
Biometrika (1993), 80, 4, pp. 781-90
Printed in Great Britain

Analytical approximations to conditional distribution functions

BY THOMAS J. DiCICCIO, MICHAEL A. MARTIN
Department of Statistics, Sequoia Hall, Stanford University, Stanford,

California 94305-4065, U.S.A.

AND G. ALASTAIR YOUNG
Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB,

England

SUMMARY

Conditional inference plays a central role in statistics, but determination of relevant
conditional distributions is often difficult. We develop analytical procedures that are accu-
rate and easy to apply for approximating conditional distribution functions. For a continu-
ous random vector X = (X1,..., Xp), we estimate the conditional distribution function of
71 given Y2,..., Yk(k^ p), where each Y' is a smooth function of X Previous approaches
have dealt with the cases where the variable whose conditional distribution is sought is a
linear function of means, and where there are p — 1 conditioning variables. However,
sometimes the statistic of interest is a nonlinear function of means and it is advantageous
to condition on a lower-dimensional ancillary statistic. Our procedure first involves
approximating the marginal density function for Y1,..., Yk, by an approach of Phillips
(1983) and Tierney, Kass & Kadane (1989). An accurate approximation to the required
conditional probability is then obtained by applying a marginal tail probability approxi-
mation of DiCiccio & Martin (1991) to the conditional density of Y1 given Y2,..., Yk.
Our method is illustrated in several examples, including one which uses a saddlepoint
approximation for the density of X, and the method is applied for conditional bootstrap
inference.

Some key words: Ancillary statistic; Conditional bootstrap; Laplace's method; Marginal density; Saddlepoint
approximation; Tail probability approximation.

1. INTRODUCTION

Conditional distributions play a key role in many inference problems, largely through
the use of the conditionality principle and ancillarity. Unfortunately, it is often difficult
or impossible to compute exact conditional distributions, and standard approximation
methods often fail to work or are difficult to adapt to the situation at hand. For example,
Edgeworth expansions can yield negative probability estimates in the tails of a distribution.

Several authors have discussed the use of saddlepoint methods to approximate con-
ditional distributions. Skovgaard (1987) investigated the case of a bivariate mean to
develop approximations to the conditional distribution of one mean given the other. He
extended his method to the case of p means, approximating the conditional distribution
of a linear function of the means given a (p — l)-dimensional linear function of them.
S. Wang, in the unpublished technical report 'Saddlepoint approximations in conditional
inference', extended Skovgaard's results to include the case of approximating the con-
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ditional distribution of a mean given p — 1 nonlinear functions of the means. The tech-
niques of Skovgaard and Wang share several elements that limit their applicability. First,
because they are based solely on saddlepoint approximations, the methods require knowl-
edge of the cumulant generating function of the random vector of interest. Secondly, their
technique restricts the variable whose conditional distribution is sought to be a linear
function of means, or at least to be a function of means identified with a linear estimating
equation. This restriction can be severe in practice. Finally, their methods require the
number of conditioning variables to be exactly p — 1. However, many times, an ancillary
of lower dimension than p — 1 exists, and conditional inference given that ancillary is
desired.

In this paper, we develop an analytical approximation to conditional tail probabilities
for a smooth function of a random vector X = (X1,..., Xp) given k — 1 other smooth
functions of X, where k ^ p. The vector X is not restricted to a vector of means, although
that is the case that is usually of most interest. Consequently, we are not restricted to
using a saddlepoint approximation for the density of X. Also, the variable whose con-
ditional distribution is sought may be a smooth, nonlinear function of X, giving our
method considerable generality. Moreover, our method allows the dimension of the con-
ditioning variable to be smaller than p — 1, so that a lower-dimensional ancillary statistic
may be conditioned on if it exists. Our technique produces accurate approximate con-
ditional tail probabilities, and is based on applying DiCiccio & Martin's (1991) tail prob-
ability approximation to a marginal density approximation proposed by Phillips (1983)
and Tierney, Kass & Kadane (1989). A theoretical contribution of the paper is to show
that the marginal density approximations of Phillips (1983) and Tierney et al. (1989) are
equivalent.

We describe our technique in § 2. Two examples are given in § 3: the first, a simple
illustrative example; and the second, an application to the conditional bootstrap.

2. CONDITIONAL TAIL PROBABILITY APPROXIMATION

Consider a continuous random vector X = (X1,..., Xp) having probability density
fx{x) = cb(x) exp {/(x)}, x = (x1 , . . . , xp). Let x = (x1 , . . . , xp) be the point maximizing l(x)
and suppose that X — x is Op(n~*) as rc-*oo, where n is sample size. For each fixed x,
assume that /(x) and its derivatives are O(n). Interest centres on approximating conditional
tail probabilities

where a2,... ,ak are fixed constants and Y' = g'iX1,..., Xp) (i = 1 , . . . , k) for functions
g1,..., g* which we assume have continuous gradients that are nonzero in an n~*-neigh-
bourhood of St.

In order to study the conditional distribution of Y1 given Y2,..., Yk, we first consider
an approximation to the marginal density of Y1,..., Yk. Two approaches to estimating
this marginal density are given by Phillips (1983) and Tierney et al. (1989). Both
approaches utilize Laplace's method of approximating integrals to avoid the need for
high-dimensional integration, and it is shown here that they yield the same marginal
density approximation. We will use elements of both approaches to describe our method,
so we now briefly describe each approach.

Phillips (1983) assumes a 1-1 transformation

Y={Y\...,Yp)={g1{X\...,Xp),...,gp{X\...,Xp)}
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of X, where the variables of interest are Y1,..., Yk, and the functions gk+1,..., g" are
smooth and have nonzero gradients in an n~*-neighbourhood of x. Denote the Hessian
of this transformation by J{x(y)}. Then the probability density function of Y is

fY(y) = cb(y) exp {/(y)}, y = ( / , . . . , y"),

where b(y) = b{x(y)}/\ J{x(y)} | and /(y) = l{x(y)}. Let y be the value of y maximizing 7(y),
and let y = y(y*,..., y*) be the value of y maximizing l(y) subject to the first k components
of y being held fixed at the values y1,..., y*. Let

liJ(y) = d2l(y)/dyidy (i,j=l,...,p).

Then, Phillips' (1983) approximation to the marginal density of Y1,..., Yk is

where Q(y) is the pxp matrix whose (i,j)th element is — /i7(y), and fi'(y) is the
(p — k)x(p — k) submatrix of Q(y) corresponding to {(i, j):i,j = k+l,...,p}. Phillips'
method assumes a p-dimensional transformation Y of the original variable X, even though
only k < p of the Y's are of interest. This assumption suggests that use of approximation
(1) requires the explicit specification of p — k 'nuisance' functions gk+1,..., gp o( X, the
choice of which could affect the accuracy of (1). Conventional approaches have dealt with
this problem by assuming each of the 'nuisance' functions is an appropriate coordinate
function, simplifying derivative calculations. A new result arising from our work is that
gk+1,... ,gp play no role in the computation of (1), and hence need not be specified at all.

Tierney et al. (1989) also provided a formula for the approximate marginal density of
Y1,..., Yk but their derivation did not involve the 'nuisance' functions gk + 1,...,g"
assumed by Phillips. To describe their formula, we first need additional notation. Let
x be the value of x maximizing l(x) subject to the constraints g1(x1,..., xp) =
y 1 , . . . , ^ ( x 1 , . . . ,xp) = yk, and let H(x) be the Lagrangian for this constrained maximiz-
ation, H(x) = l(x) + Xa{g"(x) — ya), where Aa = -la(y\ . . . , y*) (a = 1 , . . . , k) and the conven-
tion applies whereby summation is assumed over indices appearing as both subscript and
superscript. Let

/,(x) = dl{x)/dx\ lij(x) = d2l{x)ldxldxj, Hu(x) = d2H{x)/dxidxi,

tf(x) = dg*{x)ldx\

denote the partial derivatives of /, H and g", respectively. Define the p x p matrices A(x) =
{ — liJ(x)}, the inverse of the matrix whose (i, j)th element is — /y(x), and A(x) = {— HiJ(x)},
the inverse of the matrix where (ij)th element is —H^x) (i,j = l,...,p), and the k x k
matrix 0(x) whose (a, yS)th element is -HiJ{x)gf(x)gj(x) (a, ft = 1 , . . . , k). Then, Tierney,
Kass & Kadane's approximation to the marginal density of Y1,..., Yk is

gj exp m _ m. (2)
det {©(x)} J o(x)

PROPOSITION 1. Approximations (1) and (2) to the marginal density of Yl,..., Yk are
equivalent.

Proposition 1 is proved in an unpublished technical report by the authors. In particular,
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it is shown there that the following two relations hold:

I" det (Q(j))} 1* b(y) _ I" det {A(x)} J b(x)

Ldet{Q'(y)}J b(y) |_det (A(*)} d e t (©(*)} J b(x)' ( '

(4)

In order to approximate conditional distribution functions, we first note that

fy*\r* Ay'\ Y2 = a2,..., Yk = o*)oc/r. Ay\ a2,..., a%

so that

*(/)}, (5)

for suitably defined functions /* and b*. We apply DiCiccio & Martin's (1991)
tail probability formula to obtain approximations to conditional tail probabilities
pr (71 < a11Y2 = a2,..., Yk = ak). Fix the values of y2,..., / in the preceding discussion
at their conditioned values a2,..., ak, respectively. Then y = ̂ (y1, a2,..., ak) is a function
of y1 alone, and is the value of y maximizing l(y) subject to the first k components of y
being fixed at the values y1, a2,..., ak, respectively. Analogously, x = xiy1, a2,..., ak) is a
function of y1, and is the value of x maximizing l(x) subject to the constraints g1(x) =
y\^(x) = a2,...,g*(x) = ak. Then fc*(y1) in (5) is given by

b(y)

det [A{x(j / \ a2,..., a*)}] V b{x(y\ a2,..., ak)}

,det{A(x)}det[0{x(/,a2 , . . . ,ak)}]; b(x)

and l*{yl) is given by

/ * ( / ) = l{y(y\ a2,..., ak)} - l(y) - l{x(y\ a2,..., ak)} -1(2);

see (3) and (4), respectively. DiCiccio & Martin's (1991) tail probability approximation

for densities of the form (5) is

7
where y1 maximizes /*(j1),

1, l*™^1) = d2l*(yl)/d{y1)2 denote the first two derivatives of /* ( / ) ,
and 0 and cj> denote standard normal distribution and density functions, respectively.
Expression of the various components of approximation (7) in terms of the original func-
tions b and / is given in an Appendix. A simpler approximation to the required conditional
probability is to use just the leading term of (7); that is,

pr(y1 <a1 \Y2 = a2,..., Yk = ak)^®(r). (8)

This alternative approximation is much easier to compute than the full approximation
(7), but it is also significantly less accurate in our experience. Typically, the error in
approximation (7) is of order O(n~3'2), while the error in (8) is of order O(n~*).
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A crucial feature of our approximation is that it avoids costly numerical integration.
An obvious alternative approach to our methodology is numerical integration of a renor-
malized version of the conditional density approximation that arises in developing our
technique. The primary obstacle to implementing this approach is that renormalization
requires the computation of a second numerical integral. However, both numerical inte-
gration steps are often infeasible in practice because each density function evaluation
requires a potentially costly constrained maximization step. In contrast, application of
our method requires at most four function evaluations.

An important special case of approximation (7) occurs when k = p, that is when the
number of conditioning variables is p — 1. This is the only case for which the techniques
of Skovgaard (1987) and of S. Wang, in the technical report mentioned in § 1, apply. Here,
the marginalization step to approximate the marginal density of Y1,..., Yk is unnecessary
and the function /and its derivatives are easily specified. Therefore, the conditional density

far* yP(y1\Y2 = a2,...,Y" = a")

is proportional to b{yl, a2,..., ap) exp {l(yl, a2,..., a?)}, and approximation (7) assumes
the simple form

pr(Y1^a1 \Y2 = a2,..., Y^a')

. { - U ? 1 , «2, • • - ,«")}* b(a\...,a>)
+

where r = sgn (a1 - y1)[2{/(};1, a2,..., a") - / (a1 , . . . , ap)}]* and f maximizes l(y) subject
to y2,..., yp being held fixed at their conditioned values, a2,..., ap, respectively.

3. EXAMPLES

3-1. Circular normal distribution
Consider a random sample (Xlt Yi)',..., (Xn, Yn)' from a bivariate normal distribution

with mean vector (9 cos A, 9 sin A)' and identity variance matrix. Define the statistics R =
gl(X, Y) = (X2 + F2)± and W = g2(X, Y) = arctan (Y/X), which estimate 6 and X, respect-
ively. Suppose the conditional distribution oiR given W= Xo is of interest. In this instance,
neither Wang's nor Skovgaard's methods can be applied since g1 is nonlinear. The joint
density of (X, T) is fXtY{x, y) = b(x, y) exp {l{x, y)}, where

b(x, y) = n/(2n), l(x, y) = - *n{(x - 6 cos A)2 + (y-d sin A)2},

from which the joint density of R and W is easily found to be f^wi^w) =

b(r, w)exp {l(r, w)}, where

b(r, w) = nr/(2n), l(r, w)= —$n{(r cos w — 9 cos A)2 + (r sin w — 9 sin A)2}.

A little algebra yields that approximation (9) to the conditional distribution of R given
W=Aois

pr (R ̂ a\ W= A0)^O[n*{a- 9cos (A- A<j)}]. (10)

Approximation (10) is particularly simple here since the second term on the right-hand
side of (9) vanishes.

In this example the exact conditional tail probability may be calculated analytically.
Direct integration shows
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= exp ( - [exp ( - l-exp{-in(x-0c)2}]/(27r)

with c = cos (X — Xo) and s = sin (X — Xo).
We carried out a small numerical study to assess the accuracy of our approximation.

For this example, we let the true values of 9 and X be 25 and n/6, respectively. We
constructed approximations to pr (R ̂  a\ W= Xo) for various values of n and Xo = \, com-
paring (10) with an exact tail probability, computed from the formula above. The results
are presented in Table 1. Approximation (10) performs very well throughout.

Table 1. Approximations to conditional probabilities pr (K<a| W= Xo)
for Example 31

Exact (10) Exact (10)

For this example, 6 = 25, X = n/6 and AQ = i-

Exact (10)

23-9
240
24-3
24-4
24-5
24-6
24-7
250
25-4
25-6
25-7
25-9
261
26-2

00072
00131
00600
00912
01330
01864
0-2515
0-4991
0-8155
0-9115
0-9425
0-9786
0-9933
0-9965

00073
00132
00606
00924
01351
01897
0-2562
0-5062
0-8186
0-9126
0-9430
0-9787
0-9933
0-9965

24-2
24-3
24-5
24-6
24-7
24-9
250
251
25-3
25-4
25-5
25-6
25-8
25-9

00061
00142
00590
01059
01749
0-3797
0-5037
0-6279
0-8322
0-9000
0-9452
0-9724
0-9946
0-9979

00061
00142
00595
01070
01770
0-3843
0-5088
0-6324
0-8342
0-9009
0-9455
0-9725
0-9946
0-9979

24-4
24-5
24-6
24-7
24-8
24-9
250
25-1
25-2
25-3
25-5
25-6
25-7
25-8

00040
00137
00392
00944
01923
0-3357
0-5089
0-6810
0-8211
0-9145
0-9883
0-9967
0-9992
0-9998

00040
00137
00394
00950
01940
0-3387
0-5124
0-6838
0-8227
0-9151
0-9883
0-9969
0-9992
0-9998

3-2. Saddlepoint approximations and an application to the conditional bootstrap
Skovgaard (1987) and S. Wang, in his technical report mentioned in § 1, consider the

special case where X is a vector of means and the density fx(x) is approximated by a
saddlepoint approximation. In this instance, it is necessary to know the cumulant generat-
ing function of X so that the saddlepoint approximation to fx{x) can be formed. Our
methodology can then easily be applied in this setting by appropriate choice of the func-
tions b and /. To describe the saddlepoint approximation, consider n observations of a
p-dimensional random vector W= (Wu . . . , Wp). Denote the cumulant generating function
of W by K{Ti,..., Tp). Then the saddlepoint approximation to the joint density of X =
(WY,..., Wp) is proportional to

A(x1,...)x")oc|A(x1,...,x")r*expUx(f1,...,7;)- f fjxjl, (11)
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where the saddlepoint (7i , . . . , tp) satisfies

T , \ h > - • • > I p ) = x [ } = A , . - , P ) ,

KT. = dK{Tu ..., Tp)/dTit and A = {KT.T.{TU ..., %)} is the k x k matrix of second-order
partial derivatives

Kj.fX^,. . . , lp) = (r&(J1 lpf/oliOlj (l, J — 1, . . . , p)

evaluated at Tx,..., tp. General reviews of saddlepoint methods are given by Barndorff-
Nielsen & Cox (1979) and Reid (1988).

Approximation (7) can be used to approximate conditional tail probabilities

pr(Y1^al\Y2 = a2,...,Yk = ak),

where Yl =g1(X),..., Yk=gk(X) are smooth functions of the means, by noting that (11)
is in the form (1) with

b{x\...,xp) = \A{x\...,xp)\-*, l(xl,...,xp) = nU(T1,...,Tp)- £ ^A.

Wang's method is only valid when the function g1 is linear. Tierney et al. (1989) give an
approximate marginal density formula for Y1,..., Yk, from which application of (7)
is straightforward.

We are particularly interested in applying (7) to estimate tail probabilities for the con-
ditional bootstrap. Monte Carlo simulation to estimate conditional bootstrap distribution
functions is extremely tedious, requiring careful stratification of bootstrap resamples
(Hinkley & Schechtman, 1987; Davison & Hinkley, 1988). In particular, a difficulty arises
in deciding how close resamples need to come to the conditioning criteria to be retained
in the simulation. Moreover, the more stringently the conditioning criteria are adhered
to, the fewer the resamples that can be retained in estimating the probability. Consequently,
the total number of resamples that needs to be drawn to ultimately obtain satisfactory
estimates can become overwhelmingly large. Recent methods based on saddlepoint
approximations have been proposed to approximate bootstrap distribution functions with-
out the need for any resampling (Davison & Hinkley, 1988; Daniels & Young, 1991;
DiCiccio, Martin & Young, 1993). These kinds of approaches are particularly beneficial
in a conditional bootstrap framework because they avoid the stratification problem
completely.

Davison & Hinkley (1988) consider conditional bootstrap inference for the ratio 6 =
E(V)/E(U), where (Ut, T̂ ) (i = 1 , . . . , n) are pairs with common distribution function F.
They suggest a suitable model for studying the conditional distribution of T = V/U given
Uu ..., Un is Vj, = Bui + «?£;, where e( are independent errors with zero mean and variance
a2. For simplicity, let a = 1. Then var(V\u l , . . . ,un) = o2c, where c = (X"?)/(ZU')2- The
aim is to approximate the conditional bootstrap distribution of T* = V*/U* given the
bootstrap ancillary A* = (£ £/*2)/Q] U*)2, where (U*, Vf) (i = 1,...,«) is a resample from
([/,-, Vi) (i = 1, . . . , n). Davison & Hinkley approximate

pr (V*/U* ^ t\Af = alt A~\ = a2) = pr (P* - tV* < 0 | l f = alt A\ = a2),

where A\ = n~l £ Uf and A^ = n~lYj Uf2, by applying Skovgaard's (1987) method. They
condition on both A\* and A* reasoning that, since for their data A* is highly correlated
with A* and A*, 'redundancy of a conditioning variable is harmless'. Note that their
method requires two conditioning variables, since X = (U*, V*, U2*). However, approxi-
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mation (7) allows us to approximate conditional tail probabilities pr (V*/U* ^ t\A* = a)
with only one conditioning variable.

Table 2 reports conditional tail probability approximations for V*/U* for the data set
of size 25 reported by Davison & Hinkley (1988, Table 3). We repeated Davison &
Hinkley's experiment with two conditioning variables A* and A* using approximation
(9), and we have also calculated approximations to pr (V*/U* ^ t\A* = a) using (7) which
could not be obtained using their method. In the latter case, we consider the conditional
distribution of 71 =g\X\ X2, X3) = X2/Xl given Y2 = gz(X\ X2,X3) = n-

1X3/{X1)2.
The functions K and g1 and their derivatives are easily calculated and the constrained
maximization steps can be carried out using commonly available numerical subroutines
such as Minpack's HYBRD and NAG's COSNCF. In order to obtain the 'exact' probabilities
for the first example, resamples from the simulation experiments were stratified by requir-
ing each bootstrap ancillary to be no more than one quarter of its standard deviation
from its observed data value. This requirement resulted in only about 10% of the bootstrap
resamples drawn being used in estimating the exact probability. For the second example,
resamples for which the bootstrap ancillary was no more than one-tenth of its standard
deviation from its observed data value were retained, again resulting in a 10% retention
rate. The results reported in Table 2 are very encouraging. In particular, in the latter case

Table 2. Approximations to conditional probabilities
_pr (V*/U* ^ t\Af = 147-9, A\ = 43120) and

pr (V*/U* m\A*= 007885) for n = 25 pairs of Example 3-2

t

7-8
7-9
80
81
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

9 0
91
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9

100
101

Two conditioning variables
Exact Approximation (9)

00001
0-0002
00008
00020
00050
00115
0-0247
00488
0-0888
01497
0-2352
0-3432

0-4664
0-5948
0-7151
0-8157
0-8920
0-9429
0-9727
0-9883
0-9955
0-9984
0-9995
0-9999

00001
00002
00007
00020
00051
00117
00249
00489
00892
01506
0-2363
0-3452

0-4709
0-6108
0-7243
0-8266
0-9021
0-9511
0-9786
0-9918
0-9973
0-9992
0-9998
10000

One conditioning variable
Exact Approximation (7)

00003
00006
00013
00029
00061
00125
00243
00450
00794
01328
0-2107
0-3155

0-4433
0-5835
0-7185
0-8297
0-9089
0-9573
0-9828
0-9936
0-9980
0-9995
0-9999
10000

00004
00009
00020
00042
00083
00157
00289
00511
00868
0-1411
0-2187
0-3219

0-4456
0-5863
0-7188
0-8298
0-9092
0-9576
0-9827
0-9938
0-9981
0-9995
0-9999
1-0000

The conditioned values chosen are the values of Au A2 and A from the data.
'Exact' probabilities are based on 500 000 retained bootstrap resamples.
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when there is only one conditioning variable, approximation (7) performs very well, especi-
ally in the upper tail of the distribution.
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APPENDIX

Computation of approximation (7)
Here we outline the expression of the components of approximation (7) in terms of the original

functions b and /. Note that y1 maximizes l(y) subject to y2, • . . , y* being fixed at their conditioned
values a2,..., ak, and let x be the value of x maximizing l(x) subject to g2(x) = a2,..., g*(x) = ak.
Then y1 = gl{x) and x = x(y\ a2,..., ak). Hence,

r = sgn {a1 -g1(x)}(2[/(x) - l{x(a\ ..., a")}])*.

Next, observe from (6) that

* V ) = /det[A{x(fl1 , . . . , a*)}]det{O(x)}y b{x(a\ ..., a")}

b*{f) \&zt {A(x)} det [0{x(a \ . . . , a")}]) b(x)

which is readily computed using values of l{j and the Lagrange multipliers Aa(a1,..., ak)
(a = 1 , . . . , k) obtained in computing xia1,..., ak).

To compute /*<1)(y1), we use the definition of /*(y1) involving /. Then, it follows that

l*a\f) = h{y(/, a2,..., ak)}y\(y\ a2,..., ak),

where y\(yl,..., yk) = dy'/dy1 and i runs from 1 to p . However, yKy1, a2,..., ak) equals 1 for a =
1 and zero for a = 2,...,k. Moreover, TfiyXy1, a2,..., ak)} = 0 for i' = k+l,...,p since
y(y\ a2,..., ak) maximizes / subject to the first k components of y being held fixed at the values
y1, a2, • • •, ak, respectively. Hence,

1) = Jl{y(y\a2,...,ak)}.

The Lagrangian for maximizing l(y) subject to the first k components of y being held fixed is R(y) =
Ky) + Ky*, where a runs from 1 to k. The Lagrange multipliers Xa{yx, a2,..., ak) (a = 1 , . . . , k) are
the same as those for maximizing l(x) subject to gi(x) = y1, ^ (x) = a2,..., g*(x) = a". Then,

U/, a2,..., ak) = -W(y\ a2,..., ak)} (a = 1 , . . . , k).

In particular,

The second derivative /*<2)(y1) cannot be expressed in closed form in general. However, it is easy
to compute accurately through the use of numerical derivatives, or by methods such as those
proposed by Fraser, Reid & Wong (1991).
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