g(X). Note that the transformation from X to X* is not explicitly used in applying their 
approximation, except to the extent that the function g and its derivatives are required. 

DiCiccio and Martin’s (1991) approximation to the distribution function F,(y) = P(Y < y) of Y is 
based on a standard normal approximation to the distribution of R = r(Y), where 

r(y) = sgrG+)(2[@2) - ~{ww2~ 
9 = g(i), and the function r(y) is assumed to be monotonically increasing. An initial approximation to 
the tail probability P(Y < y), provided y -p is O(n-‘/2), is 

P(Y<y) = G(r) + 0(n-“2), 

where r = r(y) and Q, is the standard normal distribution function. DiCiccio and Martin’s (1991) 
improved approximation is 

b{Z?(Y)) bG(Y)~ 
P(Y<y) = Q(r) + G(r) + + D(Y) b(2~ 

[ zk{g(y)j + o(n-3’2)t 
1 

where Q is the standard normal density function and k is any index such that gk{ _?( y)} does not vanish. 
Expression (3) is derived by applying a tail probability approximation of DiCiccio, Field and Fraser (1990) 
to the Tiemey, Kass and Kadane (1989) approximation of the density of a suitably chosen function of Y. 
See DiCiccio and Martin (1991) for details of this construction. 

Tierney, Kass and Kadane note that their density approximation is generally not invariant under 
non-linear transformations of the density (1). DiCiccio and Martin also observe the same phenomenon for 
their tail probability approximation. More formally, let Z = (Z’, . . . , Zp) denote a continuous random 
vector that is a function of X, so that the probability density function of Z is 

where x = x(z) and A(x) = { xP } is the p xp matrix of partial derivatives xp = ax”/az’ (a, i = 1,. . . , p). 

Suppose Y = g(Z). To apply marginal density approximation (2) and tail probability approximation (3) in 
terms of Z, we write 

with b(z) and i(z) to be specified. In general, the density approximation corresponding to (2) and the tail 
probability approximation corresponding to (3) constructed using Z yield different results to density and 
tail probability approximations constructed using X. For instance, if we choose b(z) = 1 and i(z) = I(x) 
+ log ] A(x) (, hence accounting for the Jacobian of the transformation from X to Z in the exponent, then 
the approximations corresponding to X and Z differ. In this note, we show that the approximations 
coincide if the joint density of Z is written so that 

i(z) = l(x) 

and 

b(z) = b(x)lA(x) I. 

We now show that this specification of the density of Z results in 
z for which i is maximized and let ,? = z”(y) be the value of z which _- 

(4) 

(5) 
invariance. Let i denote the value of 
maximizes i subject to the constraint 

g(z) = y. Define l;(z) = aZ(z)/az’, lij(z) = a’l(z)/az’ azJ, g,(t) = ag(z)/az’ and gij(t) = 
a2g(z)/azi at’, (i, j = 1,. . . , p), etc. Denote versions of J(y), Q(y), D(y) and r(y), etc. computed using 
the variables Z by J( y), Q(y), o(y) and 7(y), etc. Clearly, (4) implies i(i) = I( 2) and i{ F(y)} = I{ z(y)}. 
In particular, observe that exp[ 1{ f( y)} - I( z^)] = exp[ I{ z( y)} - 1( ?)I. Moreover, since 3 = g(i) = g(a), it 
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follows that F(y) = r(y), for each y. By differentiating the expression S(z) = g(x) and (4) with respect to 
z’,..., zp, we obtain 

Ii(Z) =1,(x)x;, 

E, {Z(Y)) =&{~(Y))x”~~, 
i=l >-*., P> (6) 

where x = x(z) and 2: = ax”/az’ 1 z=icvj. Similarly, further differentiation yields 

ii,(Z) = Ia,x,~x,“+fa(x)xfi, 

Eij{z(Y)} =gab{~(Y)}~?p~~++~{~(Y)}~Pj, 
i, j=l ,.*., P, (7) 

where Zpj = a*x”/az’ azi 1 r=icyj. 
A Lagrange multiplier argument for maximizing i(z) subject to the constraint g(z) =y involves 

solution of the system of equations 

i,{z(y)} +X(y)~,{~<y)} =O, i=I,...,p, (8) 

for z”(y). A similar argument for maximizing I(x) subject to g(x) = y involves solution of the system of 

equations 

I,{Z(y)} +qY)g,{qY)} =o, a=l,...,p, 

for Z(y). It follows from (9) that 

r,{~(y)}iq+X(y)g,{I(y)}x”p=o, i=l,...,p, 

and 

1,{~(y)}2,~+h(y)g,{~(y)}2,~=0, i, i=l,..., p. 

On combining (6) and (lo), we see that 

i,{Z(y)} +X(y)g;{Z(y)} =O, i=I,...,p, 

and thus (8) yields 

(9) 

(10) 

(11) 

W?(Y)} L{Z(Y)l 
X(Y) =X(y) = - gk{qy)} = - - 

&i?{z"(Y)l ’ (12) 

where k and m are any indices for which gk{ T(y)} and g,{ F( y )} are non-zero. Hence, from (11) and 

(1% 

bMY)l 
zo{x”(Y>laYj- g,{K(y)} g,{~(y)}~~,=O, i, i=l,..., p. 

Equations (7) and (13) imply that 

Zj(Y) = -ji, { z(Y)} + 

(13) 

=Jab(y)2p$, i, j= l,..., p. 
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Observe that xa =x”{ z(x)}, so that xyzb = 8:, where zi = azi/axb and 8; is Kronecker’s delta. As a 
result, inversion of (14) yields J”(Y) = .Pb(Y)$,?l’, where .?L = az’/ax’ 1 x=icrj. Therefore, 

iz(Y)=J”gi{~(Y)}g,{z”(Y)} 

=J”“(Y)g,{I(y)}g,{~(Y)}~f~~i,dL; 

=J”b(Y>g,{x”(y)}gb{x’(y)} 

= Q(Y). 

Thus, 

E(y)= { Q(YV$)l]-“‘_ 

By combining (5) and (15), we see that 

,D(y)w(Y)l 
b(2) . 

i 

Q(Y)~J(Y)~~A{~“(Y)~ I* IAW I 
I-w lW> I2 

= D(Y) ,A(z(~)) 1 ’ (15) 

(16) 

It follows from (16) that approximation (2) is the same regardless of whether the variables X or Z are used 
in its construction. Moreover, noting (12) and recalling that r(y) = r(y) for each y, we see that 
approximation (3) is also invariant under the transformation from X to Z. 

It should be stressed that our result does not address the important open question of how the functions 
b and 1 should be specified in (1) in order to achieve sufficiently accurate density and tail probability 
approximations for Y when the sample size n is small. Rather, our result guarantees that the density and 
tail probability approximations for Y obtained using a different choice of underlying variables Z will be 
identical to those corresponding to the variables X provided the joint density of the transformed variables 
Z is specified according to (4) and (5). 

3. Example - the Studentized mean 

The invariance property established ic Section 2 can be used to demonstrate that density and tail 
probability approximations developed by Daniels and Young (1991) for a Studentized mean are equivalent 
to those obtained by applying approximations (2) and (3) directly to a saddlepoint approximation to the 
joint density of two means. Consider a random sample of n observations VL.. . , V, of a continuous, 
real-valued random variable V and let v= n-‘C;y and S2 = n-‘C;(v - V)*. Interest centers on 
approximating the density and tail probabilities of the Studentized mean T = v/S. Daniels and Young 
(1991) derive approximations to the density and distribution functions of T through the use of saddlepoint 
techniques. To briefly describe their approach, let W = V2 and put w = n-‘C;F2. Note that T = p/( w- 

Y2)l12. The joint cumulant generating function of V and W is 

K(U,, U2) = log{ E(e(i,v+u2w)}. 

The usual saddlepoint approximation to the joint density of v and w is 

L(U, W) = &exp[n{K(G,, ri,) - U1i7- 4i?}]A(Q, 4), (17) 
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where 

K,,(U,, U,) = aK(U,, U,)/&C$, and K,,,$U,, U,) = a*K(U,, U,)/aQ X$, (i, j = 1, 2). For general re- 
views of saddlepoint methods, see Barndorff-Nielsen and Cox (1979) and Reid (1988). Daniels and Young 
then transform the approximate joint density (17) to an approximate joint density of T and S, 

where 

a(E, ic) aij sic au aif =2s2 

act, 4 
=_---- 

at as as at . 

They obtained by direct Laplace approximation density and tail probability approximations for T, which 
it is easy to establish are the same as those obtained by applying (2) and (3) to the approximate joint 
densityL(t, s), using Z = (T, S), z = (t, s), b(z) = 2s*A(&, 4), i(z) = n{ K(& c2) - 4ts - fi2s2(1 + 
t’)}, and g(t, s) = t. 

A simpler approach, which does not require explicit transformation of _the approximate joint density -- 
(17), involves the direft application of approemati?ns (21 and (3) to f,( U, W), putting X= (I’, IV), 
x = (5, W), b(x) = A(&, U,), Z(x) = n{ K(U,, U,) - U,u - U,W}, and g(U, W) = V/(W - fi2)l/*. It is read- 
ily seen in this example that U = ts, W = s2(1 + t *) and 1 A(x) 1 = 2s*. Therefore, (4) and (5) hold for the 
Daniels and Young approximations. Consequently, the invariance property established here implies that 
density and tail probability approximations constructed using X are identical to those obtained by Daniels 
and Young. 

The approach of Daniels and Young can be generalized to more complicated functions of means, such 
as variances, ratios of means, and correlation coefficients. For such cases, a saddlepoint approximation to 
the joint density of several means is first transformed to an approximate joint density of a random vector 
Z, the first component of which is the statistic of interest. Density and tail probability approximations are 
then obtained by applying (2) and (3) to the approximate joint density of Z with g(z) = z*. Although in 
the case of a Studentized mean the transformation of (17) to (18) is fairly simple, in more complex cases 
- for instance, when the statistic of interest is a sample correlation coefficient - the transformation 
required may be quite complicated. In particular, the Jacobian arising from the transformation of X to Z 
must be explicitly calculated to specify the approximate joint density of Z. The invariance property 
established in Section 2 guarantees that the simpler approach of applying (2) and (3) directly to the 
saddlepoint approximation of the joint density of the means can always be used to obtain identical results. 
This method is typically much easier to apply because it does not require use of the Jacobian of a 
non-linear transformation. 
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