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SUMMARY

We propose two new methods for the construction of approximate iterated bootstrap
confidence intervals. Our methods follow a saddlepoint approach, but employ approxi-
mate rather than exact solutions to the nonlinear saddlepoint equations that arise in
applying that technique. The main advantages of the new techniques are that they yield
confidence intervals with high coverage accuracy in small- to moderately-sized samples
and that they achieve this accuracy with very substantial reductions in computation time
compared to other methods. We illustrate our methods on calculations of confidence
intervals for a ratio of means and for a correlation coefficient.
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point approximation; Simulation; Tail probability approximation.

1. INTRODUCTION

The iterated bootstrap (Beran, 1987) is a widely applicable tool for correcting error in
bootstrap procedures. This technique involves nested levels of resampling, the innermost
level directed at estimating error in a particular characteristic of a statistical procedure.
For instance, in the problem of constructing bootstrap confidence intervals, the inner
level of resampling can be used to estimate coverage error, and the original interval may
then be calibrated to obtain more accurate coverage. Unfortunately, nested levels of
resampling quickly become very costly, so the application of iterated bootstrap procedures
can be severely limited by computational resources and time constraints. Indeed, the
construction of a single, highly accurate confidence interval might take hours or even
days. Detailed accounts of iterated bootstrap procedures have been given by Hall &
Martin (1988), Beran (1988), Hinkley & Shi (1989) and Martin (1990, 1991).

Several authors have considered analytical approximations to bootstrap distribution
functions, which can be applied to replace the inner level of resampling in iterated
bootstrap procedures. Davison & Hinkley (1988) first proposed the use of saddlepoint
approximations in the bootstrap context, primarily for linear statistics. Further generaliz-
ations to Studentized statistics and general nonlinear functions have been studied by
Daniels & Young (1991) and by the present authors, who have applied the results to the
inner level of resampling in the context of constructing iterated bootstrap confidence
intervals. In that setting our technique can yield considerable computational advantages
over the usual resampling approach, although the improvement is not as substantial when
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dealing with complicated statistics such as the correlation coefficient, especially in small
samples.

We propose two techniques for constructing accurate approximate iterated bootstrap
confidence intervals that arise as first-order approximations to the previous intervals
based on saddlepoint methods. The proposed techniques are general in that they may
be applied to any smooth function of vector means. They work well in small- to
moderately-sized samples, even in complex cases, such as the correlation coefficient.
Moreover, the techniques are economical; indeed, in some cases, the simpler of our two
algorithms is hundreds of times faster than direct simulation.

In § 2, we give a general overview of iterated bootstrap methodology for constructing
confidence intervals and describe our techniques in detail. Section 3 summarizes the
results of two numerical studies, involving ratios of means and correlation coefficients,
carried out to assess the speed and coverage accuracy of the techniques.

2. METHODOLOGY

Suppose we are interested in constructing accurate bootstrap confidence intervals for
a parameter 0 that is expressible as a smooth function of vector means, say 6 =g(u),
where u = (u,, ..., ux). Assume the data consists of a sample ¥ = (X, . e X,), X, eR?,
drawn from an unknown distribution. The parameter 6 is estimated by 8 = g(Z), where

Z= (Z_h sy Z_k) =n"" z Z, Z;=(Zy,...,Zu)={fi(X), ..., fi(X)}

for smooth, real-valued functions f,, ..., f on R? such that E(Z)= u. Assume further
that g is a real-valued function having continuous gradient that is not zero in an
n~Y-neighbourhood of Z Examples of such parameters include population means, vari-
ances, ratios and products of means and variances, and correlation coefficients. The
problem of constructing accurate bootstrap confidence intervals for 6 is very complex.
Standard methods, such as Efron’s (1979) percentile method or the percentile-t method,
are well-known to behave poorly in common situations. Recent attention has been paid
to iterated bootstrap methods as a potential balm for the woes associated with standard
techniques.

To describe the iterated bootstrap algorithm for coverage correction, denote the uncor-
rected interval of nominal coverage a by Iy(a; &, &*), indicating that I, is constructed
using sample and resample information. For example, I; could be the percentile method
interval. Usually, the coverage probability of I, w(a)=pr{0¢c I,(a; &, &*)}, differs
significantly from a. However, the interval I(8,; &, £*), where 7(8,) = a, has coverage
exactly a. The value of §, is rarely available in practice, but may be estimated using a
second level of resampling. By way of notation, let £* denote a generic resample from
& and ** denote a resample from X*, and let I(a; ¥*, Z**) indicate the version of
Iy(a; &, ¥*) computed using ¥* and &** in place of & and ¥*, respectively. The
bootstrap estimate of w(a) is

#(a) =pr{f € I(a; &*, 2**)| %}, (1)

In practice, B resamples &F,..., &} are drawn at the outer level of resampling, and
a(a) is typically estimated by the proportion

card {1<b<B: felya; ¥, %.)}/B. ()

Usually, exact specification of the distribution of &* given &% is not feasible, so a
second level of resamples from &%, say B, resamples 3f, ..., 15, , is used to estimate
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the relevant features of this distribution. The bootstrap estimate of 8, is 5., the solution
of the equation 1r(8 ) = a. The iterated bootstrap confidence interval for 6 is I,(a) =
I(6.; 2, &*).

Usually, the original interval I, is a percentile-method interval. Iterated percentile-
method intervals were discussed in detail by Martin (1990, 1991). In this case, (2) can
be computed by calculating the proportion of times over a large number of resamples
¥t (b=1,..., B) from & that pr (8¥* < Glaf’*) is between (1—a)/2 and (1+a)/2, where
gx* represents a version of 6 computed using &** instead of %. The estimate of (2)
described in the previous paragraph implicitly approximates pr (6%* < 0|3’*) by

card {l < c< B,: §%*<6}/B,,

where 9%* is the version of § computed using £%* in place of & If B resamples are
drawn at the outer level of resampling and B, resamples are drawn at the inner level of
resampling, then a total of BB, resampling operations are required to find a single interval,
where both B and B, must be large in order to ensure an accurate confidence interval.

The authors have recently considered analytical methods that significantly reduce the
computational demands of the usual iterated bootstrap algorithm. The methods employ
saddlepoint approximations to replace the inner level of resampling. The use of saddle-
point methods to approximate bootstrap distributions was originally considered by
Davison & Hinkley (1988), and further generalized by Daniels & Young (1991) and by
the authors in unpublished work.

We now describe the aspects of our full saddlepoint approximation needed here. Define
6* = g(Z*) and 6** = g(Z**), where Z* and Z** are versions of 4 computed using &*
and &**, respectively, in place of . The required probability pr (6** < 8| &*) is estimated
through approximating the tail probability of a saddlepoint approximation to the joint
density of Z¥* ..., Z¥* given £*. The saddlepoint approximation to this joint density is

Ballss - L)AL, -, &) Hexp [n{xm, e ﬁ)’é f.;,}], 3)

where
K(T,....,T)=4 (=1,...,Kk)
defines the saddlepoint f'=(f",, R f‘k),

K(T,..., T,‘)=log{n‘l Y exp(T\Z%+...+ TkZ’,':,,)}
=]

is the cumulant generatmg function of Z¥¥*,..., Z¥} given &*, K, =9K(T,,..., T)/aT,
and A({) = {K,,,,(T,, .. Tk)} is the k x k matnx of second-order partial denvatlves

Klm(Th'-" Tk)=a K(Th"" Tk)/a‘rlaTm (lym=ly-°';k)

evaluated at f‘,, ceey f‘k.

Our approach involves the application of a tail probability approximation of DiCiccio
& Martin (1991) to the approximate joint density £3) To bneﬂy develop the necessary
components of their approximation, denote by { ¢,..., {k) the valueof { =({y, ..., &)
which maximizes

O=n{KCh. .. 20§ ).

l=1
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In this case, the value of {, and the associated saddlepomt T= (T,, . ﬁ) are known:
{, Z¥, the lth component of the observed mean vector Z* correspondmg to the resample
&*, and the saddlepoint T 0. Let { = £() be the value of { that maximizes I({) subject
to the constraint g({) = é. Denote the corresponding saddlepoint by

T=T(6)={T\(6),..., T(6)},
the solution of the equations
K(T,,...,To=5(6) (=1,...,k).

Unfortunately, the computation of the constrained maximizing point Z and the saddle-
point T typically involves the solution of (2k+1) nonlinear equations in as many
unknowns. Although there exist many standard numerical routines that are designed to
solve this problem, such procedures can be relatively slow and usually require the user
to supply a set of starting values from which the procedures iterate towards the solution.
We have previously observed that, for the majority of resamples &* from &, the_con-
strained max1mlzatlon problem is easily solved after choosing starting values for { and
T close to { and T, respectively. However, we noted that for a small percentage of
resamples the constrained maximization problem is very difficult to solve because the
value of 6 is very far from 6*, the mode of the distribution of §** given £*. In those
cases, we recommended that direct simulation be used to estimate the required probability,
resulting in increased computation time.

Our approach in this paper is to employ approximate solutions to the constrained
maximization problem and to the corresponding saddlepoint equations, and then to use
only the leading term of the full saddlepoint approximation to pr (6**< 6|4*). The
resultant approximations lose accuracy, but numerical investigations indicate that our
approximations to 7(a) are sufficiently accurate in the present context.

To develop our first technique, let

1) 63(()
6{16{]’ l(;)'— > glj(() a{'ag ’

and denote by {IY({)} the inverse of the k x k matrix (Iy). A straightforward but tedious
calculation yields the following Taylor approximation to the constrained maximizing
point of I({),

I;({) = () =-,(0) (ij=1,...,k),

AP STV D Y1 (37109
5i(6)=¢,+(6-6%) L 4 (I=1,...,k), (4)
R Y. 2, I(DeDg (D

where the summations are over j=1,...,k and i=1,..., k An approximation to the

solution T of the corresponding saddlepomt equations follows on observing, by Taylor
expansion of K,(T) that

5(6)=KAT\(6),..., T.(6)}

= K(0,...,0)+ i K. (0,...,0)T.(8)

m=1

A k -~ A~
=6+ Y K (0,...,0T.(8) U=1,..., k).

m=1

Consequently, an approximation to the saddlepoint T(6) is

T(6)=a)"((-D" (5)
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Computation of the components of A(f ) is simplified by the easily verified formula
Kim(0,...,0)=n"'Y Z}Z¥ —-Z}1Z*%.
j=1

Let
r=r(8) =sgn (8- 6M)(2[1() - HL(HN),
and assume r(.) is an increasing function. Then, the tail probability approximation is
pr(6**<6|2*)=d(r). (6)

ThlS approx1mat10n arises from a standard normal approximation to the distribution of
=r(8**) given &*.

Typlcally, the order of error associated with approximation (6) is O(n™Y). The full
saddlepoint approximation to pr(6**< §|%*) generally has smaller error, of order
O(n™*?). Another approximation, suggested by (6), and which captures the O(n~ }) term
of the error in (6), involves a correction of R = r(0"‘"‘) for 1ts mean. To develop that
approximation, we estimate the constrained maximizing point { of I({) by the quantity

2o _po o (D)

1(8)=¢+7(0 I=1,...,k), 7

0= b r(d) sy By ) (7)
in place of (4), where the summations are over j=1,...,k and i=1,..., k, and where

7 is chosen so that g{{'(6)} = 6. The rationale behmd such a choice of approximation
for { is that it strictly obeys the constraint g({ ) = 6, while the approximate value given
by (4) may not. In practice, a simple iterative Newton-Raphson procedure may be used
to find 7. The saddlepoint T* is defined as in (5). Let

r'=r'(6)=sgn (6- 621~ HI (O
Then, an alternative approximation to (6) is
pr(6** < 8|2*)=(r' -~ m), (8)

where m is the mean of R'= r'(é""") given ¥*. Approximation (8) typically has error of
order O(n™'). The mean of R’ follows from lengthy and involved algebra leading to the
expression

k

k k kK k "
m=5Y B(D)é+it Y Z 1'(¢) Z (DE-12 Y ¥ ¥ Li(Dééé

i=1 im1 jm1 I= fml jum1 I=1
k

k k “ " k "
+3572 Y Y 1Y(Dg (D) -3 Y Y gy()éd,

i=1 ju=1 i=1 j=1

where
kK k . . . O . .
=;Z:| jgl IU({)gl(f)gj({), ¢ =j§1 IU(;)gj({)/ﬁa
ab({) 1)
oL’ 84i940¢,°

Although it appears rather forbidding, computation of m is relatively straightforward in
that most of the quantities required in its calculation are used in constructing the simpler
approximation (6), and the remaining quantities are easily computed numerically.

bi(£)

B(d)=—"4 50’ b)) =1A, b)) =72, ()= (i,j1=1,...,k).
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Numerical investigations reveal that (8) is a reliable and accurate approximation.
However, simulations reinforce the point that the simpler approximation (6) seems
adequate in the double bootstrap context in that use of (8) in constructing approximate
iterated bootstrap confidence intervals does not gain any significant improvement in
coverage accuracy over use of (6). Moreover, use of (8) does have obvious and consider-
able computational disadvantages compared with use of (6). Our timing comparisons
indicate that iterated bootstrap intervals constructed using (8) take two to three times
longer to compute than those constructed using (6). Nevertheless, we have found that
intervals constructed using (8) can be computed up to four times faster than those
constructed using our original saddlepoint method, and hence still many more times
faster than those computed using the usual nested levels of resampling approach.

A formal algorithm for the construction of our approximate iterated bootstrap
confidence intervals involves first drawing B resamples &7, ..., ¥} from . Then, for
each of the resamples X3 (b=1, ..., B) use either approx1matlon (6) or approximation
(8) to estimate pr(0"< 0| %%). Choose several nominal levels y,, v,,...close to the
desired level a, and determine whether the condition

H1-y)<pr(6**<6|&H)<i(1+y)

is satisfied for each y,. An estimate of #(y;) is simply the proportion among the B
resamples for which the foregoing condition holds for the respective vy,’s. The desired
nominal level §, is approximated by interpolation between the {,, 7#(v;)} pairs generated
in the previous step. In practice, use of as few as three values v,, v,, ¥, is usually sufficient.
Finally, the approximate iterated interval is the percentile-method interval of nominal
level 8, based on the resamples &7, . . 2"* The usual resampling algorithm differs from
the algorithm just described in that pr(0**< OIQ’*) is estimated through the use of a
nested set of B, resamples drawn from ¥F (b=1,..., B).

A useful byproduct of the development of our methodology is its potential use in
fine-tuning certain aspects of our full saddlepoint technique. For instance, the approximate
values of { and T resulting from (4) and (5), or, alternatively, from (7) and (5), can be
used as starting values in our full saddlepoint algorithm to find the true values of { and
T. Such a choice of starting values significantly reduces the proportion of resamples ¥*
from & for which simulation is necessary.

3. EXAMPLES
3-1. Example 1: Ratio of means
Data Z ={(X,, Y,),...,(X,, Y,)}is assumed to have come from an unknown bivariate
distribution. The parameter of mterest isf= E ( Y)/ E (X ), and 6= Y/ X. Define resamples
&* and ¥**, and correspondmg versions of 6, 6* and §**, in the usual way. The cumulant
generating function of X#* and Y}* given * is

K(T, T2)=log{n‘l Y exp (T, X*+ TZY’,")}.
im]

The derivatives of K and g required to implement approximations (6) and (8) are readily
computed either analytically or numerically.

The first example involves a bioequivalence study designed to assess whether two
hormone medications have different effects on the blood level of a certain hormone. The
data, consisting of 8 (X, Y) pairs, are given by Efron (1992). Table 1 reports the endpoints
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Table 1. Confidence intervals for ratio of means for the bioequivalence data

Relative time

Type of interval Interval DEC/Minpack  HP/Nag
Percentile (—0-209, 0-123)

Iterated bootstrap using (6) (—0-239, 0-193) 1-0 1-0
Iterated bootstrap using (8) (-0-237, 0-187) 3-14 4-02
Iterated bootstrap (DMY) (2%) (-0-235, 0-183) 13-65 28-32
Iterated bootstrap (simulated) (—0-237, 0-177) 65-85 42571

DMY, intervals constructed using our full saddlepoint technique. Reported times
are relative to the fastest iterated bootstrap method. Percentage reported with pmMy
interval indicates proportion of resamples for which it was necessary to use simu-
lation.

of 5 confidence intervals for 8 = E(Y )/ E(X ): a percentile-method interval; an approxi-
mate iterated bootstrap interval using approximation (6) to replace inner-level resampling;
an approximate iterated bootstrap interval using (8) instead of inner-level resampling;
our previous approximate iterated bootstrap interval based on saddlepoint approximation
(3); and a standard iterated bootstrap interval employing nested levels of resampling.
For each interval, 5000 resamples were used at the outer level and, where relevant, 5000
resamples were also used at the inner level. The intervals produced by each of the iterated
bootstrap methods agree closely, although the interval constructed using approximation
(6) was slightly longer than the standard iterated bootstrap interval. Most encouraging
was the fact that these positive results were obtained in a very small sample, consisting
of only 8 data points.

Calculations were carried out on both a DEcstation 3100 workstation, DEC, and a
Hewlett-Packard 9000/375 workstation, HP, and were programmed using FORTRAN. The
constrained maximization problem whose solution is required by our original saddlepoint
technique was solved using routines from two standard numerical packages: Minpack’s
hybrid routine and NAG’s CosNCF routine. Table 1 reports relative computation times for
each of the iterated bootstrap methods for each of the workstations used. In terms of
actual user time, it took approximately 2 minutes to obtain the iterated interval using
(6) on the DEcstation 3100, and about 2-5 minutes on the HP workstation. The iterated
bootstrap methods involving approximations (6) and (8) performed extremely well,
resulting in considerable savings over our full saddlepoint technique and massive savings
over usual resampling algorithms. The economy of our methods was most noticeable for
computations carried out on the HP workstation, the slower of the two workstations we
used.

In order to assess the coverage properties of the various intervals, we undertook a
simulation study. Intervals for the ratio 8 were constructed using samples of size 10 from
folded normal distributions having equal means. In that case, 6 =1, X,=|Z|, Y;=|W||,
Z, W,~N(0,1) (i=1,...,10). The nominal coverage of all intervals was 90%, and
estimated coverages were each based on 1600 simulations so that the standard error of
coverage estimates was 0-01. Bootstrap intervals were computed using 1000 resamples
at the outer level of resampling.

Table 2 contains the results of our study, reporting for each type of interval the estimated
coverage, average length, standard error of length, and average upper endpoint. Results
concerning approximate iterated intervals constructed using (6) and (8) are reported,
and we also provide for comparison results obtained from a previous study of 2000
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Table 2. Comparison of estimated coverage probabilities of bootstrap
and approximate iterated bootstrap confidence intervals using (6) and
(8) for ratio of means for data from folded normal distributions

Approx. (6) Approx. (8) DMY

Perc. Iter. Perc. Iter. Perc. Iter.
Coverage 0-85 0-90 0-84 0-89 0-84 0.89
Ave. length 1-22 1-58 1:23 1-58 1-21 1-52
St. dev. length 0-60 0-99 0-62 1-:09 0-58 0-89
Ave. upper 1-84 2-13 1-85 2-14 1-84 2-09

DMY, intervals constructed using our full saddlepoint technique.

intervals derived from our full saddlepoint method. Overall, the coverage accuracy of
the intervals constructed using approximations (6) and (8) is very good; it is consistently
and comprehensively better than that of the corresponding percentile-method intervals.
Moreover, results for intervals constructed using (6) and (8) agree closely with those
obtained using the full saddlepoint technique. Our study suggests that there is little reason
to prefer intervals constructed using approximation (8) over those constructed using the
much-simpler approximation (6) in terms of the characteristics compared. Despite its
simplicity, use of approximation (6) yields remarkably accurate confidence intervals in
small samples with surprisingly little computational cost.

The results of a more extensive simulation study, involving different values of the true
ratio and different underlying distributions, are similar to those reported in Table 2, and
are available in an unpublished technical report. As expected, in simulations involving
larger sample sizes the approximate methods improve markedly.

3-2. Example 2: Correlation coefficient

Hall, Martin & Schucany (1989) advocated the iterated bootstrap as a reliable tool for
constructing confidence intervals for the correlation coefficient p that have accurate
coverage probabilities. In this context, percentile method intervals typically have very
poor coverage accuracy. Furthermore, percentile-¢ intervals for the correlation coefficient,
although they generally offer high coverage accuracy, can be very long, the endpoints
often escaping [—1, 1], because of the lack of a suitable variance estimate for the sample
correlation coefficient p. Unfortunately, standard iterated bootstrap algorithms are very
costly in as complicated a situation as this. Moreover, we have noted problems in
implementing our full saddlepoint technique in this case, especially when the sample
size is small, because of difficulties arising in solving the associated constrained maximiz-
ation problem. On the other hand, the techniques introduced in the present paper are
just as easy to apply in this problem as in the simpler ratio-of-means example.

The data consist of a sample ={(X,, Y,),...,(X,, Y,)} from an unknown bivariate
population. The parameter of interest is

p=g(n) = (s — )/ {(ps = 1) (s — ud)},
where
p=(p,- .., us)={E(X), E(Y), E(X?), E(Y?), E(XY)}.
The estimator of p is the usual sample correlation coefficient g = g(Z), where
Z=(X, Y, n'Y X:,n'Y Y, 7' Y X\Y).
In an obvious notation, the cumulant generating function of X%*, YI*, (X¥*)? (Y}*)?
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and XH* Y} * given a resample Z* is
K(T,,..., Ts)=log [n_' Y exp{T\ X¥*+ T, Y+ T,(X})+ T(Y¥)+ T, X} Y’,"}].
im]

Derivatives of K and g are easily calculated either analytically or numerically.

We consider data concerning resistance to breathing in children suffering from cystic
fibrosis. The data consist of pairs of measurements on X, the total respiratory resistances,
and Y, the heights, of a group of n =24 children with cystic fibrosis. The data are given
by Rice (1988, p. 507). The sample correlation coefficient p is —0-271. Using this data
set we constructed several nominal 90% confidence intervals for p: a normal theory
interval based on Fisher’s arctanh transformation; a standard normal theory interval
based on the asymptotic normal distribution of j; a percentile-method interval; approxi-
mate iterated bootstrap intervals constructed using approximations (6) and (8); the
previous approximate iterated bootstrap interval based on saddlepoint approximation
(3); a standard iterated bootstrap interval employing nested levels of resampling; and a
percentile-1 interval using the delta method estimate of the variance of p to Studentize.
The results are reported in Table 3. Note the extremely poor performance of the percentile-
t method; the interval extends well beyond the possible range of p values. The approximate
iterated bootstrap intervals all agree very closely with the simulated iterated bootstrap
interval.

Table 3. Confidence intervals for the correlation coefficient for cystic
fibrosis respiratory data, n =24

Relative time

Type of interval Interval DEC/Minpack  HP/Nag
Normal theory using Fisher’s tanh™" (—0-56, 0-08)

Standard normal theory (—0-58, 0-04)

Percentile (—-0-61, 0-12)

Iterated bootstrap using (6) (—0-64, 0-16) 1-:0 10
Iterated bootstrap using (8) (=057, 0-16) 1-62 1-68
Iterated bootstrap (DMY) (2%) (—0-63, 0-16) 10-04 7-61
Iterated bootstrap (simulated) (—0-64, 0-18) 22-21 108-74
Percentile-¢ (—4-25, —0-08)

DMY, intervals constructed using our full saddlepoint technique. Reported times
are relative to the fastest iterated bootstrap method. Percentage reported with DMY
interval indicates proportion of resamples for which it was necessary to use simu-
lation.

Our results are extremely encouraging in terms of computational savings. Calculations
carried out on the DECstation 3100 workstation indicated that our approximate iterated
bootstrap method involving use of the simple approximation (6) is about 10 times faster
than our full saddlepoint technique and about 20 to 30 times faster than direct simulation.
The same calculations carried out on the Hewlett-Packard workstation yielded even more
spectacular results. There, our method was faster than brute-force resampling by a factor
of over 100. Detailed relative timings are presented in Table 3.

Finally, we conducted a simulation study to assess the coverage accuracy of approximate
iterated bootstrap confidence intervals constructed using approximation (6) to replace
inner-level resampling. A simulation study of iterated intervals constructed using approxi-
mation (8) at the inner level was also carried out, but the results of that study are not
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presented here as they were very similar to the results of the study that used approximation
(6) at the inner level. We considered data sets of sizes 15, 20, 30 and 50 drawn from six
bivariate (X, Y) populations: (i) X =]Z|, Y =|W|, Z, W independent N(0, 1) variates,
p=0; (ii) X =|Z|+|V|, Y=|W]|+|V|, Z, W, V independent N(0, 1) variates, p =0-5;
(iii)) X and Y independent N(0, 1) variates; (iv) X and Y correlated N(0, 1) variates,
p=0-5; (v) X and Y independent log normal variates; and (vi) X =exp(Z+ V), Y=
exp(W+ V), Z W, V independent normal variates, so that X, Y are correlated log
normal variates, p =0-37754. The results of our study are given in Table 4. Nominal
coverage of all intervals was 90%. Each of the coverage estimates given in Table 4 is
based on 1600 simulations so that the standard error of coverage estimates is 0-01. All
intervals were computed using 1000 bootstrap resamples.

Table 4. Comparison of estimated coverage probabilities of bootstrap and approximate
iterated bootstrap confidence intervals for the correlation coefficient constructed using
approximation (6)

Folded normal data Normal data Log normal data
p=0 p=0-5 p=0 p=0'5 p=0 p=0-37754
Perc. Iter. Perc. Iter. Perc. Iter. Perc. Iter. Perc. Iter. Perc. Iter.

15 0-86 0-92 0-87 095 0-86 0-93 0-85 093 0-84 091 0-85 0-96
20 0-87 091 0-86 092 0-85 0-90 0-87 0-93 0-86 0-91 0-85 0-94
30 0-87 0-90 0-86 0-90 0-87 0-91 0-88 0-92 0-85 0-89 0-86 0-94
50 0-87 091 0-88 0-91 0-89 0-91 0-88 0-91 0-84 0-88 0-86 0-93

The simulations indicate that our method works extremely well for moderate sample
sizes, say 30 to 50. Our approximate intervals consistently over-covered for sample sizes
n=15 and n=20 for each parent population. The message is clear. moderate-sized
samples are required in complex problems for our methods to perform well. Nonetheless,
it is encouraging that for small samples our method yielded conservative intervals. In
the case of heavier-tailed log normal data, our results were equivocal. When the data
were independent log normal, our method worked very well for sample sizes 30 and 50,
but over-covered for smaller samples. However, for dependent log normal data, over-
coverage persisted even for moderate samples, the method performing satisfactorily only
when n was as large as 500.
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