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SUMMARY

Objective Bayes methodology is considered for conditional frequentist inference about a canonical
parameter in a multi-parameter exponential family. A condition is derived under which posterior Bayes
quantiles match the conditional frequentist coverage to a higher-order approximation in terms of the sample
size. This condition is on the model, not on the prior, and it ensures that any first-order probability match-
ing prior in the unconditional sense automatically yields higher-order conditional probability matching.
Objective Bayes methods are compared to parametric bootstrap and analytic methods for higher-order
conditional frequentist inference.

Some key words: Bootstrap method; Conditional inference; Full exponential family; Nuisance parameter; Objective
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1. INTRODUCTION

In Bayesian parametric inference, it is natural to consider the use of an objective prior in the absence of
subjective prior information about the parameter of interest. This leads to posterior probability quantiles
that have the correct frequentist interpretation, at least to some higher-order approximation in terms of the
sample size. Such priors are termed probability matching priors. In the context of inference for a canonical
parameter in a multi-dimensional exponential family model, however, the appropriate frequentist inference
is a conditional one. In this paper, we consider a condition under which posterior quantiles have the correct
conditional frequentist interpretation to higher order. It turns out that the condition for higher-order
conditional frequentist accuracy reduces to a condition on the model, not on the prior: when the condition
is satisfied, any prior that is first-order probability matching in the unconditional sense automatically
yields higher-order conditional probability matching. A key motivation is that the conceptually simple
objective Bayes route may provide accurate approximation to more complicated frequentist procedures.
We provide numerical illustrations involving the inverse Gaussian and gamma distributions, and discuss
the relationship between the objective Bayes inference and both analytic and parametric bootstrap methods
for approximate conditional frequentist inference.

Let Y = (Y1, . . . , Yn) be a random sample from an underlying continuous distribution having density
f (y; θ ), indexed by a d-dimensional parameter θ , and let ψ = g(θ ) be a scalar parameter of interest.
Without loss, we may suppose that θ = (ψ, λ), where λ is a nuisance parameter.

Let �(θ ) = �(θ ; Y ) be the loglikelihood for θ , and denote by θ̂ = (ψ̂, λ̂) the overall maximum likelihood
estimator of θ . The likelihood ratio statistic is w(ψ) = 2{�(θ̂ ) − �(ψ, λ̂ψ )}, with λ̂ψ the constrained
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maximum likelihood estimator of λ for fixed value of ψ . We will be concerned with the signed square root
likelihood ratio statistic r (ψ) = sgn(ψ̂ − ψ)w(ψ)1/2.

In the absence of subjective prior information about θ , it is natural to use a prior that leads to posterior
probability limits for ψ that are also frequentist confidence limits, in the sense that

prθ
{
ψ � ψ (1−α)(π, Y )

} = 1 − α + O
(
n−m/2

)
, (1)

for each 0 < α < 1, where m = 2 or 3. Here, ψ (1−α)(π, Y ) is the 1 − α quantile of the marginal posterior
of ψ given data Y under prior π (ψ, λ), and prθ denotes frequentist probability, under repeated sampling of
Y , under parameter θ . If the condition (1) holds with m = 2, we speak of π (ψ, λ) as a first-order probability
matching prior, while if it holds with m = 3, we speak of π (ψ, λ) as being a second-order probability
matching prior. A second-order probability matching prior yields posterior limits that are frequentist limits
of coverage error O(n−3/2); this third-order frequentist accuracy is typically not straightforward to be
achieved directly. For general scalar parameter models, Welch & Peers (1963) showed that Jeffreys’ prior
is first-order probability matching and gave conditions on the model under which second-order probability
matching is attained. Peers (1965) considered the nuisance parameter case and gave conditions on the prior
density under which first-order probability matching occurs; see also Tibshirani (1989). Mukerjee & Dey
(1993) and Mukerjee & Ghosh (1997) gave conditions that ensure second-order probability matching in
the nuisance parameter case; see Datta & Mukerjee (2004).

Suppose specifically that the loglikelihood is of the form

�(θ ) = ψ t(Y ) + λ′c(Y ) − k(ψ, λ) + b(Y ), (2)

so that the interest parameter ψ is a canonical parameter of a multi-parameter exponential family. Then
the conditional sampling distribution of T = t(Y ) given observed value c of C = c(Y ) depends only on
ψ , so that from a frequentist perspective, conditioning on the observed data value of C eliminates the
nuisance parameter. The appropriate frequentist inference on ψ is based on the sampling distribution of
T , given the observed value c; see, for example, Young & Smith (2005, Ch. 5). This sampling distribution
is completely specified once ψ is fixed.

This conditional inference has the optimality property under unconditional repeated sampling of being
uniformly most powerful unbiased; see Young & Smith (2005, § 7.2). In practice, however, the exact
inference may be difficult, even impossible, to construct: the relevant conditional distribution typically
requires awkward analytic or numerical calculations.

In the exponential family context, the appropriate frequentist inference to match is the conditional one.
The requirement (1) should be replaced by that of conditional probability matching:

prθ
{
ψ � ψ (1−α)(π, Y ) | C = c

} = 1 − α + O
(
n−m/2

)
. (3)

2. THEORETICAL DEVELOPMENT

Consider a continuous random variable Y with distribution belonging to a full exponential model of
dimension d. Let the canonical parameter of the exponential model be denoted by θ = (θ1, . . . , θd ) and
suppose that ψ = θ1 is the scalar parameter of interest, with λ = (θ2, . . . , θd ) being a vector nuisance
parameter. Write the density of Y as

fY (y; θ ) = exp{θ r tr − k(θ ) + b(y)}, t1 = t1(y), . . . , td = td (y). (4)

Here, the summation convention is adopted, under which we automatically sum with respect to a letter
represented both as a subscript and as a superscript. Based on a random sample Y1, . . . , Yn of size n, the
loglikelihood function is, apart from a constant, �(θ ) = n{θ r t̄r − k(θ )}, with t̄r = ∑n

i=1 tr (Yi )/n, which is
of the form (2) assumed in our discussion above.

In the analysis that follows, derivatives will be denoted by subscripts: �r (θ ) = ∂�(θ )/∂θ r = n{t̄r −
kr (θ )}, where kr (θ ) = ∂k(θ )/∂θ r (r = 1, . . . , d). We have �rs(θ ) = ∂2�(θ )/∂θ rθ s = −nkrs(θ ), where
krs(θ ) = ∂2k(θ )/∂θ rθ s (r, s = 1, . . . , d). In the formulae that follow, indices r, s, t, . . . are understood
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to run through 1, . . . , d. Let �θθ = (�rs) be the d × d matrix with components �rs(θ ), and let �λλ be the
(d − 1) × (d − 1) submatrix corresponding to the nuisance parameter λ. Denote the inverse of �θθ by
�θθ = (�rs). For ease of notation, write �ψψ = �11.

As before, let θ̂ = (θ̂1, . . . , θ̂d ) be the global maximum likelihood estimator of θ and let θ̃ = θ̃ (ψ) =
(θ̃1, . . . , θ̃d ) be the constrained maximum likelihood estimator of θ for a given value of ψ = θ1. Evaluation
of functions of θ at θ̂ and θ̃ will be denoted by ˆ and ˜ , respectively. We have �̃λ = 0, and −�̂θθ is the
observed information.

Our analysis follows the approach of Casella et al. (1995). For values ψ0 such that ψ̂ − ψ0 is of order
O(n−1/2), we have

pr(ψ �ψ0 | Y ) = 	{r (ψ0)} + ϕ{r (ψ0)}{r (ψ0)−1 − uB(ψ0)−1} + O
(
n−3/2

)
, (5)

where 	 and ϕ are the standard normal distribution and density functions, respectively; r is the signed
square root likelihood ratio statistic and uB(ψ) = �̃ψ (| − �̃λλ|/| − �̂θθ |)1/2(π̂/π̃ ).

From the frequentist perspective (Barndorff-Nielsen, 1986), a standard normal approximation to the
relevant conditional distribution of

r∗(ψ) = r (ψ) + r (ψ)−1 log{uF (ψ)/r (ψ)} (6)

has error of order O(n−3/2), where uF (ψ) = (ψ̂ − ψ)(| − �̂θθ |/| − �̃λλ|)1/2 in the exponential family
context. It is easily seen that

	{r∗(ψ)} = 	{r (ψ)} + ϕ{r (ψ)}{r (ψ)−1 − uF (ψ)−1} + O
(
n−3/2

)
. (7)

Suppose the prior is such that uB = uF + Op(n−3/2), and fix ψ . By combining (5) and (7), under this
condition, for given Y , the event ψ � ψ (1−α)(π, Y ) is equivalent to 	{r∗(ψ)} + O(n−3/2) � α. Therefore,
by the delta method, we have from a repeated sampling perspective,

prθ
{
ψ �ψ (1−α)(π, Y ) | C = c

} = prθ
[
	{r∗(ψ)} + Op

(
n−3/2

)
�α | C = c

]

= prθ
{

r∗(ψ) + Op

(
n−3/2

)
� zα | C = c

} = 1 − α + O
(
n−3/2

)
,

where 	(zα) = α. Thus, the Bayesian confidence limits have conditional frequentist coverage error of
order O(n−3/2), the requirement of second-order conditional probability matching.

By using the standard result from linear algebra that −�̂ψψ = |−�̂λλ|/| − �̂θθ |, the condition on the prior
that uB = uF + Op(n−3/2) may be written as

π̃

π̂

|−�̃λλ|−1

|−�̂λλ|−1

(−�̃ψψ )1/2

(−�̂ψψ )1/2
= zS

zW
+ Op

(
n−3/2

)
,

where zS = �̃ψ (−�̃ψψ )1/2 and zW = (ψ̂ − ψ)(−�̂ψψ )−1/2 are both asymptotically standard normal pivots.
We derive a simple condition under which zS/zW = 1 + Op(n−3/2). Under this condition, any prior π

satisfying

π̃

π̂
= |−�̃λλ|

|−�̂λλ|
(−�̃ψψ )−1/2

(−�̂ψψ )−1/2
+ Op

(
n−3/2

)
, (8)

is second-order conditional probability matching: (3) is satisfied with m = 3.
To derive a Taylor expansion of zS around ψ = ψ̂ having error of order Op(n−1), write zS = sv1/2,

where s = s(ψ) = �̃ψ and v = v(ψ) = −�̃ψψ . Since ŝ = �̂ψ = 0, we have ẑS = 0. Now, (zS)1 =
s1v

1/2 + (sv−1/2v1)/2; differentiating s = �1(θ̃ ) yields s1 = �̃1r θ̃
r
1 , where θ̃ r

1 = ∂θ̃ r/∂θ1, and differen-
tiating �λ(θ̃) = 0 yields θ̃ r

1 = �̃r1/�̃11. Thus, s1 = −1/�̃11 = −v−1, so (zS)1 = v−1/2 + (sv−1/2v1)/2. It
follows that (ẑS)1 = −(−�̂ψψ )−1/2 and (zS)11 = {s(v−1/2v1)1}/2, whence (ẑS)11 = 0. The desired expan-
sion is zS = (ψ̂ − ψ)(−�̂ψψ )−1/2 + Op(n−1), which shows that zS/zW = 1 + Op(n−1). This result holds
generally, not just for exponential families. Although zS is invariant under monotonically increasing trans-
formations of ψ , it is different from the usual standardized score statistic sv̂1/2; note that v can be negative
in finite samples.
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Since (zS)111 = −{v−1(v−1/2v1)1}/2 + {s(v−1/2v1)11}/2, we have (ẑS)111 = −{v̂−1( ˆv−1/2v1)1}/2, where
v̂−1 = (−�̂ψψ )−1 cannot be 0. Thus, a sufficient condition for (ẑS)111 = 0, and hence, for zS/zW =
1 + Op(n−3/2), is that v−1/2v1 be a constant in ψ . Applying the identity ∂�rs/∂θ t = −�ru�sv�uvt

to v = −�̃ψψ = −�̃11 yields v1 = �̃rst �̃
r1�̃s1θ̃ t

1 = �̃rst �̃
r1�̃s1�̃t1(�̃11)−1. It follows that v−1/2v1 =

−�̃rst �̃
r1�̃s1�̃t1(−�̃11)−3/2, so v−1/2v1 is constant in ψ if �rst�

r1�s1�t1(−�11)−3/2 is constant in θ . For
the exponential density (4), �rst�

r1�s1�t1(−�11)−3/2 = krst kr1ks1kt1(k11)−3/2.
Hence, in summary, constancy of g(θ ) = krst kr1ks1kt1(k11)−3/2 is a sufficient condition for second-order

conditional probability matching by any prior satisfying (8). This condition is on the model, not on the
prior, and it is the same condition as that derived by Datta & Mukerjee (2004, § 2.5.4), in an analysis for
the exponential family context that makes no regard to the conditioning appropriate in this context. Clearly,
the prior π ∝ | − �λλ|(−�ψψ )−1/2 satisfies (8).

In the exponential family model (4), we have k̃a = k̂a = t̄a, so any prior of the form

π ∝ | − �λλ|(−�ψψ )−1/2h(k2, . . . , kd ), (9)

for arbitrary function h, also satisfies (8). Tibshirani (1989) considered a class of first-order probability
matching priors, for the situation where the interest parameter and the nuisance parameter are orthogonal.
In the current exponential family context this class corresponds exactly, under reparameterization, to the
class of priors (9) for the canonical parameterization assumed in (4). If the model condition is satisfied,
any member of this class of unconditional first-order matching priors automatically yields second-order
conditional probability matching.

3. NUMERICAL EXAMPLES

3·1. Inverse Gaussian distribution

Consider a random sample Y1, . . . , Yn from the inverse Gaussian density

f (y; ψ, λ) = {ψ/(2π )}1/2 y−3/2exp
{− 1

2 (ψy−1 + λy) + (ψλ)1/2
}
, y > 0, ψ, λ > 0,

where the interest parameter ψ is the shape parameter of the distribution and λ is nuisance.
The appropriate conditional frequentist inference is based on the conditional distribution of S =

n−1
∑n

i=1 Y −1
i given C = Ȳ = n−1

∑n
i=1 Yi , or, equivalently, on the marginal distribution of V =∑n

i=1(Y −1
i − Ȳ −1), since V is independent of C . We have ψV ∼ χ2

n−1.
We consider objective Bayes inference on ψ , based on four different priors specified as follows. Prior

I: π (ψ, λ) ∝ ψ−3/2λ−1/2; Prior II: π (ψ, λ) ∝ ψ−3/4λ−3/4; Prior III: π (ψ, λ) ∝ ψ−1λ−3/4; and Prior IV:
π (ψ, λ) ∝ ψ−5/4λ−3/4. The model condition that g(θ ) be constant is satisfied in this example, with
g(θ ) ≡ −23/2. Further, the condition (8) is satisfied by any prior of the form π (ψ, λ) ∝ ψ−1/2−aλa−3/2,
so that both Priors I and IV should yield confidence limits of conditional frequentist coverage error of
order O(n−3/2); such nonuniqueness of a second-order conditional probability matching prior is, of course,
typical. In this inference problem, Prior II is the Jeffreys prior, while Prior III is the reference prior (Liseo,
1993); neither of these priors yields second-order conditional probability matching.

Example 1. We consider the conditional frequentist confidence levels of posterior 5% and 95% quantiles,
for a data configuration with observed values s = 2·0, c = 3·0 of the sufficient statistics, and for varying
sample size n. Table 1 shows the 5% and 95% confidence limits obtained under the four priors in
parentheses, with the corresponding exact conditional frequentist coverage levels.

To understand the table entries as conditional repeated sampling coverages, note that ψ (1−α)(π, Y ) ≡
ψ (1−α)(π, S, C) is a monotonically decreasing function of S for a fixed value of C . For fixed ψ0,
we have that {ψ0 � ψ (1−α)(π, Y )} ≡ {S � s0 }, where s0 has ψ (1−α)(π, s0, c) = ψ0. Hence, the condi-
tional frequentist coverage under parameter value ψ0 is pr{ψ0 �ψ (1−α)(π, Y ) | C = c; ψ0} = pr{S � s0 |
C = c; ψ0}, and this latter probability is pr{V � n(s0 − 1/c) | C = c; ψ0} = pr{V � n(s0 − 1/c); ψ0} =
pr{χ2

n−1 � ψ0n(s0 − 1/c)}, since V is independent of C . So, for example, conditional on C = 3·0, if
n = 10 and ψ0 = 0·210, the posterior 5% quantile using Prior I has conditional frequentist coverage
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Table 1. Conditional frequentist coverage levels of 5% and 95% confidence limits obtained from different
Bayes priors, inverse Gaussian shape example. Actual limits are shown in parentheses beneath the coverage

figures. Priors are detailed in the text

Prior I Prior II Prior III Prior IV
n 5% 95% 5% 95% 5% 95% 5% 95%

10 5·89 95·46 10·34 97·10 8·32 96·39 6·52 95·51
(0·21) (1·03) (0·25) (1·12) (0·24) (1·08) (0·22) (1·04)

20 5·39 95·27 7·62 96·35 6·44 95·75 5·39 95·03
(0·31) (0·91) (0·33) (0·94) (0·32) (0·92) (0·31) (0·91)

50 5·21 95·00 6·05 95·85 5·56 95·41 5·09 94·92
(0·41) (0·80) (0·42) (0·81) (0·41) (0·80) (0·41) (0·79)

equal to pr(χ2
9 � 3·5) = 5·89%. As expected, Priors I and IV yield greater conditional frequentist accu-

racy, while it is clear also that different second-order conditional probability matching priors can yield
noticeably different conditional frequentist properties.

3·2. Gamma distribution

Now suppose that Y1, . . . , Yn constitute a random sample from the gamma density

f (y; ψ, λ) = λψ yψ−1 exp(−λy)�(ψ)−1, y > 0, ψ, λ > 0. (10)

We take the parameter of interest as the shape parameter ψ , with the scale parameter λ as nuisance.
Conditional frequentist inference is based on the sampling distribution of Q = ∏n

i=1 Yi , given the observed
value c of C = ∑n

i=1 Yi . This is equivalent (Pace & Salvan, 1997, Ex. 5.14) to basing inference on the
marginal distribution of the statistic that is the ratio of the geometric and arithmetic means of Yi . This
distribution is complicated (Keating et al., 1990), but easily simulated: the distribution depends only on
the interest parameter ψ , so the distribution can be simulated under an arbitrary setting of the nuisance
parameter λ.

Let ρ(ψ) = {ψξ (ψ) − 1}1/2, where ξ (ψ) = (∂2/∂ψ2) log �(ψ). We consider Bayesian inference under
three priors specified as follows. Prior I: π (ψ, λ) ∝ ρ(ψ)ψ−1/2λ−1; Prior II: π (ψ, λ) ∝ ρ(ψ)λ−1; and
Prior III: π (ψ, λ) ∝ {ρ(ψ)}2ψ−1/2λ−1. Of these, Prior II is first-order probability matching, but the model
condition that g(θ ) be constant is not satisfied: indeed, g(θ ) = ψ−1/2{ρ(ψ)}−3/2{ψ2ξ ′(ψ) + 1}, which
depends on ψ . Therefore, second-order conditional probability matching is not achievable by a first-order
matching prior in this inference problem. Prior I is the Jeffreys prior, and Prior III is the reference prior;
see Liseo (1993).

Example 2. As in our first example, we examine conditional frequentist confidence levels of posterior
5% and 95% quantiles, now for observed values q = 1·0, c = 20·0 of the sufficient statistics, again for
varying n. Table 2 shows the 5% and 95% confidence limits obtained under the three priors in parentheses,
with the corresponding exact conditional frequentist coverage levels. The first-order probability matching
Prior II is seen to yield good conditional frequentist coverage properties.

4. RELATIONSHIP WITH PARAMETRIC BOOTSTRAP

In the current exponential family context, a simple unconditional parametric bootstrap, as considered by
DiCiccio et al. (2001) and Lee & Young (2005), approximates the exact conditional frequentist inference
to the same order of error, O(n−3/2), as second-order conditional probability matching objective Bayes; see
DiCiccio & Young (2008). This parametric bootstrap is based on simulating the unconditional distribution
of the statistic r (ψ), under the model with parameter value set as (ψ, λ̂ψ ), that is, with the nuisance
parameter set as its constrained maximum likelihood value for the given data. A further, direct and
analytic frequentist approach to approximation to the exact conditional inference to order O(n−3/2) is
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Table 2. Conditional frequentist coverage levels of 5% and 95% confidence limits obtained from objective
Bayes, bootstrap and analytic procedures; gamma shape example. Actual limits are shown in parentheses

beneath the coverage figures. Priors are detailed in the text

Prior I Prior II Prior III Bootstrap r∗

n 5% 95% 5% 95% 5% 95% 5% 95% 5% 95%

5 9·42 97·09 5·18 95·03 2·21 90·90 5·07 95·01 5·67 95·35
(0·15) (0·91) (0·12) (0·82) (0·09) (0·71) (0·12) (0·82) (0·13) (0·83)

10 7·84 96·64 5·11 95·01 2·88 92·25 5·00 95·00 5·19 95·11
(0·40) (1·46) (0·36) (1·37) (0·31) (1·27) (0·36) (1·37) (0·36) (1·37)

15 7·32 96·45 5·05 95·01 3·10 92·78 4·98 95·00 5·06 95·06
(0·98) (3·05) (0·91) (2·91) (0·83) (2·75) (0·91) (2·91) (0·91) (2·91)

(Barndorff-Nielsen, 1986) based on standard normal approximation to the distribution of the statistic r∗(ψ),
given by (6). Book length treatments of the analytic approach were given by Barnforff-Nielsen & Cox
(1994), Severini (2000) and Brazzale et al. (2007). A comparative evaluation of the three routes given
by Young (2009) suggests strongly that the bootstrap approach should be judged as providing the most
accurate approximation to exact conditional frequentist inference in exponential families.

Though conceptually simple, a computational drawback to the objective Bayes procedure is the need for
integration of the joint posterior of (ψ, λ) over the nuisance parameter λ, to obtain the marginal posterior for
the interest parameter ψ . The bootstrap may be used to approximate a second-order conditional probability
matching objective Bayes inference, obtaining approximations to objective Bayesian posterior quantiles
by simulation, thus avoiding any awkward analytic calculation. Further, given the remarkable conditional
accuracy properties of the parametric bootstrap noted by DiCiccio & Young (2008), we may expect, at
least for moderate n, to be able to use the bootstrap to evaluate the conditional frequentist properties of
objective Bayes procedures in cases where the exact conditional frequentist inference is intractable or
impossible.

Example 2 (continued). We now approximate the exact conditional frequentist confidence limits by the
parametric bootstrap procedure and by the analytic procedure based on the r∗ statistic, for the same data
configuration, q = 1·0, c = 20·0, as considered before. The bootstrap limits are based on a simulation that
approximates the sampling distribution of the signed root statistic r by the drawing of 5 million samples
from the relevant fitted distribution. Table 2 reports the conditional frequentist confidence levels of the
bootstrap and analytic limits. The unconditional bootstrap yields more accurate approximation to exact
conditional frequentist inference than does the objective Bayes procedure, though, of course, the latter does
not give second-order conditional probability matching in this example. The bootstrap produces better
approximation than r∗, which, surprisingly, is less accurate than the objective Bayes method.

5. FURTHER REMARKS AND COMMENTS

Conditioning also eliminates nuisance parameters in other settings, notably when the interest param-
eter ψ is a ratio of canonical parameters in an exponential family. A theoretical analysis of objective
Bayes procedures for this case, along the lines of that given in § 2, does not yield any simple, transparent
conditions under which second-order conditional frequentist matching is achievable by a first-order prob-
ability matching prior. However, identification of second-order conditional probability matching priors, in
particular key examples, is straightforward.

Example 3. Let X and Y be independent exponential random variables, with rate parameters λ and ψλ,
respectively, and assume that the interest parameter is the ratio of the two rates, ψ . Under a joint prior
of the form π (ψ, λ) ∝ 1/(ψλ), the marginal posterior density for ψ , given X = x, Y = y, is of the form
π (ψ | x, y) = xy/(x + ψy)2. Then the posterior 1 − α quantile is ψ (1−α)(π, X, Y ) = (1/α − 1)X/Y .
The appropriate conditional frequentist inference involves (Reid, 1995, Ex. 5.1) conditioning on the linear
pivotal s(ψ) = X + ψY , and, conditional on s(ψ) = s, X is uniformly distributed on [0, s]. Hence, the
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Table 3. Conditional frequentist coverage levels, estimated by parametric bootstrap, of 5% and
95% confidence limits obtained from two Bayes priors, gamma mean example. Actual limits

are shown in parentheses beneath the coverage figures. Priors are detailed in the text

Prior IV Prior I
n 5% 95% 5% 95%

5 5·13 85·58 6·23 83·31
(1·52) (14·52) (1·62) (12·77)

10 5·15 94·19 5·84 93·46
(1·17) (4·21) (1·20) (4·07)

15 5·05 95·05 5·59 94·39
(0·98) (1·94) (0·99) (1·91)

assumed prior is exactly conditional frequentist probability matching, with θ = (ψ, λ), for

prθ
{
ψ �ψ (1−α)(π, X, Y ) | s(ψ) = s

} = pr{X �αs(ψ) | s(ψ) = s} = 1 − α.

Example 4. Consider inference for the mean μ ≡ ψ/λ of the gamma density (10) with the shape
parameter ψ as nuisance. Here, Prior IV: π (μ,ψ) ∝ {ρ(ψ)}2μ−1 is the unique second-order unconditional
probability matching prior, and it is easily shown to be second-order conditional probability matching
(Casella et al., 1995). Table 3 shows, for the data configuration and sample sizes used in Table 2, conditional
frequentist confidence levels of posterior 5% and 95% limits, from Prior I, considered in § 3·2, and Prior IV.
Jensen (1986) argued for this problem that the exact conditional frequentist inference is intractable unless
n � 3; for larger values of n, approximation is necessary. DiCiccio & Young (2008) provided evidence that
the parametric bootstrap yields essentially exact approximation in this problem, and the entries of Table
3 were obtained this way by using 5 million bootstrap samples. The higher-order conditional matching
property of Prior IV is evident.

In this paper we have been concerned with identification of priors on the full parameter, which, when
combined with the full data likelihood, yield a marginal posterior for the interest parameter having quantiles
with the correct conditional frequentist interpretation. Chang & Mukerjee (2006) considered an alternative
approach to probability matching, in which a prior is specified only for the interest parameter, the objective
being that when this is combined with an adjusted profile likelihood for that interest parameter, posterior
quantiles have the correct unconditional frequentist coverage. The family of likelihoods allowed in their
analysis includes the conditional likelihood appropriate in the multi-parameter exponential family setting,
and conditional probability matching within that framework is worthy of investigation. Further, since
probability matching is typically achieved by improper priors and is with respect to a conditional frequentist
approach, it is of some interest to examine whether the approach yields, or avoids, marginalization
paradoxes (Dawid et al., 1973) typical of objective Bayes methodology.
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