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Abstract. Conditional inference is a fundamental part of statistical theory. However, exact
conditional inference is often awkward, leading to the desire for methods which offer accurate
approximations. Such a methodology is provided by small-sample likelihood asymptotics. We
argue in this paper that simple, simulation-based methods also offer accurate approximations
to exact conditional inference in multiparameter exponential family and ancillary statistic
settings. Bootstrap simulation of the marginal distribution of an appropriate statistic provides
a conceptually simple and highly effective alternative to analytic procedures of approximate
conditional inference.
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1 Introduction

Conditional inference has been, since the seminal work of Fisher [16], a fundamental
part of the theory of parametric inference, but is a less established part of statistical
practice.

Conditioning has two principal operational objectives: (i) the elimination of nui-
sance parameters; (ii) ensuring relevance of inference to an observed data sample,
through the conditionality principle, of conditioning on the observed value of an an-
cillary statistic, when such a statistic exists. The concept of an ancillary statistic here
is usually taken simply to mean one which is distribution constant. The former notion
is usually associated with conditioning on sufficient statistics, and is most trans-
parently and uncontroversially applied for inference in multiparameter exponential
family models. Basu [7] provides a general and critical discussion of conditioning
to eliminate nuisance parameters. The notion of conditioning to ensure relevance,
together with the associated problem, which exercised Fisher himself (Fisher [17]),
of recovering information lost when reducing the dimension of a statistical problem
(say, to that of the maximum likelihood estimator, when this is not sufficient), is most
transparent in transformation models, such as the location-scale model considered by
Fisher [16].
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In some circumstances issues to do with conditioning are clear cut. Though most
often applied as a slick way to establish independence between two statistics, Basu’s
Theorem (Basu [4]) shows that a boundedly complete sufficient statistic is independent
of every distribution constant statistic. This establishes the irrelevance for inference
of any ancillary statistic when a boundedly complete sufficient statistic exists.

In many other circumstances however, we have come to understand that there are
formal difficulties with conditional inference. We list just a few. (1) It is well under-
stood that conflict can emerge between conditioning and conventional measures of
repeated sampling optimality, such as power. The most celebrated illustration is due
to Cox [11]. (2) Typically there is arbitrariness on what to condition on. In particular,
ancillary statistics are often not unique and a maximal ancillary may not exist. See,
for instance, Basu [5, 6] and McCullagh [23]. (3) We must also confront the awk-
ward mathematical contradiction of Birnbaum [9], which says that the conditionality
principle, taken together with the quite uncontroversial sufficiency principle, imply
acceptance of the likelihood principle of statistical inference, which is incompatible
with the common methods of inference, such as calculation of p-values or construc-
tion of confidence sets, where we are drawn to the notion of conditioning.

Calculating a conditional sampling distribution is also typically not easy, and
such practical difficulties, taken together with the formal difficulties with conditional
inference, have led to much of modern statistical theory being based on notions of
inference which automatically accommodate conditioning,at least to some high order
of approximation. Of particular focus are methods which respect the conditionality
principle without requiring explicit specification of the conditioning ancillary, and
which therefore circumvent the difficulties associated with non-uniqueness of ancil-
laries.

Much attention in parametric theory now lies, therefore, in inference procedures
which are stable, that is, which are based on a statistic which has, to some high order in
the available data sample size, the same repeated sampling behaviour both marginally
and conditional on the value of the appropriate conditioning statistic. The notion is
that accurate approximation to an exact conditional inference can then be achieved
by considering the marginal distribution of the stable statistic, ignoring the relevant
conditioning. This idea is elegantly expressed for the ancillary statistic context by,
for example, Barndorff-Nielsen and Cox [2, Section 7.2], Pace and Salvan [24, Sec-
tion 2.8] and Severini [26, Section 6.4]. See also Efron and Hinkley [15] and Cox [12].

A principal approach to approximation of an intractable exact conditional in-
ference by this route lies in developments in higher-order small-sample likelihood
asymptotics, based on saddle point and related analytic methods. Book length treat-
ments of this analytic approach are given by Barndorff-Nielsen and Cox [2] and Sev-
erini [26]. Brazzale et al. [10] demonstrate very convincingly how to apply these de-
velopments in practice. Methods have been constructed which automatically achieve,
to a high order of approximation, the elimination of nuisance parameters which is
desired in the exponential family setting, though focus has been predominantly on
ancillary statistic models. Here, a key development concerns construction of adjusted
forms of the signed root likelihood ratio statistic, which require specification of the
ancillary statistic, but are distributed,conditionallyon the ancillary, as N(0, 1) to third
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order, O(n−3/2), in the data sample size n. Normal approximation to the sampling
distribution of the adjusted statistic therefore provides third-order approximation to
exact conditional inference: see Barndorff-Nielsen [1]. Approximations which yield
second-order conditional accuracy, that is, which approximate the exact conditional
inference to an error of order O(n−1), but which avoid specification of the ancillary
statistic, are possible: Severini [26, Section 7.5] reviews such methods.

In the computer age, an attractive alternative approach to approximation of condi-
tional inference uses marginal simulation, or ‘parametric bootstrapping’, of an appro-
priately chosen statistic to mimic its conditional distribution.The idea may be applied
to approximate the conditioning that is appropriate to eliminate nuisance parameters
in the exponential family setting, and can be used in ancillary statistic models, where
specification of the conditioning ancillary statistic is certainly avoided.

Our primary purpose in this article is to review the properties of parametric boot-
strap procedures in approximation of conditional inference. The discussion is phrased
in terms of the inference problem described in Section 2. Exponential family and
ancillary statistics models are described in Section 3. Key developments in analytic
approximation methods are described in Section 4. Theoretical properties of the para-
metric bootstrap approach are described in Section 5, where comparisons are drawn
with analytic approximation methods. A set of numerical examples are given in Sec-
tion 6, with concluding remarks in Section 7.

2 An inference problem

We consider the following inference problem. Let Y = {Y1, . . . , Yn} be a random
sample from an underlying distribution F(y; η), indexed by a d-dimensional param-
eter η, where each Yi may be a random vector. Let θ = g(η) be a (possibly vector)
parameter of interest, of dimension p. Without loss we may assume that η = (θ, λ),
with θ the p-dimensional interest parameter and λ a d − p-dimensional nuisance
parameter. Suppose we wish to test a null hypothesis of the form H0 : θ = θ0, with
θ0 specified, or, through the familiar duality between tests of hypotheses and confi-
dence sets, construct a confidence set for the parameter of interest θ . If p = 1, we
may wish to allow one-sided inference, for instance a test of H0 against a one-sided
alternative of the form θ > θ0 or θ < θ0, or construction of a one-sided confidence
limit. Let l(η) = l(η; Y ) be the log-likelihood for η based on Y . Also, denote by
η̂ = (θ̂ , λ̂) the overall maximum likelihood estimator of η, and by λ̂θ the constrained
maximum likelihood estimator of λ, for a given fixed value of θ . Inference on θ
may be based on the likelihood ratio statistic, W = w(θ) = 2{l(η̂) − l(θ, λ̂θ )}.
If p = 1, one-sided inference uses the signed square root likelihood ratio statistic
R = r(θ) = sgn(θ̂ − θ)w(θ)1/2 , where sgn(x) = −1 if x < 0, = 0 if x = 0 and = 1
if x > 0. In a first-order theory of inference, the two key distributional results are that
W is distributed as χ2

p , to error of order O(n−1), while R is distributed as N(0, 1),

to an error of order O(n−1/2).
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3 Exponential family and ancillary statistic models

Suppose the log-likelihood is of the form l(η) = θs1(Y )+λT s2(Y )−k(θ, λ)−d(Y ),
with θ scalar, so that θ is a natural parameter of a multiparameter exponential family.
We wish to test H0 : θ = θ0 against a one-sided alternative, and do so using the
signed root statistic R.

Here the conditional distribution of s1(Y ) given s2(Y ) = s2 depends only on θ , so
that conditioning on the observed value s2 is indicated as a means of eliminating the
nuisance parameter. So, the appropriate inference on θ is based on the distribution of
s1(Y ), given the observed data value of s2. This distribution is, in principle, known,
since it is completely specified, once θ is fixed. In fact, this conditional inference has
the unconditional (repeated sampling) optimality property of yielding a uniformly
most powerful unbiased test: see, for example, Young and Smith [29, Section 7.2].
In practice however, the exact inference may be difficult to construct: the relevant
conditional distribution typically requires awkward analytic calculations, numerical
integrations etc., and may even be completely intractable.

In modern convention, ancillarity in the presence of nuisance parameters is gen-
erally defined in the following terms. Suppose the minimal sufficient statistic for η
may be written as (η̂, A), where the statistic A has, at least approximately, a sam-
pling distribution which does not depend on the parameter η. Then A is said to be
ancillary and the conditionality principle would argue that inference should be made
conditional on the observed value A = a.

McCullagh [22] showed that the conditional and marginal distributions of signed
root statistics derived from the likelihood ratio statistic W for a vector interest param-
eter, but with no nuisance parameter, agree to an error of order O(n−1), producing
very similar p-values whether one conditions on an ancillary statistic or not. Severini
[25] considered similar results in the context of a scalar interest parameter without
nuisance parameters; see also Severini [26, Section 6.4.4]. Zaretski et al. [30] estab-
lish stability of the signed root statistic R, in the case of a scalar interest parameter and
a general nuisance parameter. The key to their analysis is that the first two cumulants
of the signed root statistic r(θ) are of the form

E{r(θ)} = n−1/2m(η)+ O(n−3/2), var{r(θ)} = 1 + n−1v(η)+ O(n−3/2),

where m(η) and v(η) are of order O(1). The third- and higher-order cumulants of
r(θ) are of order O(n−3/2); see Severini [26, Section 5.4]. This cumulant structure
also holds conditionally given a statistic A assumed to be second-order ancillary;
see McCullagh [22] for details of approximate ancillarity. Under conditions required
for valid Edgeworth expansions, if the conditional and marginal expectations of the
signed root statistic agree to an error of order O(n−1) given the ancillary statistic A,
then the conditional and marginal distributions agree to the same order of error. An
intricate analysis shows that the conditional and marginal versions of m(η) coincide,
to order O(n−1). This methodology may be readily extended to the case of a vector
interest parameter θ to establish stability of signed root statistics derived from the
likelihood ratio statistic W in the presence of nuisance parameters. Stability of W is
immediate: the marginal and conditional distributions are both χ2

p to error O(n−1).
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4 Analytic approximations

A detailed development of analytic methods for distributional approximation which
yield higher-order accuracy in approximation of an exact conditional inference is de-
scribed by Barndorff-Nielsen and Cox [2]. A sophisticated and intricate theory yields
two particularly important methodological contributions. These are Bartlett correc-
tions of the likelihood ratio statistic W and the development of analytically adjusted
forms of the signed root likelihoodratio statistic R, which are specifically constructed
to offer conditional validity, to high asymptotic order, in both the multiparameter ex-
ponential family and ancillary statistic contexts. Particularly central to the analytic
approach to higher-order accurate conditional inference is Barndorff-Nielsen’s R∗
statistic (Barndorff-Nielsen, [1]).

In some generality, the expectation of w(θ) under parameter value η may be
expanded as

Eη{w(θ)} = p

{
1 + b(η)

n
+ O(n−2)

}
.

The basis of the Bartlett correction is to modify w(θ), through a scale adjustment, to
a new statistic

w(θ)/{1 + b(η)/n},
which turns out to be distributed as χ2

p , to an error of order O(n−2), rather than

the error O(n−1) for the raw statistic w(θ). Remarkably, and crucially for inference
in the presence of nuisance parameters, this same reduction in the order of error of
an χ2

p approximation is achievable if the scale adjustment is made using the quantity

b(θ, λ̂θ); see Barndorff-Nielsen and Hall [3]. Note that this result may be re-expressed
as saying that the statistic

w∗(θ) = p

E(θ,λ̂θ ){w(θ)}
w(θ)

is distributed as χ2
p to an error of order O(n−2). Here the quantity E(θ,λ̂θ ){w(θ)}

may be approximated by simulation, allowing the Bartlett correction to be carried out
purely empirically, without analytic calculation.

The adjusted signed root statistic R∗ has the form

R∗ = r∗(θ) = r(θ) + r(θ)−1 log{u(θ)/r(θ)}.
Write η = (

η1, . . . , ηd
)
, so that θ = η1 is the scalar parameter of interest, with

λ = (
η2, . . . , ηd

)
a vector nuisance parameter. Let lrs (η) = ∂2l(η)/∂ηrηs , and let

lηη = (
lrs
)

be the d × d matrix with components lrs (η) and lλλ be the (d − 1)× (d −
1) submatrix corresponding to the nuisance parameter λ. In the exponential family
context, the adjustment quantity u(θ) takes the simple form

u(θ) = (
θ̂ − θ

) ∣∣− lηη(θ̂ , λ̂)
∣∣1/2∣∣− lλλ(θ, λ̂θ )
∣∣1/2

.
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In the ancillary statistic context the adjustment necessitates explicit specification of
the ancillary statistic A and more awkward analytic calculations. For details of its
construction, see Barndorff-Nielsen and Cox [2, Section 6.6].

The sampling distribution of R∗ is N(0, 1), to an error of order O(n−3/2), condi-
tionally on A = a, and therefore also unconditionally. Standard normal approximation
to the sampling distribution of R∗ therefore yields third-order (in fact, relative) condi-
tional accuracy, in the ancillary statistic setting, and inference which respects that of
exact conditional inference in the exponential family setting to the same third-order.
The analytic route therefore achieves the goal of improving on the error of order
O(n−1/2) obtained from the asymptotic normal distribution of R by two orders of
magnitude, O(n−1), while respecting the conditional inference desired in the two
problem classes.

5 Bootstrap approximations

The simple idea behind the bootstrap or simulation alternative to analytic methods
of inference is estimation of the sampling distribution of the statistic of interest by
its sampling distribution under a member of the parametric family F(y; η), fitted
to the available sample data. A recent summary of the repeated sampling properties
of such schemes is given by Young [28]. We are concerned here with an analysis
of the extent to which the bootstrap methods, applied unconditionally, nevertheless
achieve accurate approximation to conditional inference in the exponential family
and ancillary statistic settings.

DiCiccio and Young [14] show that in the exponential family context, accurate
approximation to the exact conditional inference may be obtained by considering the
marginal distribution of the signed root statistic R under the fitted model F(y; (θ, λ̂θ)),
that is the model with the nuisance parameter taken as the constrained maximum like-
lihood estimator, for any given value of θ . This scheme yields inference agreeing with
exact conditional inference to a relative error of third order, O(n−3/2). Specifically,
DiCiccio and Young [14] show that

pr{R ≥ r; (θ, λ̂θ )} = pr(R ≥ r|s2(Y ) = s2; θ){1 + O(n−3/2)},
when r is of order O(1). Their result is shown for both continuous and discrete models.
The approach therefore has the same asymptotic properties as saddle point methods
developed by Skovgaard [27] and Barndorff-Nielsen [1] and studied by Jensen [18].
DiCiccio and Young [14] demonstrate in a number of examples that this approach
of estimating the marginal distribution of R gives very accurate approximations to
conditional inference even in very small sample sizes: further examples are discussed
in Section 6 below. A crucial point of their analysis is that the marginal estimation
should fix the nuisance parameter as its constrained maximum likelihood estimator:
the same third-order accuracy is not obtained by fixing the nuisance parameter at its
global maximum likelihood value λ̂.

Third-order accuracy can also be achieved, in principle, by estimating the marginal
distributions of other asymptotically standard normal pivots, notably Wald and score
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statistics. However, in numerical investigations, using R is routinely shown to provide
more accurate results. A major advantage of using R is its low skewness; consequently,
third-order error can be achieved, although not in a relative sense, by merely correct-
ing R for its mean and variance and using a standard normal approximation to the
standardised version of R. Since it is computationally much easier to approximate the
mean and variance of R by parametric bootstrapping at (θ, λ̂θ ) than it is to simulate
the entire distribution of R, the use of mean and variance correction offers substan-
tial computational savings, especially for constructing confidence intervals. Although
these savings are at the expense of accuracy, numerical work suggests that the loss of
accuracy is unacceptable only when the sample size is very small.

In theory, less conditional accuracy is seen in ancillary statistic models. Since the
marginal and conditional distributions of R coincide with an error of order O(n−1)
given A = a, it follows that the conditional p-values obtained from R are approxi-
mated to the same order of error by the marginal p-values. Moreover, for approximat-
ing the marginal p-values, the marginal distribution of R can be approximated to an
error of order O(n−1) by means of the parametric bootstrap; the value of η used in the
bootstrap can be either the overall maximum likelihood estimator, η = (θ̂ , λ̂), or the
constrained maximum likelihood estimator, η = (θ, λ̂θ). For testing the null hypoth-
esis H0 : θ = θ0, the latter choice is feasible; however, for constructing confidence
intervals, the choice η = (θ̂ , λ̂) is computationally less demanding. DiCiccio et al.
[13] and Lee and Young [21] showed that the p-values obtained by using η = (θ, λ̂θ )
are marginally uniformly distributed to an error of order O(n−3/2), while those ob-
tained by using η = (θ̂ , λ̂) are uniformly distributed to an error of order O(n−1) only.
Numerical work indicates that using η = (θ, λ̂θ ) improves conditional accuracy as
well, although, formally, there is no difference in the orders of error to which con-
ditional p-values are approximated by using the two choices. Though in principle
the order of error in approximation of exact conditional inference obtained by con-
sidering the marginal distribution of R is larger than the third-order, O(n−3/2), error
obtained by normal approximation to the sampling distribution of the adjusted signed
root statistic R∗, substantial numerical evidence suggests very accurate approxima-
tions are obtained in practice. Examples are given in Section 6, and further particular
examples are considered by DiCiccio et al. [13], Young and Smith [29, Section 11.5]
and Zaretzki et al. [30].

In the case of a vector interest parameter θ , both the marginal and conditional
distributions of W = w(θ) are chi-squared to error O(n−1), and hence, using the
χ2

p approximation to the distribution of W achieves conditional inference to an error
of second-order. Here, however, we have noted that a simple scale adjustment of the
likelihood ratio statistic improves the chi-squared approximation:

p

E(θ,λ){w(θ)}w(θ)

is distributed as χ2
p to an error of order O(n−2). Since E(θ,λ){w(θ)} is of the form

p + O(n−1), it follows that E(θ,λ̂θ ){w(θ)} = E(θ,λ){w(θ)} + Op(n−3/2). Thus, esti-

mation of the marginal distribution of W by bootstrapping with η = (θ, λ̂θ ) yields
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an approximation having an error of order O(n−3/2); moreover, to an error of order
O(n−2), this approximation is the distribution of a scaled χ2

p random variable with
scaling factor E(θ,λ̂θ ){w(θ)}/p. The result of Barndorff-Nielsen and Hall [3], that

p

E(θ,λ̂θ ){w(θ)}
w(θ)

is distributed asχ2
p to an error of order O(n−2), shows that confidence sets constructed

by using the bootstrap approximation to the marginal distribution of W have marginal
coverage error of order O(n−2).

The preceding results continue to hold under conditioning on the ancillary statistic.
In particular,

p

E(θ,λ){w(θ)|A = a}w(θ)

is conditional on A = a, also χ2
p to an error of order O(n−2). The conditional

distribution of W is, to an error of order O(n−2), the distribution of a scaledχ2
p random

variable with scaling factor E(θ,λ){w(θ)|A = a}/p. Generally, the difference between
E(θ,λ){w(θ)} and E(θ,λ){w(θ)|A = a} is of order O(n−3/2) given A = a, and using
the bootstrap estimate of the marginal distribution of W approximates the conditional
distribution to an error of order O(n−3/2). Thus, confidence sets constructed from the
bootstrap approximation have conditional coverage error of order O(n−3/2), as well
as marginal coverage error of order O(n−2).

Bootstrapping the entire distribution of W at η = (θ, λ̂θ ) is computationally
expensive, especially when constructing confidence sets, and two avenues for sim-
plification are feasible. Firstly, the order of error in approximation to conditional
inference remains of order O(n−3/2) even if the marginal distribution of W is esti-
mated by bootstrapping with η = (θ̂ , λ̂), the global maximum likelihood estimator.
It is likely that using η = (θ, λ̂θ ) produces greater accuracy, however, this increase
in accuracy might not be sufficient to warrant the additional computational demands.
Secondly, instead of bootstrapping the entire distributionof W , the scaled chi-squared
approximation could be used, with the scaling factor E(θ,λ̂θ ){w(θ)}/p being estimated
by the bootstrap. This latter approach of empirical Bartlett adjustment is studied in nu-
merical examples in Section 6. Use of the bootstrap for estimating Bartlett adjustment
factors was proposed by Bickel and Ghosh [8].

6 Examples

6.1 Inverse Gaussian distribution

Let {Y1, . . . , Yn} be a random sample from the inverse Gaussian density

f (y; θ, λ) =
√

θ

2π
exp(

√
θλ)y−3/2 exp{−1

2
(θy−1 + λy)}, y > 0, θ > 0, λ > 0.
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The parameter of interest θ is the shape parameter of the distribution, which constitutes
a two-parameter exponential family.

With S = n−1∑n
i=1 Y −1

i and C = n−1∑n
i=1 Yi , the appropriate conditional

inference is based on the conditional distribution of S, given C = c, the observed
data value of C. This, making exact conditional inference simple in this problem, is
equivalent to inference being based on the marginal distributionof V = ∑n

i=1(Y
−1
i −

Y
−1
). The distribution of θV is χ2

n−1.

The signed root statistic r(θ) is given by r(θ) = sgn(θ̂ −θ){n(log θ̂ −1− log θ +
θ/θ̂)}1/2, with the global maximum likelihood estimator θ̂ given by θ̂ = n/V . The
signed root statistic r(θ) is seen to be a function of V , and therefore has a sampling
distribution which does not depend on the nuisance parameter λ. Since r(θ) is in
fact a monotonic function of V , and the exact conditional inference is equivalent
to inference based on the marginal distribution of this latter statistic, the bootstrap
inference will actually replicate the exact conditional inference without error, at least
in an infinite bootstrap simulation. Thus, from a conditional inference perspective, a
bootstrap inference will be exact in this example.

6.2 Log-normal mean

As a second example of conditional inference in an exponential family, suppose
{Y1, . . . , Yn} is a random sample from the normal distribution with mean μ and
variance τ , and that we want to test the null hypothesis that ψ ≡ μ + 1

2τ = ψ0,
with τ as nuisance parameter. This inference problem is equivalent to that around the
mean of the associated log-normal distribution.

The likelihood ratio statistic is

w(ψ) = n[− log τ̂ − 1 + log τ̂0 + 1

4
τ̂0 + {τ̂ + (Ȳ −ψ0)

2}/τ̂0 + (Ȳ −ψ0)],

with Ȳ = n−1∑n
i=1 Yi , τ̂ = n−1∑n

i=1(Yi − Ȳ )2, and where the constrained maxi-
mum likelihood estimator of the nuisance parameter τ under the hypothesis ψ = ψ0
is given by τ̂0 = 2[{1 + τ̂ + (Ȳ −ψ0)

2}1/2 − 1].
In this example, calculation of the p-values associated with the exact conditional

test is awkward, requiring numerical integration, but quite feasible: details of the test
are given by Land [19]. We perform a simulation of 5000 datasets, for various sample
sizes n, from the normal distribution with μ = 0, τ = 1, and consider one-sided
testing of the hypothesis H0 : ψ = 1/2, testing against ψ > 1/2. We compare the
average absolute percentage relative error of different approximations to the exact
conditional p-values over the 5000 replications in Table 1. Details of the methods
are as follows: r is based on N(0, 1) approximation to the distribution of r(ψ);
r∗ is based on N(0, 1) approximation to the distribution of r∗(ψ); boot is based
on bootstrap estimation of the marginal distribution of r(ψ). All bootstrap results
are based on 5,000,000 samples. The figures in parenthesis show the proportion of
the 5000 replications where the corresponding method gave the smallest absolute
percentage error. Bootstrapping the marginal distribution of the signed root statistic
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Table 1. Log-normal mean problem: comparison of average absolute percentage relative errors
in estimation of exact conditional p-values over 5000 replications

n r r∗ boot

5 6.718 0.476 0.367
(0.3%) (37.3%) (62.4%)

10 4.527 0.154 0.136
(0.1%) (41.9%) (58.0%)

15 3.750 0.085 0.077
(0.0%) (42.3%) (57.7%)

20 3.184 0.054 0.050
(0.0%) (43.3%) (56.7%)

is highly effective as a means of approximating the exact conditional inference for
a small n, this procedure remaining competitive with the r∗ approximation, which
yields the same theoretical error rate, O(n−3/2), as the sample size n increases.

6.3 Weibull distribution

As a simple illustration of an ancillary statistic model, suppose that {T1, . . . , Tn} is a
random sample from the Weibull density

f (t ; ν, λ)= λν(λt)ν−1 exp{−(λt)ν}, t > 0, ν > 0, λ > 0,

and that we are interested in inference for the parameter ν: note that ν = 1 reduces
to the exponential distribution. If we take Yi = log Ti , then the Yi are an independent
sample of size n from an extreme value distribution EV(μ, θ), a location-scale family,
with scale and location parameters θ = ν−1, μ = − logλ. It is straightforward to
construct exact inference for θ , conditional on the ancillary a = (a1, . . . , an), with
ai = (yi − μ̂)/θ̂ : see, for example, Pace and Salvan [24, Section 7.6].

Again, we perform a simulation of 5000 datasets, for various sample sizes n,
from the Weibull density with ν = λ = 1, and consider both one-sided and two-sided
testing of the hypothesis H0 : θ = 1, in the one-sided case testing against θ > 1.
As before, we compare the average absolute percentage relative error of different
approximations to the exact conditional p-values over the 5000 replications in Table
2. Details of the methods are as follows. For the one-sided inference: r is based on
N(0, 1) approximation to the distribution of r(θ); r∗ is based on N(0, 1) approxima-
tion to the distribution of r∗(θ); boot is based on bootstrap estimation of the marginal
distribution of r(θ). For two-sided inference: w is based on χ2

1 approximation to the
distribution of w(θ); Bart is based on χ2

1 approximation to the (empirically) Bartlett
corrected w∗(θ); boot is based on bootstrap estimation of the marginal distribution of
w(θ). As before, all bootstrap results are based on 5,000,000 samples, this same sim-
ulation being used for empirical Bartlett correction. Figures in parenthesis show the
proportionof the 5000 replications where the corresponding method gave the smallest
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Table 2. Weibull scale problem: comparison of average absolute percentage relative errors in
estimation of exact conditional p-values over 5000 replications

One-sided Two-sided

n r r∗ boot w Bart boot

10 37.387 1.009 0.674 12.318 0.666 0.611

(0.0%) (17.1%) (82.9%) (0.0%) (43.9%) (56.1%)
20 25.473 0.388 0.397 6.118 0.185 0.227

(0.0%) (46.2%) (53.8%) (0.0%) (63.4%) (36.6%)
30 20.040 0.252 0.307 4.158 0.131 0.200

(0.0%) (60.9%) (39.1%) (0.0%) (68.7%) (31.3%)
40 17.865 0.250 0.273 3.064 0.117 0.177

(0.0%) (70.1%) (29.9%) (0.0%) (69.7%) (30.3%)

absolute percentage error. For both one-sided and two-sided inference, bootstrapping
the marginal distribution of the appropriate statistic is highly effective for a small n,
though there is some evidence that as n increases in the two-sided case, the simu-
lation effort is better directed at estimation of the (marginal) expectation of w(θ),
and the approximation to an exact conditional inference made via the chi-squared
approximation to the scale-adjusted statistic w∗(θ).

6.4 Exponential regression

Our final example concerns inference on a two-dimensional interest parameter, in the
presence of a scalar nuisance parameter.

Let Y1, . . . , Yn be independent and exponentially distributed, where Yi has mean
λ exp(−θ1zi −θ2xi), where the zi and xi are covariates, with

∑n
i=1 zi = ∑n

i=1 xi = 0.
The interest parameter is θ = (θ1, θ2), with λ nuisance. The log-likelihood function
for (θ, λ) can be written as

l(θ, λ) = −n logλ− nλ̂θ /λ.

Here a = (a1, . . . , an) is the appropriate conditioning ancillary statistic, with ai =
log yi − log λ̂+ θ̂1zi + θ̂2xi .

The likelihood ratio statisticw(θ) is easily shown to have the simple form

w(θ) = 2 log[
1

n

n∑
i=1

exp{ai + (θ1 − θ̂1)zi + (θ2 − θ̂2)xi }].

Now we perform a simulation of 2000 datasets, for various sample sizes n, from this
exponential regression model with θ = (0, 0), λ = 1, and consider testing of the
hypothesis H0 : θ = (0, 0). Let z = (54, 52, 50, 65, 52, 52, 70, 40, 36, 44, 54, 59)
and x = (12, 8, 7, 21, 28, 13, 13, 22, 36, 9, 87): these are covariate values in a lung
cancer survival dataset described by Lawless [20, Table 6.3.1]. In our simulations, for
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Table 3. Exponential regression problem: comparison of average absolute percentage relative
errors in estimation of exact conditional p-values over 2000 replications

n w Bart boot

5 12.473 1.199 0.557
(0.4%) (23.8%) (75.8%)

7 5.795 1.013 0.962
(3.5%) (42.7%) (53.9%)

9 4.636 0.791 0.786
(8.8%) (43.1%) (48.2%)

11 4.840 1.642 1.622
(18.4%) (33.3%) (48.4%)

a given n, the covariate values (z1, . . . , zn) and (x1, . . . , xn) are taken as the first n
members of z and x respectively, suitable centred to have

∑n
i=1 zi = ∑n

i=1 xi = 0.
Exact conditional inference for this model is detailed by Lawless [20, Section 6.3.2].
Exact conditional p-values based on the likelihood ratio statistic W are, following
Barndorff-Nielsen and Cox [2, Section 6.5], obtained by numerical integration of the
exact conditional density of θ̂ given a , as described by Lawless [20, Section 6.3.2],
over the appropriate set of values of θ̂ which give a value of W exceeding the observed
value.

The average absolute percentage relative error of different approximations to the
exact conditional p-values over the 2000 replications are given in Table 3. Now
w is based on χ2

2 approximation to the distribution of w(θ); Bart is based on χ2
2

approximation to the (empirically) Bartlett correctedw∗(θ); boot is based on bootstrap
estimation of the marginal distribution of w(θ). As before, all bootstrap results are
based on 5,000,000 samples, this same simulation being used for empirical Bartlett
correction, and the figures in parenthesis show the proportion of the 2000 replications
where the corresponding method gave the smallest absolute percentage error. Now,
exact conditional p-values appear to be effectively approximated by the marginal
distribution of the likelihood ratio statistic, though the empirical Bartlett correction
is quite comparable.

7 Conclusions

Marginal simulation approaches to approximation of an exact conditional inference
have been shown to be highly effective, in both multiparameter exponential family
and ancillary statistic models.

For inference on a scalar natural parameter in an exponential family, the appro-
priate exact one-sided conditional inference can be approximated to a high level of
accuracy by marginal simulation of the signed root likelihood ratio statistic R. This
procedure considers the sampling distribution of R under the model in which the
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interest parameter is fixed at its null hypothesis value and the nuisance parameter
is specified as its constrained maximum likelihood value, for that fixed value of the
interest parameter. The theoretical rate of error in approximation of the exact condi-
tional inference is the same (O(n−3/2)) as that obtained by normal approximation to
the distribution of the adjusted signed root statistic R∗, and excellent approximation
is seen with small sample sizes. Similar practical effectiveness is seen with small
sample sizes n in ancillary statistic models, though here the theoretical error rate of
the marginal simulation approach, O(n−1), is inferior to that of the analytic approach
based on R∗ .

In ancillary statistic models, where interest is in a vector parameter, or in two-sided
inference, based on the likelihood ratio statistic W , on a scalar interest parameter, two
marginal simulation approaches compete. The first uses the simulation to approximate
directly the sampling distribution of W and the second approximates the marginal
expectation of W , this then being the basis of empirical Bartlett correction of W . The
two methods are seen to perform rather similarly in practice, with direct approximation
of the distribution of the stable statistic W yielding particularly good results in small
sample size situations.
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