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 SUMMARY

 This paper shows how to derive more information from a bootstrap analysis, information

 about the accuracy of the usual bootstrap estimates. Suppose that we observe data x = (xl,
 x2, . . ., xv), compute a statistic of interest s(x) and further compute B bootstrap
 replications of s, say s(x*l) s(x*2), . . ., s(x*B), where B is some large number like 1000.
 Various accuracy measures for s(x) can be obtained from the bootstrap values, e.g. the
 bootstrap estimates of standard error and bias, or the length and shape of bootstrap
 confidence intervals. We might wonder how accurate these accuracy measures themselves

 are, or how sensitive they are to small changes in the individual data points xi. It turns
 out that these questions can be answered from the information in the original bootstrap
 sample s*1, S*2, . ., s*B, with no further resampling required. The answers, which make
 use of the jackknife and delta method influence functions, are easy to apply and can give
 informative results, as shown by several examples.

 Keywords: BOOTSTRAP STATISTICS; CONFIDENCE INTERVAL INFLUENCE; IMPORTANCE SAMPLING;

 TESTING A PIVOTAL; TUNING AN ESTIMATOR

 1. INTRODUCTION

 The bootstrap is a computer-based technique for estimating standard errors, biases,
 confidence intervals and other measures of statistical accuracy. It automatically
 produces accuracy estimates in almost any situation, including very complicated ones,
 without requiring much thought from the statistician. This is a considerable virtue,
 but a virtue that can be abused. The danger lies in the possibility that the bootstrap
 estimates of accuracy, so easily produced, might be accepted uncritically.

 This paper concerns thinking critically about quantities estimated by the bootstrap.
 To this end we shall use Tukey's jackknife to compute standard errors for bootstrap
 estimates. The jackknife has an interesting advantage here: the jackknife estimate
 of standard error for a bootstrap quantity can be computed from the original bootstrap
 replications, with no further resampling required. Moreover the jackknife calculations
 provide influence functions as well as standard errors. For example, we will be able
 to assess the influence of any one of the original data points on the length and shape
 of a bootstrap confidence interval.

 Of what use are error estimates for bootstrap quantities? The examples of the
 following sections show jackknife-after-bootstrap standard errors playing a variety
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 of roles: a comparison of bootstrap variances selects 25Wo as the preferred trimming
 proportion in an estimation problem from particle physics; how well determined is
 this choice? A bootstrap-t analysis is used to form an approximate nonparametric
 confidence interval for a parameter of interest; how close to pivotal is the bootstrap-t
 distribution based on this particular small data set? A bootstrap bias estimate is
 positive; is it significantly positive, or might we easily obtain a negative bias estimate
 from a similarly constructed independent data set?

 The paper proceeds as follows. Section 2 presents the basic jackknife and bootstrap
 definitions. These are developed in Section 3 to give standard errors and influence
 functions for bootstrap estimates. A pair of small data sets provides convenient
 illustrations of the ideas in Sections 2 and 3. The particle physics example of
 Section 4 shows the jackknife-after-bootstrap idea at work in a bigger, more
 complicated data analysis problem. Section 5 concerns the delta method, a closely
 related older cousin of the jackknife. Delta-after-bootstrap standard errors and
 influence functions are developed and shown to have a computational advantage over
 the jackknife in one particular situation. Section 6 discusses internal error, the
 inaccuracy in jackknife-after-bootstrap calculations arising from the limited number
 of bootstrap replications available in any particular situation.

 What about bootstrap-after-bootstrap calculations? Applying a second level of
 bootstrapping is certainly the most direct and efficient way to assess the accuracy
 of the first-level results. It is also a more flexible approach than jackknife-after-
 bootstrap, answering questions that cannot be phrased in terms of standard errors.
 I am thinking here of Loh's (1987) approach to calibrating confidence limits, and
 related double-bootstrap hypothesis testing methods due to Chapman and Hinkley
 (1985), Beran (1988), Tibshirani (1988) and Hall and Martin (1988).

 This paper concentrates on error estimates that do not require a second level of
 bootstrap replication. Jackknife-after-bootstrap and delta-after-bootstrap answers
 are obtained by simply rearranging the original bootstrap results. This reinforces the
 truism that bootstrap data, like real data, deserve a thorough examination. More
 to the point, jackknife-after-bootstrap requires perhaps 100-1000 times less
 computation than bootstrap-after-bootstrap. This advantage will certainly decrease
 as computers grow faster, or as more efficient bootstrap algorithms become available;
 see Hinkley and Shi (1989) and Efron (1990a). At present, bootstrap-after-bootstrap
 seems to be too computationally intensive for routine use.

 2. ONE-SAMPLE NONPARAMETRIC SITUATION

 In a one-sample problem the observed data x = (xl, x2, . .., x") are obtained by
 independent and identically distributed (IID) sampling from an unknown distribution
 F,

 F 0(XII X2, **., Xn)=X. (2.1)

 The individual data points xi take their values in a sample space &'( which might be
 the real line, Euclidean vector space or a more general set of possible outcomes. This
 section defines the jackknife and bootstrap ideas that we shall need in terms of the
 one-sample nonparametric situation, nonparametric meaning that the unknown
 distribution F could be any probability distribution on 2. Section 4 extends the
 discussion to a multisample nonparametric situation. Section 5 of Efron (1990a) extends
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 the jackknife-after-bootstrap theory to parametric families, but parametric
 considerations appear here only in remarks 1 and 8.

 Suppose that s(x) is a real-valued statistic of interest, such as a mean, a correlation
 coefficient, or the maximum eigenvalue of a sample covariance matrix. Let x(i)
 indicate the data set remaining after deletion of the ith point,

 x(i) - (xl, x2, . .., xi-, xi , . . ., xn), (2.2)

 and let s(i) = s(x(i)), the corresponding deleted point value of the statistic of interest.
 The jackknife influence function for s is defined to be

 uifs1=(n-1)(so-s(1)) s s(in). (2.3)

 In the case where the xi are real valued, and s(x) equals the sample mean x, formula
 (2.3) becomes u4J5{=xi-5c. Intuitively, points with large positive or negative values
 of xi-x have a large influence on the statistic x. Formula (2.3) generalizes this
 notion to arbitrary statistics s(x).

 The relative jackknife influence function

 utS=S=UiStS/ Uj1S12 j1/2 (2.4) i j ~n-I

 has a particularly easy interpretation: in the case of the mean, u1tXW=(Xi-X)/
 (where O2= (Xi -)2/(n - 1)), the number of estimated standard deviations of x,
 from x. Moderate values of u t{s, say supi( utsJ ) < 2, assuage concerns about the
 robustness of s(x). Hampel et al. (1986) is an excellent reference for influence functions
 and robustness.

 Fig. 1 displays two small data sets used in most of our examples. Fig. l(a) shows
 n = 15 data points xi = (yi, zi) pertaining to the entering classes of 1973 at 15
 American law schools: yi is the overall grade point average (GPA) for the class,
 while zi is the class average on the national legal test, the law school achievement
 test (LSAT). Fig. 1 of Efron and Tibshirani (1986) lists the data. We shall be interested
 in various measures of accuracy concerning the Pearson correlation coefficient
 s(x) = 0.776. The values plotted are the relative jackknife influence function ultsJ,
 equation (2.4). Point A is noticeably outlying and negatively influential (pulling down

 the value of s) uitfs = - 2.97, suggesting that the non-robustness of the Pearson
 correlation coefficient might have dangerous consequences for the law school data.
 Those consequences will become more evident in Section 3, when we assess the
 influence of point A on confidence intervals for the true correlation.

 Fig. 1(b) shows n = 8 data points xi= (yi, zi) from a bioequivalence study. Each
 of eight patients was measured three times for the blood level of a certain hormone:
 once after taking placebo medication, once after taking a compound known to raise
 the hormone blood level and once after taking a new version of the same compound.
 Then yi = blood level after compound minus blood level after placebo, and zi = blood
 level after new compound minus blood level after compound. (The data values are

 (yi, zi) = (8406, - 1200), (2342, 2601), (8187, - 2705), (8459, 1982), (4795, - 1290),
 (3516, 351), (4796, - 638), (10238, - 2719).) The statistic of interest here is the ratio
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 Fig. 1. Two small data sets: (a) the law school data, n =15 points x = (y1, Zi), where y1 and

 zN are performance measures for the 1973 entering classes at 15 American law schools (the statistic
 of interest is the Pearson correlation coefficient s(x) =0.776; the values plotted are the relative
 jackknife influence function (2.4); the point labelled A is a noticeable outlier); (b) the bioequivalence
 data, n =8 points x = (y, Zi) relating to a bioequivalence study described in the text (the statistic
 of interest is the ratio s(x)=z/= - 0.071; there are no outstanding outliers; the points labelled B
 and C are moderately influential in the positive direction)

 s(x) =z/= - 0.071. We see that there are no flagrant outliers, only points B and
 C being even moderately influential.

 Tukey's jackknife estimate for the standard error of s(x), which followed
 Quenouille's original suggestion for the jackknife bias estimate, is

 sejackAsT ufsJ2/n (n - 1) 1/, (2.5)

 reducing to the usual estimate -l )2/nh(no - 1) nl/2 for the standard error of x (see
 chapters 3 and 6 of Efron (1982)); sejackss equals 0.143 for the law school
 correlation coefficient and 0.105 for the bioequivalence ratio statistic. Note that points
 contribute to the estimated standard error proportional to uuis}2. We see that
 utas,2/(n - 1) = Upsi}2/s = , zur2; the proportion point i contributes to the estimated
 standard error. Point A contributes 63o of sejackc s for the law school data.

 The usual nonparametric estimate of F is F, the empiricalprobability distribution,
 putting probability 1/n on each point xi,

 F: probability 1/n on xi, i= 1, 2, . . ., n. (2.6)

 A bootstrap sample x* - (X1* X2 . . .t hx) is a random sample of size n drawn from

 FSI 4,1 I Xn -)=X * (2.7)
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 Fig. 2. Histograms of B= 1000 bootstrap replications (a) for the correlation coefficient, law school
 data and (b) for the ratio statistic, bioequivalence data; various percentile points of the bootstrap
 distributions are indicated

 Then s* =s(x*), the statistic of interest evaluated for data set x*, is a bootstrap
 replication of s. A typical bootstrap analysis consists of independently drawing a large
 number B of independent bootstrap samples, evaluating the bootstrap replicates
 S*= s(x*b) for b = 1, 2, . . ., B and using summary statistics of the S*b values to
 assess the accuracy of the original statistic s(x). The two best known summaries are

 seboots tJ= E (s* b_S*.)2 /(B-1) 11/2, (2.8)
 b

 (s* = N2s*b/B), the bootstrap estimate of standard error for s, and

 biasbOOtds} = s* -s(x), (2.9)

 the bootstrap estimate of bias. See Efron and Tibshirani (1986).
 B= 1000 bootstrap replications were computed for each of the two examples in

 Fig. 1. Fig. 2 displays the bootstrap histograms, both of which look noticeably
 asymmetric. Table 1 gives various summary statistics pertaining to the bootstrap
 analyses. Two of these statistics are properties of the percentile confidence interval
 [s*(005), s*(095)], its length and shape respectively; see Efron (1987). Here s*(O)
 denotes the 100oth percentile of the empirical distribution of the B = 1000 bootstrap
 replications 5*b.

 The jackknife-after-bootstrap method of Section 3 allows us to attach standard
 errors to the statistics in Table 1. These are standard errors in the usual sense: they
 indicate how much the statistic varies under random sampling (2.1) (not how much
 it varies because of the limitations of using only B bootstrap replications). We shall
 see for example that the estimated standard error for the bioequivalence shape estimate
 0.440 is 0.313, so that the estimated shape is only 1.41 standard errors above 0;
 it is plausible that another sample of eight subjects might yield a negative shape for
 the histogram in Fig. 2(b).
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 TABLE I

 Bootstrap statistics for the law school and bioequivalence bootstrap analyses, B= 1000 bootstrap
 replications each t

 Bootstrap Law school Bioequivalence Definition
 statistic correlation ratio

 s=0.776 s=-0.071

 sebOOt 0.128 0.104 Formula (2.8)
 biasbOot 0.002 0.0053 Formula (2.9)
 Length 0.402 0.329 S*(0,95) _ S*(o0o5)
 (normalized) (0.95) (0.96) (divided by 2 x 1.645 seboot)

 Shape - 0.470 0.440 log I(S*(0.95) - S*(05) )/(S*(0.5) _ ?*(?.?5))
 T *(0.95) 2.93 95th percentile for bootstrap-t statistic: see

 Section 3

 tThe length and shape statistics relate to the central 9007o percentile interval [ S*(0.05), S*(0-95)], where s*(a) is the l00ath
 percentile of the bootstrap replications. Percentile intervals are the simplest form of bootstrap approximate confidence
 intervals; see Efron (1987).

 The entries in Table 1 are bootstrap statistics, i.e. functions of x that are evaluated
 in terms of bootstrap sampling (2.7). Here is the general definition of a bootstrap
 statistic for one-sample nonparametric situations.

 (a) Begin with a random variable T(x, F), a function of x and F, for example

 T(x, F) = s(x) - 0f(F), (2.10)

 where f(F) is a parameter of interest, e.g. the Pearson correlation coefficient
 (for F bivariate), and s(x) is an estimator of 0(F), e.g. Spearman's rank
 correlation. We shall take T(x, F) real valued, but this is not a necessity of
 the theory.

 (b) Let [ T(X, F)] indicate the probability distribution of T(X, F), for

 X= (XI, . . ., X) an IID sample from F, and let q[ T(X, F)] be some
 functional of this distribution, e.g. its expectation, its standard deviation or
 its 90th percentile point.

 (c) Finally, set 'y(F) 4 [T(X, F)], and define the bootstrap statistic

 7(x) y 7(F), (2.11)
 where F is the empirical probability distribution (2.6).

 Definition (2.11) of a bootstrap statistic is equivalent to

 7(x) =X[T(x*, F)] (2.12)
 In the chain of definitions leading to definition (2.12), x determines F, (2.6), F gives
 x* by random sampling (2.7), x* and F determine a bootstrap replication of T, e.g.
 T(x*, F) = s(x*) - O(F) in case (2.10), and finally the bootstrap distribution of T(i.e.
 the distribution [ T(x*, F) ], when F is held fixed at its observed value and only x*
 is considered random) determines Zy according to the functional 0 (2.12).

 In practice the numerical value of j'(x) must be approximated by Monte Carlo
 methods. We generate B independent bootstrap samples x*1, x*2, ..., x*B according
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 to formula (2.7), calculate the corresponding bootstrap replications of T, say
 T*b - T(x*b, F), and approximate j'(x), definition (2.12), by

 oy(x)=-[T(x*b, F), b=1, 2, . . ., B]. (2.13)

 where [T(X*b, F), b = 1, 2, . . ., B] indicates the empirical distribution putting
 probability 1/B on each value T*b. The entries of Table 1 were calculated in this
 way.

 3. JACKKNIFE-AFTER-BOOTSTRAP

 This section discusses the application of the jackknife to bootstrap statistics 'y(x),
 definition (2.12). First we need to calculate the deleted point values To - -= (x(i)),
 equation (2.2), to compute the jackknife influence function ui{ ^ I and standard error
 estimate sejack'yl, equations (2.3) and (2.5). Let F(i) indicate the deleted point
 empirical distribution,

 F(i): probability 1/(n- 1) on xj, j= 1, 2, . . ., i- 1, i+ 1, . . ., n. (3.1)

 The following obvious lemma leads directly to the computation of or(

 Lemma 1. An IID sample of size n from F(i),

 F(i) --*(xI , x2, . ,Xn ) =x*, (3.2)
 has the same distribution as a bootstrap sample from F, sample (2.7), in which none
 of the XJ* values equals xi.

 Proof. In either case, each of the n components of x* independently equals xj,
 j ? i, with probability 1 /(n - 1). o
 For a given bootstrap sample (2.7), let P, denote the proportion of the bootstrap

 sample equalling xi,

 PI= #tx =x,j/n, (3.3)

 and define the resampling vector P - (PI, P2, . . ., Pa )'. (We could, but will not,
 use the more consistent notation P* and P*.) Then, according to lemma 1 and
 definition (2.12),

 e(i)=[ T(x* , P(,))I Pi = 0] (3.4)
 where [ T(x*, (' )) I Pi = 0 ] indicates the conditional bootstrap distribution of T(x*,
 F(O)) given that P,=O.

 In practice, the value of dy), like j' itself, must be approximated by Monte Carlo
 methods. We approximate (,) by

 7(i) - T [ , b such that pIb = O ], (3.5)
 where the bracketed term indicates the empirical distribution of T,*) - T(x*/), F(l)
 for those values of b such that the resampling vector pb has Pb- 0. In Illost cases,
 including all those considered in this paper, 'w(i) is easily computed by rearr-anlgement
 of the original bootstrap calculations. No further resampling computationis airc required.

 The approximations ~(i) usually converge to gj,) as the numllber of bootstrap
 replications B-+ oo. (Counter-examples exist for discontinuous ftnlhlltionatMls / like the
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 TABLE 2

 Estimated jackknife standard errors and influence functions for the bootstrap statistics length and shape
 of Table 1, formulae (3.5) and (3.6)t

 Law school correlation Bioequivalence ratio
 Correlation Length Shape Ratio Length Shape

 Statistic 0.776 0.402 - 0.470 -0.071 0.329 0.440
 Jackknife 0.143 0.248 0.307 0.106 0.100 0.376

 standard error

 (corrected) (0.242) (0.000) (0.095) (0.313)
 [smoothed] [0.245] [0.026]

 Uf {Si 11,1XX l{X '{sl X{ l
 (?0.20) (?1.17) (?0.086) (?0.55)

 Influence A -2.970 3.100 0.380 -1.140 -0.110 0.240
 functions --1.070 0.790 -1.940 -1.120 -0.200 1.490

 -0.250 -0.520 1.060 - 0.460 -0.230 0.020

 -0.220 -0.120 -1.880 -0.310 -0.140 0.110
 -0.100 -0.270 1.540 -0.120 -0.140 -0.150
 -0.100 -0.170 1.020 0.330 0.010 0.040
 -0.010 0.430 - 0.710 B 1.370 0.610 0.550
 0.000 -0.340 1.650 C 1.460 0.220 -2.300
 0.230 0.190 - 1.040

 0.310 -0.120 -0.900

 0.530 -0.520 0.390

 0.610 -0.500 0.690
 0.900 -0.430 - 0.110

 1.010 -0.900 0.940

 1.130 -0.620 - 1.090

 tThe ? values for a, and the corrected jackknife standard errors reflect the limitations of our Monte Carlo
 calculations, with B= 1000 rather than B - oo, as explained in Section 6. The smoothed estimates of the standard
 error for the law school correlation are explained in remark 11.

 percentiles.) Using <(i), we can approximate the jackknife influence function and
 standard error estimate for y in the obvious way,

 {i>} ^y - (n - n- (i)) ( ) Z

 (3.6)

 sejackl [ i=E sl2/n (n - 1) 1/2

 with, usually, IJ1- uJ u1V} and -ejackt l- sejackVBI as B-4 Co. Section 6 considers how
 the number of bootstrap replications B affects the estimates i~i and sejack. Remark 9
 discusses the difference between set^Vl and set{y, which we shall ignore for now.

 Table 2 gives it } and sejacktV I for the bootstrap statistic's length and shape, for
 both data sets. The relative influence functions for length and shape,

 u, t^ I u, 71{/ (I n ) 1/2 (3.7)

 are displayed in Fig. 3.
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 Fig. 3. Relative influence functions uitf, for two bootstrap statistics j (the left-hand number is ut
 for -y the length of the central 90% percentile interval, as in the third line of Table 1; the right-hand
 number is jut for j the shape statistic, fourth line of Table 1; point A is enormously influential for
 length, but not shape; point B is highly influential for length but not shape; point C is highly influential
 for shape but not length): (a) law school correlation; (b) bioequivalence ratio

 Some non-obvious facts emerge: point A has little influence on shape, but is
 enormously influential, in a positive direction, for the length of the percentile interval
 (so using a robust correlation estimate that reduced the influence of point A would
 probably shorten the length of the relevant confidence interval); point B is highly
 influential on length but not shape, and vice versa for point C. The length of the
 percentile confidence interval is better estimated in the bioequivalence case than in
 the law school case, coefficient of variation 0.100/0.329=0.30 compared with
 0.248/0.402 = 0.62, because of the overwhelming effect of point A. Conversely, shape
 is better estimated in the law school case.

 Table 2 gives error values (?) for the estimates F4i J. These reflect the limitations
 of using the bootstrap data from only B = 1000 replications in equations (3.5) and
 (2.13), rather than B-+ co; see Section 6. The sum of squares comprising gejack^^y
 equations (3.6), is increased by these errors. Corrected values of the jackknife standard
 errors appear in the third line of Table 2. Even with this correction, the shape statistic
 for the bioequivalence data is not significantly different from 0, 0.440/0.313 = 1.41.
 The ? errors for the law school shape statistic are so large that they easily account
 for all of 9ejackfT^ = 0.307. (This can be seen in Fig. 3(a), where adjacent data points
 have completely different values of u(i). The smoothed estimate of standard error
 for y, explained in remark 11 of Section 6, is only 0.026.) Thus y/sejack[jj should
 be substantially bigger than - 0.470/0.307 = - 1.53. It is reasonable to conclude that
 the asymmetry seen for the law school correlation bootstrap histogram is genuine,
 but that the asymmetry for the bioequivalence ratio bootstrap histogram may well
 be an artefact of these particular eight data points.

 The computations going into the left-hand side of Table 2 are graphically portrayed
 in Fig. 4. The horizontal broken lines are at heights s*(a), the 100aeth percentile of
 all 1000 bootstrap correlations for oa values 0.05, 0.10, 0.16, 0.50, 0.84, 0.90, 0.95.
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 Fig. 4. Percentiles B-= 1000 bootstrap replications of s(x), the law school correlation coefficient: the
 broken horizontal lines indicate percentiles of all 1000 values S*b, in ascending order 0.05, 0.10, 0.16,
 0.50, 0.84, 0.90, 0.95; the broken curves are sample percentiles for samples x*b having pb= 0; index
 i is arranged in increasing order of ut{sJ, as shown in Fig. 1; for example, 384 of the x*b were missing
 point A, and the corresponding values Of 5*b had fifth percentile 0.788, 95th percentile 0.971; point
 A is seen to have an enormous negative influence on the lower percentiles of the bootstrap distribution
 for s, since removing it greatly increases these percentiles

 The broken curves trace these same percentiles as one point at a time is deleted from
 the original sample.

 The points were deleted in order of their relative influence on s(x), equation (2.4), and
 the deleted point percentiles were plotted against ut{sJ. Point A of Fig. 1 is plotted
 at the far left-hand side, at utfsJ = - 2.97. 384 of the 1000 bootstrap samples x*b did
 not include point A. (The expected number is 1000(1 -1/15)15 =355.) The 384
 corresponding bootstrap replications s(x*b) have fifth percentile 0.788 and 95th
 percentile 0.971. We see that point A has an enormous positive influence on length,
 since deleting point A reduces length by half, from 0.402 = 0.951 - 0.549 to
 0.183 = 0.971 - 0.788. This shows up in Fig. 3, where point A is seen to have relative
 influence 3.23 for length.

 Next we shall apply jackknife-after-bootstrap calculations to a more ambitious
 bootstrap analysis. Let p be the true correlation between GPA and LSAT in the law
 school situation, the correlation of the unknown bivariate distribution F giving the
 data x, sample (2.1). Suppose that we want a confidence interval for p, as was implicitly
 the reason for our interest in the percentile interval [s5*(oos), s*(o95)]. The bootstrap-t
 approach (see Hall (1988)) begins with the definition of a Student (-like quantity
 pertaining to p,

 the denominator d(x) being some estimate of standard error for s(x).
 In what follows, we take s(x) to be the Pearson correlation coefficient and
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 Fig. 5. Percentiles of B= 1000 bootstrap replications of the T-statistic (3.8), law school data: the broken
 horizontal lines indicate percentiles of all 1000 values T*b; the broken curves are percentiles removing
 one point at a time from the data set, points removed in order of influence ut{sI, as in Fig. 4; the
 estimate 7T(095) = 2.93 has jackknife-after-bootstrap standard error 1.81, after correction for internal error

 d(x) =1 - s(x)21/4 5 + 0.03. (3.9)

 If F is bivariate normal, then l1 - s(x)2J/~j15 is a reasonable approximation to the
 standard error of s(x). The ad hoc constant 0.03 was added to stabilize the bootstrap
 distribution, which otherwise had a very heavy upper tail.

 A central 9007o confidence interval for p is

 p E [ s(x) -d (x) TP095), s(x) -d (x) TP005) (3.10)

 where T(a) is the 100cuth percentile of T. This is equivalent to the statement that T
 lies in [ TP005), T 095) ] with 900/o probability. However, formula (3.10) is unusable
 since the percentiles of T are unknown.

 The bootstrap-t approach replaces TP005) and TP095) in formula (3.10) with their
 bootstrap estimates: each bootstrap sample x*b yields a bootstrap replication of T,

 TO -S(X*b) -S(X) (3.11)
 d(x*b)

 (where we have used p (F) = s(x), the sample correlation coefficient); then the percentiles
 T*(005) and T*(095) of the B bootstrap replications are substituted for T(005) and T(095)
 in expression (3.10). The B = 1000 bootstrap replications of the law school data give
 T*(005) - - 0.939 and T*(095) = 2.93. Substituting these values, and s(x) = 0.776 and
 d(x) = 0.133, into expression (3. 10) gives p E [0.388, 0.901 ] as the 900/o bootstrap-t
 confidence interval for p.

 Fig. 5 is the same as Fig. 4, except that now it is the percentiles of T* (and of
 the deleted point values T!') that are displayed. We see that the upper percentiles
 are quite unstable. The jackknife-after-bootstrap standard error for T*(095) = 2.93 is
 1.96, reduced to 1.81 after correction for internal error; see Section 6. The coefficient
 of variation for T*(095) is 0.62= 1.81/2.93, compared with 0.24=0.224/0.939 for the
 lower percentile T*(o05).
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 The bootstrap-t approach has excellent asymptotic properties as the sample size
 n -+ oo. As Hall (1988) shows, this is because T= {s(x) -p (F)J/d(x) approaches its
 limiting distribution at a high rate of convergence. Fig. 5 shows that the asymptotics
 have not yet taken over in this data set. Even small changes in F, from F to F(j),
 expression (3.1), produce large changes in the distribution of T. Faced with this

 evidence, we might try another confidence interval approach, like the BCQ intervals
 of Efron (1987), or base our analysis on a more robust measure of correlation. Or,
 as suggested by Tibshirani (1988), we could try the bootstrap-t approach on a different
 scale, for example after making Fisher's tanh- l-transformation, and hope that the
 equivalent of Fig. 5 would show greater stability.

 Remark 1. It is sometimes useful to apply the bootstrap in parametric problems,
 when traditional parametric methods of error assessment are too difficult to use or
 too approximate to trust. Jackknife-after-bootstrap methods can be applied within
 parametric families. Doing so shows the relation of lemma 1 to importance sampling;
 see Hammersley and Handscomb (1964).

 Suppose that Y= ff. (x), q E NJ is a parametric family of density functions indexed
 by a parameter vector q and that we are in the one-sample situation, where the observed
 data x= (xl, x2, . . ., xn) is an IID sample from some member of S,

 IID

 fn 0(XI , X2, .. Xn) =X. (3.12)
 Let f(x) -7= f(xi) indicate the density of the whole sample. The parameter space
 N is a subset of k-dimensional Euclidean space. Given x, we estimate q according
 to some rule ^ = i (x). A parametric bootstrap sample is an IID sample of size n from

 f?i,

 IIDx, 2 .. n * (3. 13)
 The random variable T(x, F) can now be written as T(x, q). Definition (2.12) of
 a bootstrap statistic still applies,

 7(x)=)[T(x*, i)], (3.14)
 where [ T(x*, 7) ] indicates the distribution of T(x*, ) with v fixed and x* generated
 according to sample (3.13).

 Suppose that we have generated B independent bootstrap samples according to rule
 (3.13), x*'1, x*2,. ..., x*B. As in definition (2.13), we estimate the ideal value y(x) by

 j(x) =[T(x*b, ) b= 1, 2, . . ., B], (3.15)

 where the bracketed term is the empirical distribution of the B bootstrap replications
 T(x*b, i). However, formula (3.5) for estimating tj(i) no longer makes sense. Its
 place is taken by an importance sampling formula.

 Let i(i) =7(x(i) be the estimate of v based on the deleted point data set x(j),
 equation (2.2). The bootstrap density ratio

 i (X*) _ , fWYA,(x*) f,7(X*) (3.16)
 is assumed to be finite with probability 1 when sampling from fj(,(x*). Then we
 have a standard importance sampling result.

 Lemma 2. For any function r(T), the expectation of r[T(x*, l(0))jRj(x*) under
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 bootstrap sampling (3.13) is the same as the expectation of r T(x*, i) under

 deleted point bootstrap sampling

 f )(),(X1, XI , . . X, X )=X* (3.17)

 (^(i) is considered fixed in both cases, only x* varying.)

 We want to estimate jy()= j(x(i)), the deleted point value of j'(x), from B
 bootstrap samples generated according to sample (3.13). Lemma 2 suggests the estimate

 ~(i) =< [T(x*b, i/(')), probabilities Ri(x*b)/B], (3.18)
 the bracketed term indicating the distribution putting probability Ri(x*b)/B on
 T(x*b, (i)). Remark L of Efron (1990a) discusses an improvement on equation
 (3.15) based on ratio estimation.

 Parametric bootstrap calculations are often substantially more stable than their
 nonparametric counterparts. They trade off a reduction in variance for a possible
 increase in bias. Section 5 of Efron (1990a) re-does the bootstrap-t analysis (3.11),
 assuming a bivariate normal parametric family. The parametric analogue to Fig. 5
 shows that the bootstrap-t statistic is now much closer to being pivotal.

 4. CHOOSING AN ESTIMATOR FROM THE DATA

 Suppose that the statistician is trying to choose from a family of possible estimators
 s(x, q). For example s(x, q) might be the qWo trimmed mean for a real-valued data
 set x, so s(x, 0) is the ordinary mean, s(x, 0.50) is the median and s(x, 0.25) is the
 25Wo trimmed mean, the average of the middle 50Oo of the data. A reasonable selection
 method is to generate B bootstrap samples x*1, x*2, . . ., X*B, compute the bootstrap
 variance estimators v(q) = [sebOOtts(x, q)}] 2 for various choices of q and select
 s(x, q) corresponding to the smallest value of v(q). How well determined is this choice?
 The jackknife-after-bootstrap method provides an answer, with no further bootstrap
 sampling required. This section illustrates the calculations in the context of an
 estimation problem from particle physics, described more fully in Efron (1988) and
 Hayes et al. (1989).

 The tau particle is a heavy electron-like particle discovered in the 1970s by Martin
 Perl at the Stanford Linear Accelerator Center. Soon after its production the tau
 particle decays into various collections of more stable particles. About 86Wo of the
 time the decay involves just one charged particle. This rate, called decay1, in
 Table 3, has been independently estimated 13 times, as shown at the top of the table.
 Each estimate represents a major research project involving several years of work.
 The mean of the 13 numbers is 85.962, the 10o trimmed mean is 85.947, etc., as
 shown just below the data. Estimated bootstrap variances are given for each estimator,
 all these being based on the same B= 1000 bootstrap samples x(1)*l, x(1)*2, .
 x(1)*1???, generated as in sample (2.7) from the decay, data set x(1) = (xl (1),
 x2(1), . X.3.,X ))

 The one-charged-particle event comprises four main decay modes, called p, 7r, e,

 and /t in Table 3, plus an uncertain catalogue of other events. There have been n = 6
 independent measurements for the rate of occurrence of p, decayp; n = 7 for decay,;
 n = 14 for decay,; n = 19 for decay,. (A 20th observation for decay, has been
 excluded from consideration here. It is such an egregious outlier that it dominates
 the choice of an estimator if included.) Because of certain physical constraints,
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 TABLE 3

 Tau datat

 Decay, (n= 13) 84.0 84.7 84.7 85.1 85.2 85.2 86.0 86.1 86.7 86.9
 87.2 87.8 87.9

 Means 85.962 85.947 85.892 85.877 85.846 85.785 86.000

 Variances 0.107 0.141 0.178 0.201 0.229 0.293 0.381
 Trims (%) 0 10 20 25 30 40 50

 Decayp (n=6) 20.5 22.1 22.3 22.3 22.6 24.0
 Means 22.300 22.313 22.322 22.317 22.308 22.300 22.300

 Variances 0.178 0.178 0.182 0.168 0.157 0.159 0.159

 Decay, (n=7) 8.0 9.0 9.9 10.0 10.7 11.7 11.8
 Means 10.160 10.220 10.243 10.221 10.193 10.086 10.000

 Variances 0.250 0.310 0.369 0.397 0.434 0.469 0.535

 Decaye (n= 14) 13.0 16.0 17.0 17.4 17.6 18.2 18.2 18.3 18.4 18.9
 19.0 19.1 20.4 22.4

 Means 18.136 18.209 18.240 18.257 18.268 18.264 18.250
 Variances 0.312 0.254 0.168 0.145 0.131 0.123 0.129

 Decay,, (n = 19) 12.9 15.0 17.1 17.4 17.5 17.6 17.7 17.7 17.8 18.0
 18.2 18.3 18.3 18.8 19.4 21.0 22.0 22.0 22.4 (35.0)

 Means 18.374 18.454 18.156 18.066 18.016 18.000 18.000

 Variances 0.259 0.269 0.217 0.185 0.157 0.129 0.125

 A = decay, - (decayp + decay, + decaye + decay,)
 Means 16.995 16.750 16.931 17.016 17.061 17.135 17.450

 Variances 1.106 1.152 1.114 1.096 1.108 1.173 1.329
 Trims (%) 0 10 20 25 30 40 50

 t13 independent measures of decay1, the percentage of times that the tau particle decays into one charged particle,
 likewise 6, 7, 14 and 19 independent measurements of the decay modes decayp, decay,, decaye and decay,; of
 particular interest is the difference A = decay, - (decayp + decay, + decaye + decay); the means are trimmed means,
 with trim 0, 0.1, 0.2, 0.25, 0.3, 0.4 and 0.5 (the median); the variances are bootstrap variances obtained from B = 1000
 bootstrap replications for each of five decay categories. Which estimator is preferred? The data are from Efron

 (1988), where the outlying value 35.0 for decay, was included in the analysis.

 any one experiment provides only one estimate in the table: either an estimate for the

 composite rate decay1, or for one of the four modes, decayp, decay,, decay,, decay,.
 The goal of Hayes et al. (1989) was to give a confidence interval for the difference

 parameter

 A decay1 - (decayp + decay, + decay, + decay). (4.1)

 The corresponding difference of the 25Wo trimmed mean was the estimator 'a used
 in the bootstrap confidence interval construction; A = 17.016 for the data in Table 3.

 The 250o trimmed mean was chosen on the basis of a preliminary bootstrap analysis:
 five independent bootstrap data sets fx*b(h), b = 1, 2, . . ., 1000} were generated as
 in expression (2.7), from the five original data vectors x(h) in Table 3, h 1, p, 7r,

 e, i; these gave variance estimates v(q, h) for the trimmed means sfx(h), q}, q equal
 to Oo, 10o, 20Wo, 25Wo, 30Wo, 40Wo, 50Wo,

 v(q, h)= E fs*(q, h)-5*(q, h)J2 (s*b(q, h)=sfx*b(h), q}). (4.2a)

 The sum
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 v(q, A)=E v(q, h) (4.2b)
 h

 was used to estimate the variance of a(q)=sfx(1), qJ- [sfx(p), qJ+?sx(7w), q}
 +sIx(e), q? +sIx(t), q}]; the choice q = 25Wo minimized v(q, A) as seen at the bottom
 of Table 3, so the 25 o trimmed mean was selected as the preferred estimator for
 subsequent calculations.

 How well determined is the choice q = 25Wo? Would we expect to derive nearly the
 same answer from another, independent, version of Table 3, or might we select a
 much different value of q? In fact, jackknife-after-bootstrap calculations show that
 the choice q = 25Wo is not well determined here. This is seen in Fig. 6, where v(q, A)
 is plotted as a function of q, along with the jackknife-after-bootstrap standard error
 interval v(q, A) ? s-e(q, A). These standard errors apply to the differences between
 v(q, A) for the various choices of q, as described later. We see that even the largest
 difference v(0.50, A) - v(0.25, A) is less than one standard error greater than 0. The
 point here is not that the choice of q = 25Wo is foolish, but rather that it is not a choice
 strongly dictated by the data.

 The remainder of this section describes the calculation of s!e(q, A). First consider
 the one-sample problem where we have just one data vector x (instead of five) and
 want to select from possible estimators s(x, q) on the basis of minimum bootstrap

 variance v(q) = El= Is*b (q) - s*, (q)J2/(B - 1). Let V(i) (q) be the deleted point estimate
 (3.5), the empirical variance of the s*b(q) values corresponding to resampling vectors

 pb with PI' = 0. Define v(i) = (v(i)(q1), v(i)(q2), . . ., v(i)(qK)), where q1, q2, . . .qK
 are the allowed choices for q (K= 7 in Fig. 6). The jackknife estimate of covariance
 for v=(v(q1), v(q2), . . ., v(qK)) is

 n-in
 COViack n (V(i) - v()) (V(i) - v(), (4.3)

 this being the multivariate version of equation (3.6).
 The K x K matrix ovjack tends to overestimate coviack, the ideal jackknife estimate

 that would be obtained from equation (4.3) if B = oo. An approximate correction
 matrix, to be subtracted from &vjack iS obtained as in formula (6.12) of Section 6,

 cor= (n- 1)2 (en-1)&2 (4.4)
 n B

 where en = (1 - 1/ )n and &2 iS the K x K matrix having elements

 atk 2 = t* b(qkl )-t* (qkl ) } t* b(qk2 )-t* (qk2 ) }(B-1 ), (4 .5)
 b

 t*b(q) - fs*b(q) - 2s*. (q)Js*b(q). (The statistic t*b(q) arises from a Taylor expansion
 of the variance functional.) Correcting &0vjack will turn out not to be very important
 for the tau data.

 In comparing the bootstrap variances v(q), we are more interested in their differences
 than 'their absolute values. The vector of differences of the v(q) values from their
 mean is

 v = MKV, (4.6)

 where MK is the KxK projection matrix IK -11'/K (I is the identity matrix and
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 Fig. 6. Choice of an estimator for the tau data: - - , bootstrap variance v(q, A) for the qWo
 trimmed mean estimator of the difference parameter A, equation (4.2b), q equal to OWo, lOWo, 20Wo,
 25Wo, 30Wo, 40Wo and 50Wo; , v(q, A) ? se(q), where se(q) is a jackknife-after-bootstrap estimate
 of the standard error of v(q, A), corrected for internal error (none of the variance estimates differ by
 as much as one standard error)

 TABLE 4

 Choice of estimators for the tau datat

 q v(q, A) se(q, A) se(q, A)

 0 1.106 0.261 0.251
 0.1 1.152 0.175 0.167
 0.2 1.114 0.082 0.076
 0.25 1.096 0.059 0.053
 0.3 1.109 0.084 0.078
 0.4 1.173 0.157 0.148
 0.5 1.329 0.251 0.238

 tv(q, A) is the bootstrap variance estimate (4.2b); based on B= 1000
 bootstrap replications for each of the five decay rate data sets;
 se(q, A) is the square root of the diagonal element of cov(A), equation
 (4.8); se(q, A) is the same quantity calculated without subtracting
 the correction for internal error. The se(q, A) are estimated standard
 errors for the differences between the v(q, A); see Fig. 6.

 1 is the vector of K Is). Correcting for internal errors, we estimate the covariance
 of v by

 cov mK(covjack - cor)mK* (4.7)

 Returning to the tau data, cov(h) was calculated as in expression (4.7) for each
 set of data x(h), h 1, p, 7r, e, I, giving the estimated covariance matrix for
 v(A) = h v(h)
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 cov(A)= E cov(h) (4.8)
 h

 The entries s-e(q, A) in Table 4 are the square roots of the diagonal elements of cov(A).

 The full curves in Fig. 6 are v(q, A) ? se(q, A)). The uncorrected standard error estimates
 se(q, A) in Table 4 show that the correction for internal error is small in this case.

 Remark 2. Including the 20th observation 35.0 in the decay, data set raises
 v(O, A), the variance estimate for the ordinary mean, to nearly 2.0 and raises

 v(0.1, A) to 1.4, without much changing v(q, A) for q ,0.2. With these values, the
 choice q = 0.25 looks considerably more convincing than in Fig. 6, but really is not,
 as an error analysis shows.

 Remark 3. The methodology of this section offers, at least theoretically, a way
 to incorporate the data-based choice of an estimator into our estimate of its variability.
 Consider again the one-sample problem where we have available a range of estimators
 s(x, q), now letting q range over a continuum of possible values, for example
 qe [ 0, 0.5 ] in the trimmed mean case. The bootstrap estimate of variance v(q) is

 minimized for some value q, say q= q(x).
 With q considered fixed, the jackknife influence function for s(x, q) is uifs(x, q)}

 = (n - 1)Is( , q) - s(x(i), q)1, s ( , q)=- is(x(i), q)/n. It is more realistic to take into
 account the variability of q(x): ui[sfx, q(x)}] =(n- 1) [s( )-sfx(), q(x(i))I],
 s( )_ S2sfx(1), q(x(i))J/n. Here q(x(i)) is computed from the original bootstrap samples
 x*1, . . ., ~x* by using formula (3.5). The variance estimate

 ui [sfx, q(x)J]2/n(n - 1)

 takes into account the data-based choice of q.

 5. DELTA METHOD FOR BOOTSTRAP STATISTICS

 The delta method, or infinitesimal jackknife, is another approach to assessing
 influence functions and standard errors. This section discusses the application of the
 delta method to bootstrap statistics. In some special situations, this approach is more
 efficient than the jackknife in its use of a fixed number B of bootstrap replications.

 The delta method, as it will be used here, applies to functional statistics, statistics
 s(x) that are functions of the empirical distribution F, say

 s(x) = S(F). (5.1)

 The correlation and ratio statistics are functional, but the unbiased estimate of variance
 s(x) = E2 1(x _-x)2/(n - 1) is not: the data set which repeats each component of x twice
 yields the same F as x, but a different value of s(x). We assume below that the
 functional S(F) is smoothly defined in a neighbourhood of F; see section (6.3) of
 Efron (1982) and section 2.5 of Huber (1981).

 Let J,, i be a variant of the empirical distribution that puts extra probability on
 the ith point,

This content downloaded from 128.252.121.143 on Tue, 13 Aug 2019 16:58:03 UTC
All use subject to https://about.jstor.org/terms



 100 EFRON [No. 1,

 + e on xl,

 F, i probability (5.2)
 on xj, J 1i.

 Keeping e in the range [- 1/(n - 1), 1] makes the probabilities (5.2) non-negative.
 The delta method influence function for S, or s, is defined as the derivative

 equation (5.3) is also called the empirical influence function (Mallows, 1974), or
 Jaeckel's (1972) infinitesimal jackknife influence function. The derivative in equation
 (5.3) can sometimes be evaluated theoretically, but it is usually easier just to substitute
 a small value of e in the last expression.

 The delta method estimate of standard error, for S or s, is

 sedeltaSi(Z UilS}2/n )1/2. (5.4)

 This definition agrees with the usual nonparametric delta method estimate of standard

 error when applied to functions of means like the ratio statistic s(x) =zy; see
 section 6 of Efron (1981). The choice of denominator n2 in expression (5.4), rather
 than n(n - 1) as in estimate (2.5), is a convention that makes this agreement perfect
 but needs to be kept in mind when comparing sedelta with sejack. For the law school
 correlation, sedelta = 0.124 compared with sejack = 0.143; for the bioequivalence ratio,
 sedelta = 0.098 compared with sejack = 0 105.

 We want to apply the delta method to bootstrap statistics ^ (x) = 'y(F), statistic (2. 1 1).

 First we need a result relating ordinary bootstrap samples (2.7) to samples from F, i,

 F,e, i *(XI i X2 i* * *iXn ) X *(5.5)
 There are nn possible bootstrap samples (x*, x2*, . ., xn*), each of which has
 probability f(x*)- 1/nn under mechanism (2.7). Let f(x*) indicate the probability
 density of x* under mechanism (5.5).

 Lemma 3. The ratio of probability densities of a bootstrap sample x*, for mechanism
 (5.5) compared with mechanism (2.7), is

 fE itX )= (1_-e)n (1 + nE nP, (5 .6)

 where Pi= # {xj* = xil/n as in equation (3.3).

 The proof of lemma 3 is by direct computation from probabilities (5.2). By letting
 e approach its lower limit - 1/(n - 1), lemma 3 gives lemma 1.

 We first consider bootstrap statistics j (x), definition (2.12), of the expectation form

 jy(x)=y(F)= EF [ r T(x*, F) J], (5.7)
 where r(T) is a differentiable function of T, and EF indicates the ordinary bootstrap
 expectation, with F fixed and x* random as in mechanism (2.7). Form (5.7) looks rather
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 special, but it will lead to influence function expressions for all the bootstrap statistics

 in Table 1. The form rt T(x*, F)J for the random variable in equation (5.7) is no more
 general than T(x*, F) but is notationally convenient in the calculations that follow.

 Theorem 1. The delta method influence function for a bootstrap statistic of
 expectation form (5.7) is

 U^I-=EEpfn2(p1- 1/n) rtT(x*, F)?+r' fT(x*, F) ( aT(x *, F, ) 1

 =n2covAtPi, r*?+E [(r'*)UitT(x*, F) I (5.8)

 Proof. The second expression in equation (5.8) is just an abbreviated version of

 the first, with r*-rt T(x*, F)}, r'* r' t T(x*, F)}, Uit T(x*, F) a T(x*, Fe, i)/aE 0
 and covp indicating covariance under bootstrap sampling (2.7). Suppose that
 b= 1, 2, . . ., n' indexes all possible bootstrap samples x*. According to lemma 3

 -y(F,, j) = E rt T(x * e s)I(l -e,)n( f (x*) (5.9)
 b= 1

 Expression (5.8) for UI{t1 = a-y(F, i)/aE o is obtained by applying standard
 differentiation formulae to equation (5.9).

 Let us apply theorem 1 to the case T(x, F) =s(x) - 0(F) and r(T) = T, for which
 -y(F) = EF (X)-0(F) 1, the bias of s(x) as an estimate of 0(F). Then

 7y^ (X) = EFts (x*) I - 0(F), (5.10)
 the bootstrap estimate of bias. (If s(x) is the usual nonparametric estimator s(x) = 0(F),
 as with the correlation and ratio statistics, then j'(x) is an idealized version of estimate
 (2.9), with B-+ oo.) Since r'(T) = 1, and aT(x*, F, i)/aElo= -ao(FE, )/aE0= - uitAl,
 theorem 1 gives

 Uit{ ty I = n2covAe Pig, S* l-UiO 1, (5.11)

 for the bootstrap bias estimate =Ep{s* I-6
 Applying the familiar calculus of the delta method, theorem 1 can be extended

 to cover all the bootstrap statistics shown in Table 1.

 (a) Suppose that y(F) is a differentiable function of a vector statistic
 X(F)(X1(F), X2(F), . . ., Xk(F)) say

 y(F)= Ct X(F)J. (5.12)

 Then

 Uitil = UAtI V (5.13)

 where Uit){X=(Uitl{ , . . ., UitAkI) and V = ( . ., aC(X)/aXk, . . -
 (b) Suppose that for a given real number c we define the statistic

 7c(F)=probFtT(x*, F)<c}. Let y(c1)(F)=T(x*, F)(f), the 100aeth bootstrap
 percentile of T(x, F). Then if G(t) indicates the bootstrap cumulative distribution
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 function (CDF) of T(x*, F), and g(t) is the density corresponding to G(t), we
 have

 Ui ^z '2)l= - UI/g(C), (5.14)

 for c - - 1 (ai). (See remark S concerning the definition of g(c).)

 As an example of equation (5.13) we consider evaluating Uit ^ for y the bootstrap
 estimate of standard error of a statistic s(x). Let t(x) (s(x), s(X)2), X(F)-=EFt(x*)
 = (Ets* 1, EF4S*2 J), and -y(F)=C{X(F)J, where C(_ )=()2-X)1/2. Then
 -y(F) = [EF(S*2) - (EFS* )2 ] 1/2, which is sdboot{sl, estimate (2.8), for the ideal case
 B-+ oo.

 Theorem 1 applied to rt T(x, F)J = ti(x) for i = 1, 2 gives

 UAXJ=cov'FtPi, t*1; (5.15)
 the second term in equation (5.8) vanishes here because T(x, F) is not a function
 of F. We compute V =(-2X1, 1)'/2^. Then equation (5.13) gives

 Uit ^ l = n2 COVAFPl, t* l (5.16)

 where

 s *2 -~2X1s* s*(s* -2EAts*1)
 tv- 2^ = 2 sdlts*1 (5.17)

 We can estimate Uit y , equation (5.16), from B bootstrap replications of s(x) in
 the obvious way, replacing the ideal values XI and ^j in equation (5.17) by XI and ^5,
 equation (2.13), and by using the empirical covariance

 B L~ 1i (f v f v ),(5.18)

 t*v- Et, t*"B As explained in remark 4, there is an alternative estimator of Uit^I which usually makes more efficient use of the B bootstrap replications, namely

 UtA/lJ=M(ppt-p* (5.19)

 Ut^{1 denoting the entire vector (Ul t1J, U2t^y, . . ., U,t ^I')'. Here p is the n x B
 matrix of pb vectors, t* is the B x 1 vector of t*b values and m is the n x n projection
 matrix

 p p 12 pb pB)9

 t *= (t* l ft*2 t *B) , (5.0

 m = (In - 11' /n),

 In being the n x n identity matrix and 1 being the vector of n Is. Likewise, an
 efficient estimate of the influence function (5.11) for the bootstrap bias is

 U[ylJ=m(pp' )-'ps* - Utj, (5.21)

 util--(Ultil, . . *, uitil)'
 Table 5, which concerns the bioequivalence ratio statistic, compares the delta method

 and jackknife influence functions for the bootstrap bias estimate, and also for the
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 TABLE 5

 Estimated influence functions and standard errors of the bootstrap bias estimate and bootstrap standard

 error estimate, for the bioequivalence ratio statistict

 utfs} Results for bootstrap bias estimate 0.0053 Results for bootstrap standard error
 Delta method Jackknife estimate 0.104

 U4j} (?) ij{} (?) Delta method Jackknife
 Ufij} (?) ,IFj} (?)

 -1.14 - 0.0111 (0.0046) - 0.0479 (0.0297) - 0.054 (0.0220) - 0.048 (0.0263)

 -1.12 -0.0043 (0.0053) 0.0281 (0.0297) -0.102 (0.0225) -0.098 (0.0263)
 - 0.46 - 0.0160 (0.0043) - 0.0068 (0.0297) - 0.056 (0.0219) - 0.076 (0.0263)

 -0.31 - 0.0066 (0.0040) - 0.0017 (0.0297) - 0.077 (0.0185) - 0.101 (0.0263)
 - 0.12 - 0.0124 (0.0040) 0.0056 (0.0297) - 0.041 (0.0176) - 0.056 (0.0263)

 0.33 0.0146 (0.0063) - 0.0094 (0.0297) 0.039 (0.0239) 0.013 (0.0263)
 B 1.37 0.0566 (0.0081) 0.0507 (0.0297) 0.236 (0.0457) 0.259 (0.0263) B

 C 1.46 - 0.0208 (0.0041) - 0.0186 (0.0297) 0.055 (0.0278) 0.107 (0.0263) C

 s-e{} 0.0083 [0.0081] 0.0105 [0] 0.036 [0.035] 0.044 [0.043]
 [ corrected ]

 tThe ? values for the influence functions reflect the limitations of using onlv B = 1000 bootstrap replications, as
 explained in Section 6. The delta method influence functions are more accurate than the jackknife influence functions
 (have smaller ? values) for the bias estimate, but not for the standard error estimates.

 bootstrap standard error. Formulae (5.21) and (5.19) give Ui5^ 1. There is a
 component of error in both Ui and f7i that comes from using only B = 1000 bootstrap
 replications, rather than letting B -o o. These errors are indicated by the ? values
 in Table 5, as derived in Section 6. For the bootstrap bias estimate, but not for the
 bootstrap standard error estimate, the ? values are much smaller for the delta method
 than for the jackknife. Note that the bootstrap bias estimate for the ratio data,
 y = 0.0053, is less than one estimated standard error away from 0, even after correcting

 sedelta {YIy ( } ? iJ2n})

 for the ? error component, from 0.0083 down to 0.0081.
 Results (5.13) and (5.14) combine to give delta method influence functions for

 percentile statistics like length and shape in Table 1. Let T(x, F)=s(x) and rc(T)
 equal 1 or 0 as T< c or T? c. Then Irc = rc(F)=EAfrc* , where r* equals 1 or 0 as
 s* < c or s* > c. Theorem 1 gives UiA 7ic = n2 covpF Pi, rc* . Then the length statistic
 ly= a(095) - y(Oy5) has influence function

 U~Y 2 coc p, r(O.05) rc(O.95) 1 g{c(0.05)- g{c(0.95)J (5.22)

 according to results (5.13) and (5.14), where c(ax) G -1 (a). Likewise the shape

 statistic ^y logy( /0.95) - jO.5))/(l(O 5) - j(O.O5))} has influence function

 uit I^ I= n 2 cv'r Pi (O.05) ? (O5 UAi7^=n2covF L gc(o05)J(^(05) (0 + 05+ c 5 0 (0.05) 0.95) A(0.5))

 rc(O.95) 1

 gfc(0.95) (y0.95) _ ^(0.5))j.(23
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 Remark 4. Estimation formula (5.19) for UVit'^ comes from the bootstrap
 influence function, or bootstrap Hajek projection, for a function S(P) of the
 proportion vector P, equation (3.3). The bootstrap replications of any random variable
 T(x*, F) that is invariant under permutations of the co-ordinates of x* can be expressed
 as T(x*, F)=S(P), e.g. x~*=x'P_S(P). This includes all the examples of this
 paper, except for the multisample problem considered in Section 4. Functions S(P)
 have an orthogonal decomposition in the bootstrap probability space,

 S(P)=m+P'a+E(P), (5.24)

 where m = EApS(P)1, a= n2 covtP, S(P)J and the remainder term e(P) is orthogonal
 to every linear function of P: Et (M+ P'A) E(P) 1=0. This is derived in Section 3
 of Efron (1990b), where a is called the bootstrap influence function for S(P). For
 S(P) = t( as in equation (5.16), the ith component of a equals Uit4'5, since both
 equal n2covAPt, S(P)J.

 The sum of the first two terms of equation (5.24), Sli,(P) m + P'a, minimizes the
 expected squared residual EAtS(P) - (M? P 'A)12 among all choices of the constant
 M and vector A. This suggests that we use ordinary least squares if we want to estimate
 m and a from B bootstrap replications (pb, S(pb)), b= 1, 2, . . ., B. In fact,
 formula (5.19) is the ordinary least squares estimate of a, as explained in Efron (1990b),
 sections 3 and 6, which also discusses the advantage of formula (5.19) over formula
 (5.18).

 The amount of advantage depends on the linearity of S(P), as measured by

 =varAtSIin(P)1/varFtS(P)1. (5.25)

 The advantage is much bigger for the bootstrap bias estimate in Table 5, S(P) =s*,
 R2=0.970, than for the bootstrap standard error, S(P) =t*, equation (5.17),
 R 2= 0.154.

 Remark 5. Expression (5.14) looks awkward since g(c) is supposed to be a density
 function for the bootstrap variate T(x*, F), which is always discrete. In practice all
 that we need is the average density of T(x*, F) over small intervals of t. 'Small' means
 intervals [ tl, t2 ] such that G(t2) - G(t ) = 0(1/n). This amounts to taking e of order
 0(1/n) in the approximation Uit({)1 _ ty(U) (Fe, ) - yc(F) /e. We know that 0(1/n)
 is sufficiently small because of the generally good performance of the jackknife, which
 uses e= - 1/(n - 1). The bootstrap CDF G has so many support points, typically
 0(4'/1n), that it appears almost continuous over intervals of bootstrap probability
 0(1/n). See the comment following equations (5.20) concerning the numerical
 computation of g(c) involved in Table 2.

 Remark 6. It is interesting to compare Uit 'yJ with uitVyl in the simple case
 y -=EFAs(x*)1, where the comparison can be made explicit. Let

 bCj) prob Pi (=(~( b(j)= prb t i =n |=(j )n )( n )(5 .26)
 el C(j)-EAs (x*) I PI =j/n .

 Then according to theorem 1
 n

 p=0
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 compared with

 uit^ = constant - (n - 1) ei(O), (5.28)

 since ^(i) = ei(O). For n = 8, U^ I= = EY=0 wOj) eiOj), where the weights w(j) are
 j 0 1 2 3 4 5 6 7 8 (5.29)

 w(j) - 2.75 0 1.87 0.898 0.240 0.037 0.003 0.000 0.000

 compared with the weights -7, 0, 0, 0, . . . for uit ^ , equation (5.28).
 It looks as though Uit ^I uses more of the bootstrap data since it involves all the

 conditional expectations ei(j) rather than just ei(O). The actual differences between
 Uit{^I and uit ^I tend to be moderately small; see chapter 6 of Efron (1982). For linear
 functional statistics s, those for which R2 = 1, it is easy to show that Uit{yI= uit=y},
 and that both equal ai, the bootstrap influence function. Section 7 of Efron (1983)
 says more about the conditional bootstrap expectations ei(j).

 Remark 7. The orthogonal expansion (5.24) and theorem 1 relate as follows: the

 bootstrap influence function ai for s(x*) = S(P) equals the delta method influence
 function Uit I for ry = Ep4s* 1.

 Remark 8. Theorem 2 of Efron (1990a) discusses delta-after-bootstrap computations
 in parametric families. The parametric analogue of theorem 1, equation (5.8), is
 connected with Stein's (1981) lemma for normal theory risk estimation.

 6. INTERNAL ERRORS

 The estimated influence functions based on B bootstrap replications lit^Vy and
 Uitjy} differ from the ideal values uitVJ and Uit { that would be obtained if B 00.
 The standard deviations of these differences, called internal errors, are the '?'
 quantities in Tables 2 and 5. Formulae for the internal errors are developed in this
 section. These calculations have a familiar appearance because the bootstrap data
 (Pb, 5*b), b= 1, 2, . . ., B, is an IID sequence of pairs drawn from the bootstrap
 distribution (P, s*).

 We begin with the simple situation where y =EAs(x*)J. In this case a deleted point
 value of ly, pi)=EAs*lPi=1=, is estimated by the average of S over those
 bootstrap samples missing xi,

 B B I7f b (0

 S .}/ ' = E Iib*/ Z Ii I 1 if pb0> (6.1)

 Letting s( (S( (s s *, * s(7))', the estimated jackknife influence function iat^i =

 (171ti, u2{'YJ, . . ., 1t7njJ)' is given by

 ii[tjI= - (n - 1)ms*, (6.2)
 equations (3.6), with m the projection matrix (5.20). The delta method influence
 function is estimated by

 Ut1^y}= m (pp t )-'1 ps*; (6.3)

 compare equation (5.19).

 We want to estimate the internal standard errors of uit ^I and Uit A}, the errors due
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 to using only B bootstrap replications, B= 1000 in this paper. In other words we want

 the variability of u{it I and U1it{I arising from the Monte Carlo choice of the
 bootstrap vectors x*1, x*2, ., X*B, with the original data x held fixed. To this end
 we apply the jackknife in the framework of bootstrap sampling, deleting one pair
 (Pb, s*b) at a time from the entire bootstrap sample of B pairs.

 Lemma 4. Let jj(b) and (j(b) denote it^i{ and U{'5J calculated from the B- 1
 bootstrap pairs (PC, s*C), c?b. Then

 (j(b) \\ 7 l M!l 0 Mb\
 QU(b) / \ (U{ / - 0 Al? M ) )(Mb (6.4)

 Here Ml and M2 are n x n matrices, Ml diagonal,

 Ml =mdiag((n - )1B.) L Ib, for i = 1, 2, n
 b=Z (6.5)

 M2= -m(pp')-l;

 MAb and MAb are the n x 1 column vectors

 M3b= (. .,Iib.*(S*b-S*i;), .),m4b = pb^b 6)

 where Eb is the bth component of the residual vector E,

 E= (lb - p'(pp' )-IP)S* (6.7)
 Proof. A familiar matrix identity (see equation (3.12) of Efron (1982)) gives

 (j(b) - {j^= -m{(pp )- I pb b1/t I - pb (pp )- I pbV = M2Mbt1+ Op(1/B)}. (6.8)

 The difference between s(*i, equation (6.1), and the same quantity computed
 excluding the pair (pb, s*b) is

 Ss S(b) _ { = 'y;Is/'-_}= -_ I (s*b I({1O + Op (,} (6.9)

 so

 j1(b) -t -(n - 1)m(s (b) - S(1)) = M1AMbt1 + Op(1/B)}. C (6.10)

 The 2n x 1 vector (iit j'f, U{tjj)' can be thought of as a random variable determined
 by the bootstrap data {(pb, S*b), b= 1, 2, . . ., B}, with the original data x held
 fixed. The internal covariance of this vector, its covariance under the random choice
 of the bootstrap data, can be estimated from lemma 4 and Tukey's jackknife covariance
 formula,

 COVintern MI \M3 M3'AMl' MAM3lM4lM2A, (6.11)
 \Utiy I M2 M4M31 Ml' M2 M4M4 M2

 M3 and M4 being the n x B matrices with bth columns MAb, MAb; see equation (3.13)
 of Efron (1982). (The right-hand side of equation (6.11) deviates from Tukey's
 definition by a factor 1 + Op(I/B), which is negligible compared with the error
 1 + Op(1/JB) of the jackknife formula for estimating the covariance matrix.) The
 internal covariance formula for j = EF{S *I also applies to the bootstrap bias estimate
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 TABLE 6

 Internal standard error '+ 'for the delta method and jackknife influence functions, and internal

 correlation between UiLy and Qi7f-y, for the bioequivalence ratio statistic, from formula (6. 11)t

 uHts} Results for bootstrap bias estimate Results for bootstrap standard error estimate
 U, ? u, ? (correlation) U, + u, ? (correlation)

 -1.14 0.0046 0.0292 (0.12) 0.0220 0.0269 (0.75)

 -1.12 0.0053 0.0316 (0.20) 0.0225 0.0290 (0.80)

 - 0.46 0.0043 0.0310 (0.16) 0.0219 0.0275 (0.78)

 -0.31 0.0040 0.0311 (0.17) 0.0185 0.0268 (0.78)
 - 0.12 0.0040 0.0311 (0.09) 0.0176 0.0270 (0.69)

 0.33 0.0063 0.0326 (0.16) 0.0239 0.0319 (0.63)

 B 1.37 0.0081 0.0275 (0.40) 0.0457 0.0289 (0.92) B

 C 1.46 0.0041 0.0293 (-0.09) 0.0278 0.0293 (0.76) C

 Table 5 0.0297 0.0263

 tB= 1000. The ? values for U,, but not u,, are as in Table 5; U, yI and u, f are highly correlated for the bootstrap
 standard error estimate zy, but not for the bootstrap bias estimate j'.

 Y=EAfs* } - 6 since ftii{ = uiEFs* } - u{}1 and u 61 is a fixed vector with covariance 0 under bootstrap sampling; likewise U'j =U{EFs*} -Ut0{. Note that formula
 (6.11) extends to bootstrap statistics of form (5.12), in particular to the bootstrap
 estimate of standard error, by replacing s* in definitions (6.6) and (6.7) with t*, as
 defined in equation (5.17).

 Table 6 reports the application of equation (6.11) to the bioequivalence ratio statistic,
 for the bootstrap bias estimate Py and also the bootstrap standard error y. The square
 root of the diagonal elements of covintern are the ? values. Those for Ui agree with
 the ? values in Table 5, but the values for fi, are different.

 The ? values for ui in Table 5, actually just a single value for each of the two
 bootstrap statistics, were obtained from a simplified version of equation (6.11),

 C?Vinternf i (y m (n - 1)2 (en - 1) a 2 /B, (6 .1 2)

 en=(I - l/n)-n, u2 EB=I(S*b_S* )2/(B- 1); approximation (6.12) is derived from
 covinternfi'J'} =M1M3M3'M,, equation (6.11), by using the following approxima-
 tions:

 Bi -en 1B,

 b(S*b _ S *i; )2 IBi_ -a29 (6.13)
 b

 Ib J(Sb -S(I )(S *b _S(j* )/y,IbIb * -2 ji
 b b

 Table 6 shows that approximation (6.12) performs reasonably well.
 The estimated influence functions fiI{j and UtfJI, equations (6.2) and (6.3), are

 nearly unbiased for their ideal values u{ I and U{ ,
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 EFfUt ut iUa}lt + O(l/B)J,

 EFA{U a}}= Uta}{ 1 ? 0 (l1/B)}. (6.14)
 (As before, the expectations EF are over the choice of the bootstrap data (pb s*b)
 b= 1, . . ., B, with the original data x fixed. We could use the notation Eintern instead
 of Ft.) A standard computation gives

 Et seijack{' At }2 } = seijack { At j2 + trace(CoVintern iu} o (1l
 n(n -1 B2}

 -sejack{'y} + (n-i)2 (en -l)a2(2 (6.15)
 n B BB2I

 the second formula coming from approximation (6.12). The O(1/B)2 term is

 negligible compared with 0(1/B) of the other terms. Likewise

 EAsedeltat }j2 = sedeltaty12 + trace(covinternfU)/n2 + 0(1/B2). (6.16)
 The corrected values for sedelta in Table 5 were obtained from

 sedelta - trace(covintern U }/n2)] 1/2

 and similarly for sejack (using the second line of approximation (6.15)).
 Internal error analyses can be done for almost any bootstrap statistic. They are

 no more than a standard error analysis, performed on the IID bootstrap sequence
 (pb, S*b), b= 1, 2, . . ., B. Suppose, for instance, that we are interested in the
 internal covariance analysis for Cy= 0(X), where 0(X) is a smooth function of a vector
 of percentiles of some random variable T(x, F), say X -= ( ), T(U2), . . ., k))
 This was the case in Table 1, where T(x, F) = s(x), X = ( T(0 05), TP0 5), T 0 95)) ', and
 C(X)= X3- X1 for the length statistic, C(X)=log1(X3 -X2)/(X2-X1)X for the shape
 statistic.

 A standard error analysis of the bootstrap percentiles gives results much like
 approximation (6.12):

 covinternt{i(a)} m(n- 1)2(e, - 1)U' MU/B, (6. 17)

 where M is the k x k matrix with ijth element Camin(i, j)( -O max(i, j)) and

 a Xi x =x (6. 18)

 As in equation (5.14), g(t) is the density corresponding to G(t) = probtf T* < t, and
 g, is an estimate, based on B bootstrap replications, of g(t) at G-(a;). Formula
 (6.17), like formula (6.12), is a simplified version of a more careful but tedious result.

 For the length statistic,

 , M- 0.05 x 0.95 2 x 0.052 0.05 x 0.95
 -2 - - -2. g0.05 90.0590.95 g095

 and for the shape statistic

 (g0 05 )/(0 5)f_ z(0 05) = I0 I(,),(0 95) _L I),(0 5) ,/(0-5) _ ' g 95) (60 *) ~(0.5) - (.05 ~ (0.95) - (0.5) -(0.5) -(0.05) - -(0.95) ~ (05
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 M being the 3 x 3 symmetric matrix with elements M11 = M33 = 0.05 x 0.95,
 M22=0.52, M12 = M23 = 0.05 x 0.5 and M13 = 0.52.

 Formulae (6.19) and (6.20) gave the ? values in Table 2. The estimated values of
 g(c) were obtained from standard density estimation techniques applied to the bootstrap
 replicates T*b, b = 1, . . ., 1000. They are average empirical densities, using roughly
 the 10Wo of the bootstrap data nearest the value c of interest. The underlying
 discreteness of the bootstrap CDF caused no noticeable effects in these calculations.

 Remark 9. Our formulae for estimating set{y}, corrected or not, ignore one fact:
 that the available estimate of the bootstrap statistic of interest is y, definition (2.13),
 not the ideal value j', definition (2.12), and so we should be interested in set{y rather
 than set jy. However, the difference between set[j and set{jj tends to be small. Consider
 the case Py=EpSS(X*)b, == 1 se/B. The true standard errors, sampling over x as
 well as x*, have the relation

 setP2= set'y} + E(a2/B), (6.21)

 where a2=varFts*1. Combining equation (6.21) with the last line of approximation
 (6.15) suggests that we estimate set{y by

 ^ 1ak72 -(n 1)2 (e la2] 1* (6.22)

 For n = 8, the bracketed factor is 10.70, compared with 11.70 ignoring the term coming
 from equation (6.21). This difference will be unimportant for most purposes.

 Remark 10. The obvious estimate y, definition (2.13), does not necessarily make
 the best use of B bootstrap replications. Efron (1990b) describes other estimators Py which converge faster than y to the ideal limiting value y, as B -o . In particular,
 if s(x) = 6(F) and -y(F) is the bias EF{S(X)} - 0(F), define

 e =s* -60(F),
 where F is the distribution putting probability S B= Pib/B on xi. Then e often
 converges much faster than 'y=s*. -6(F) to the ideal bootstrap bias estimate
 NY = EFts*} - 0(F).

 For the bioequivalence ratio statistic, y = 0.0077 compared with the value = 0.0053
 given in Table 5. The estimated standard error sedeltatjy^= 0.0083 applies at least as
 well to jy as to y. (Formally, it applies to y, as in remark 9.)

 Remark 11. The problem of estimating the influence function uit ^I seems to
 become more difficult as n increases. Consider the case X(F) = T(X, F)(a), so X is
 the 100th percentile of T(X, F). The internal coefficient of variation CV for the
 estimated influence function is

 CVintern tCIJ (varite X

 (n - 1)3 (en - l)a(l - a) j1/2 =o() n (6.23)
 nBg,u{X2, i12B

This content downloaded from 128.252.121.143 on Tue, 13 Aug 2019 16:58:03 UTC
All use subject to https://about.jstor.org/terms



 110 EFRON [No. 1,

 residual

 internal
 sterr

 ------------..
 a _______*= *, ;

 _4 * ~ * * ~ ~ -~' *-* L . 005

 -& 0073
 o~* (-.* '-'- -a-; .009

 0101

 o ~\~,7* .014 .R .... ___ ....I .----I
 -3 -2 -l 0.0

 relation influence function ut{s} +

 Fig. 7. Deleted point percentiles from the law school correlation, as in Fig. 4: -----, quadratic functions
 of uT{sJ, fitted to the deleted point percentiles by ordinary least squares (numbers at the right-hand
 side indicate internal standard errors for the residuals from the quadratic fit (average standard errors
 excluding the two points at each end of the uTfs] scale); the deviations of deleted point percentiles from
 fitted curves are commensurate with the internal standard errors)

 as in expressions (6.17) and (6.18). It looks as though we need to take B = 0(n2)
 bootstrap replications to maintain a reasonably small CV for i7A3.

 This pessimistic result assumes that the deleted point values X(i) are computed in
 the obvious nonparametric way of approximation (3.5). However, there are often
 better ways to approximate X(i), especially if n is large. Fig. 7 shows the deleted point
 percentiles for the law school correlation bootstrap analysis, as in Fig. 4. The broken
 lines in Fig. 7 are ordinary quadratic regressions, used to smooth the jagged deleted
 point percentile lines. The deviations between the jagged and smooth curves are roughly
 commensurate with the internal residual error, obtained by using approximation (6.17).

 Now we can read off smoothed estimates X(i), for ,(i) from the broken lines,
 leading to smoothed estimates iTPiy^ for the influence functions of the length and
 shape statistics. Doing this had little effect on the estimated influence function for
 the length statistic. However, the Uif{TI values for the shape statistic were much more
 stable than the zi7{fj, having less than 1/I00th the variance:

 Se5ackty) = [Ei itfl/n(n- 1)] 1/2=0.026

 compared with

 sejack{ a ty} = t Vjuiiy2/n(n - 1)11/2 = 0.307,

 as reported in Table 2.

 Remark 12. Section 5 of Efron (1990b) introduces an improved method for
 estimating bootstrap percentiles, based on the bootstrap Hajek projection
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 formula (5.24). This method works well when R2, expression (5.25), is near 1, as is
 likely to be so when the number n of original observations grows large. (Typically,
 1 - R2 is 0(1/n).) The same method can be applied to estimating the deleted point

 percentiles, yielding improved estimates u-it{-YJ as in remark 11.

 Remark 13. We might try to reduce internal errors by averaging U1it{y and uit 4J.
 Table 6 is mildly discouraging: for the bootstrap standard error -y, we can see that
 averaging will not reduce the internal error much since the internal correlations are
 so high. The correlations are low for the bootstrap bias estimate j', but now

 varinternt UC{it y is so much smaller than varinternWit 1i1 that averaging is still ineffective.
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 DISCUSSION OF THE PAPER BY EFRON

 J. B. Copas (University of Birmingham): Although ideas of the bootstrap and jackknife go back
 to work of Quenouille and early papers by Barnard and Tukey and others, it is only recently that the
 full implications of these ideas have begun to be realized. It is tonight's author who has been very much
 associated with recent developments and it is therefore a pleasure to welcome Professor Efron and his
 latest contribution to this intriguing topic. As we have come to expect from his previous papers, his
 ideas are innovative and presented with his usual elegance and style.
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 The bootstrap is a very clever idea. As if by magic we can produce replications of our data, almost
 like lifting ourselves up by our bootstraps. In large samples this is convincing and clearly useful. But
 levitation is not for the doubter and with small samples we may well be hesitant. The good news of
 this paper is that we can put our doubts to rest with a little statistical surgery. The thought of severing
 our means of support may be alarming, but with Professor Efron as the surgeon with the jackknife
 we find that the surgery is only minor, even infinitesimal, and the outcome thoroughly therapeutic.
 The main idea of the paper, like all good ideas, is very simple: we just select those bootstrap replications
 that happen to omit the ith observation and hence reconstruct all the usual jackknife statistics. The
 roles of the bootstrap and jackknife here are intriguing. In the first part of the paper the jackknife
 is applied to the sample but estimated by the bootstrap, but then there is a subtle reversal of roles in
 Section 6.

 A thread running through the paper is the correlation example of Fig. 1. A Q-Q plot of the normalized
 distances between the points and the mean for a bivariate normal distribution highlights point A, but
 the others seem sensible. Even point A's value of 7.3, however, is not all that unusual as the largest
 of a sample of 15 from x2 on 2 degrees of freedom. If the correlation is large then there would seem
 to be more scope for deletion of points to increase r than to decrease it, and this raises the question
 of the skewness of the distribution of the relative jackknife influences; perhaps - 2.97 is not as unusual
 as it may seem.

 So the only doubt for a bivariate normal distribution is point A. With it in, the 90% confidence interval
 is (0.51, 0.91). With it out it is (0.74, 0.96), both ends going up as we would expect. So I was a little
 surprised to see that the bootstrap-t approach makes both limits go down, to (0.39, 0.90). It is also
 odd that the largest value of the upper limit in Fig. 5 occurs for a point with nearly no relative influence.
 Perhaps this is something to do with the fudge factor which has crept into equation (3.9).

 This bootstrap interval is based on the premise that the statistic Tin equation (3.8) is approximately
 pivotal. The other bootstrap interval, mentioned in Section 2, is the 'percentile confidence interval'.
 This is the distribution of the sample estimate in a bootstrap setting, and it is unclear how this can
 be interpreted directly as a confidence interval except in the special case of the sample estimate, possibly
 after transformation, being unbiased with a symmetrical error distribution. But even then the argument
 is only clear for the parametric version of the bootstrap. A better approach is Professor Efron's own
 BCa method but this is not used in defining the length and shape statistics which feature prominently
 in the paper. Some guidance on what these statistics mean would be welcome. Maybe we are tempted
 to interpret shape as an estimate of the shape of a likelihood function, a temptation that we should
 resist without further evidence.

 Let us take what is perhaps the simplest non-trivial problem for which we can all agree on the correct
 inference, the single-sample location parameter model:

 X=0+E, E -f(E).

 The likelihood is Elf (xi- 0). The sample spacings are ancillary and so we look to the conditional
 distribution of any location invariant statistic given those spacings. This is just a relocated and reversed
 version of the likelihood and so any confidence limit corresponds to taking the appropriate relative
 area under the likelihood function-essentially a Bayes analysis with a uniform prior. We note that
 the sampling distribution which generates these confidence limits is a random rigid translation of the
 sample vector which is quite unlike a bootstrap sample which picks and chooses data values from within
 a fixed set.

 For the parametric version of the bootstrap explained at the end of Section 3, clearly,

 P(O* -G)= P(O-0)

 and hence if 0* (a) is the ci-quantile of the bootstrap distribution

 PfO> 6 (O* (4. 6)j=U,

 defining an exact, but marginal, upper confidence limit for 0. What can we say about the approximation
 to this first equation if the parametric bootstrap is replaced by the nonparametric bootstrap? How close
 then are we to the second equation, which is after all the defining equation for a confidence limit? Can
 the conditional-on-Pr' device of the paper be generalized to conditioning on bootstrap samples which
 are, in a relevant sense, reasonably comparable with the observed data?

 A tough test related to my first question is the guarantee time exponential model with
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 f( { SXexp(- Xc) >0.

 Here 0 is the least possible value of x, 0 is x(l) and 6* is x(l). As, approximately,

 P(* =x(,))= (e- 1) exp(- i),

 the lower a confidence limit for 0 is roughly

 X(1) -(X(k) -X(0)

 where k= 1 + [ -log a]. But

 k-i [ -log a]

 E(x(k) - X(l))= x n nX

 which can be compared with the correct confidence limit

 log ae

 nX

 Thus the bootstrap limit has the right expectation but is estimated rather imprecisely. As might be expected,
 the jackknife fails to pick this up, the jackknife standard error being out by a factor of jn.

 Section 4 of the paper has considerable practical potential, as some of ouI most tricky statistical
 problems are of this type. In the tau data of Table 3, the variances increase with more trimming for

 decays 1 and 7r, but decrease for p, e and It. This reflects the differing lengths of tails in these data
 sets-we would appear to do even better by allowing for different trimming percentages. It is all a matter
 of kurtosis, and can we expect small samples to tell us much about tail length? Surely not, and so it
 is reassuring that the jackknife confirms that little can be said about the best trimming rate. Disappointing
 it may be, but sensible.

 This is just one of the many good things in the paper and it gives me great pleasure to propose the
 vote of thanks.

 Alastair Young (University of Cambridge): Professor Efron is to be congratulated on producing a
 paper which forces us to think in critical terms of the bootstrap estimators that we construct. He has
 shown how questions about the accuracy of bootstrap estimators which may be expressed in terms of
 standard errors can be tackled without the need for further resampling, but by methods which require
 instead careful sorting of the original bootstrap simulation: but what of the accuracy of the standard
 errors constructed? I personally feel dubious about the utility of standard error estimates of 0, such
 as those in Tables 2 and 5 of the paper. Has Professor Efron attempted to validate his accuracy measures
 for circumstances other than the specific examples of this paper?

 An issue that worries me concerns the number of bootstrap simulations B. Perceived wisdom would
 suggest that quite moderate values of B are adequate in the construction of the basic bootstrap quantities,
 such as bias estimates, though this paper appears to indicate that somewhat larger B is required to reduce
 the internal error in jackknife-after-bootstrap calculations to acceptable levels.

 The primary reason for estimating the accuracy of a bootstrap quantity is usually to correct for error
 in that quantity. It seems to me that the techniques of Professor Efron's paper are probably not sufficiently
 flexible to be able, in general, to handle such error correction. Iterated levels of bootstrapping may
 be necessary if we are to provide anything more than rather crude error estimates for our bootstrap
 quantities. In this respect, I feel that Professor Efron is unduly pessimistic when he expresses the view
 that iterated bootstrap calculations are computationally too intensive for routine use. Much recent research
 effort has focused on methods of analytic approximation which reduce the computational demands
 of bootstrap methods, especially iterated bootstrap techniques. These methods deserve mention here.

 A typical and important use of bootstrap-after-bootstrap calculations is for estimation of coverage
 error in bootstrap confidence intervals. I should like to indicate how this can be done efficiently and
 accurately, in a quite general setting, without the need for a second level of resampling.

 Suppose that we are interested, on the basis of sample data J= X1.from an unknown
 distribution, in inference for a parameter 0 which is expressible as a smooth function of means, 0=

 g. k). The parameter 0 is estimated by O = g(Z , . . ., ) with Z,=n-2 f1n(Xj), for smooth
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 TABLE 7

 Type of interval Coverage, n = 20 Coverage, n =35 Coverage, n = 100

 Percentile 0.80 0.83 0.88
 Double bootstrap 0.87 0.88 0.90

 Approximation 1 0.84 0.87 0.89

 Approximation 2 0.87 0.89 0.90

 functions fl, . ., fk. Examples of such parameters include variances, ratios of means, correlation
 coefficients etc.

 Let Io(ca; , Y) denote a bootstrap confidence interval for 0 of nominal coverage ae. Here the
 notation indicates that Io is constructed from , using information provided by bootstrap samples
 * drawn from . The coverage 7r(a) = P 0 Io (; , *) will, in general, differ from ae and may
 be estimated by

 1r(ca)=P16eIo(ca; * **) j'J
 Here ** denotes a generic resample from the first-level bootstrap sample *. The idea of coverage

 correction is to use instead of Io(a; 9 -*) the confidence interval IO(6 ,9; 9j *), where 6, solves
 3r(6,) = a. If Io is the percentile method interval, for instance, 3r(ac) can be well approximated by the
 proportion of times over B resamples * from e that

 (I - a)/2,<,P(6**< 61 *) (I + a)/2,
 where 6 =g(Z*. Zk*) denotes the version of 0 computed from a sample ** drawn from
 aY*k

 In the smooth function model above, we can estimate P(O** < 6*) analytically, thereby achieving
 the coverage correction on the basis of only the first-level bootstrap samples. This is done by using

 a saddlepoint approximation to the joint distribution of Z** Z**,_given *_ in conjunction
 with a tail area approximation formula to the marginal distribution of g(Z**, Z*): for details
 see DiCiccio et al. (1990a, b). This analysis replaces the need for a complete second level of resampling
 with the computationally less demanding exercise of solving a simple system of 2k + 1 non-linear equations
 in as many unknowns.

 As a simple illustration, consider construction of nonparametric bootstrap confidence intervals for

 the variance 0= E(X2) -(X)2 -_u2 of a normal distribution. The percentile method is known to
 perform badly in this example, and what is needed is not a means of recognizing this unreliability but
 some means of correcting the method to improve its performance. A simulation of 1600 confidence
 intervals for each of three sample sizes n = 20, 35 and 100 gave the estimates in Table 7 of coverage
 (standard error 0.01) for the percentile and double-bootstrap confidence intervals of nominal coverage
 0.90. Each interval was based on 1000 resamples at the outer level, the double-bootstrap intervals using
 the analytic approximation method at the inner level. Such an approximation reduces the computational
 load of the bootstrap-after-bootstrap construction by a factor of about 7/8. DiCiccio et al. (1991)
 introduce two further approximations to these double-bootstrap intervals, based on approximate rather
 than exact solutions to the system of non-linear equations, and which result in substantial computational
 savings without much loss in accuracy. The first (approximation 1) is about 70 times faster than nested
 resampling, and the second (approximation 2) is about 25 times faster than nested resampling (Table 7).

 In summary, I contend that more flexible bootstrap-after-bootstrap calculations can be applied easily
 and routinely without the need for the second level of bootstrapping. It would be of interest to know
 how the methods of Professor Efron's paper compare, in both scope and accuracy, with the kinds of
 procedure that I have sketched above.

 It should be clear from my remarks that I found this a most stimulating paper, which raises many
 interesting issues. It gives me great pleasure to second the vote of thanks.

 The vote of thanks was passed by acclamation.

 A. C. Davison (University of Oxford): This paper emphasizes what are essentially single-case deletion
 diagnostics, which in other contexts are prone to masking. In principle the idea of subdividing bootstrap
 output to assess the effect of deleting cases from the original sample could be extended to any subset,
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 provided that the bootstrap is sufficiently large, but the 'combinatorial explosion' limits the usefulness
 of this. Recent work stemming from Cook (1986) attempts to overcome this problem by local perturbations
 of all the observations simultaneously. A difficulty with local perturbations in the present context is
 that resampling is a discrete procedure whereas smoothness seems necessary for local influence
 calculations. One possibility is to study empirical likelihood, a close relative of the bootstrap. The

 log(empirical likelihood) for the mean It of a sample xl, x, is (Owen, 1988, 1990)
 n

 LE ( =- E logI1+X\(x1-/,)J, min(xj) < It < max(xj),
 j=1

 where X A is a Lagrange multiplier that solves the equation

 n Xi - A
 j=l 1 +X(Xj-t0 0

 Consider local perturbation of the sample, xj-xj++Eaj, where (a,, an) is a fixed vector of unit
 length. Then following Cook's recipe slavishly, the choice of aj that maximizes the local change in LE (,)
 is the vector a that maximizes

 a2LE IO

 aE2 Ee=O

 namely aj oct 1 + (x j- )2. This rather bizarre perturbation is useless at the maximum empirical
 likelihood estimate of It, for which ajoc 1. There may be some use in ideas like this, but since in a sense
 empirical likelihood makes the data the model, it seems in principle difficult to check the model on
 the basis of the data.

 A different way to combine perturbations and the bootstrap would be to add to a bootstrap resample
 Xl, . . ., X* a perturbation E e * , suitably normalized, and then somehow to assess the impact
 of the perturbation. The lack of an objective function against which to do so seems inevitably to lead
 to the double bootstrap, however. Is there a way to do this that avoids nested bootstrapping?

 The most critical assumption in resampling is surely independence, and despite the optimistic tone
 of the second sentence of the paper bootstrapping with dependent data is insufficiently understood in
 theory and problematic in applications. Is there any way to check independence that is specific to the
 bootstrap?

 There are important issues still to be tackled, but Professor Efron is to be congratulated for putting
 the question of sensitivity of bootstrap calculations firmly on the agenda. I add my thanks to those
 of the other discussants.

 C. Chatfield (University of Bath): The author's clear writings have done much to promote the
 acceptance of bootstrapping as a useful addition to the statistician's toolkit. However, in practice, it
 is often unclear when bootstrapping should be used, and, if it is, what assumptions are implicitly made,
 and whether the results are to be regarded as descriptive or inferential. I hope that guidelines can be
 clarified. The technique appears most useful for analysing smallish expensive-to-collect data sets where
 prior information is sparse, distributional assumptions are unclear and where further data may be difficult
 to acquire. The data in Table 3 may well satisfy these criteria. The technique captures the 'spirit of
 the age' in that it is computationally intensive and is designed to squeeze as much as possible out of
 a single set of data. The possible extension to bootstrap-after-bootstrap methods, which is mentioned
 in the paper, seems to go even further.

 Rather than to comment on the details of jackknife-after-bootstrapping, I would like to air my concern
 that bootstrapping may become overused. It carries to new extremes the statistician's tendency to
 overconcentrate on a single set of data. Thus I would like to remind the reader that, where possible,
 it is often better to devote one's effort towards getting more data. Classical statistical inference is essentially
 concerned with making inferences about the parameters of an assumed family of probability models
 from a single set of data. In practice model building is an iterative procedure involving model formulation,
 estimation (usually the easy part!) and model validation. Typically a model is formulated, fitted and
 checked on the same data set. It is 'well known' that this will affect P-values, and introduce selection
 biases (e.g. Miller (1990)), but people still do it and largely ignore the problems. In contrast scientific
 inference is typically concerned with collecting many data sets and establishing a relationship which
 generalizes to different conditions (i.e. we look for significant sameness, rather than for differences).
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 I realize that the data in Fig. 1(a) are only meant as an illustrative example, but I am worried that
 the proposed analysis will mislead the reader. In my view bootstrapping should not be used for these
 data, which do not satisfy the requisite criteria. I am not interested in evaluating SE(correlation) for
 one year's data. I would be interested in asking various other questions, such as which law school is
 the outlier and why. More importantly I would want to look at data for 1974, 1975 . .. (which presumably
 are readily available) and to see whether similar results arise. For example is the same law school an
 outlier each year? With the spread-out data in Fig. l(b), I would also prefer to seek more replications
 rather than to try to squeeze more out of the very small data set than may actually be there.

 In short, I suggest that bootstrapping should only be used in rather exceptional cases and that the
 statistician should always be clear what question is to be answered, be ready to ask searching questions
 if necessary, and give high priority to getting more data.

 Robin Henderson (University of Newcastle upon Tyne): Professor Efron's interesting paper is certain
 to motivate several lines of future research. I would like to comment on the suggestion that the jackknife-
 after-bootstrap (JAB) approximation (3.5) should be used in nonparametric problems and estimate (3.18)
 in parametric problems, the latter trading off a reduction in variance for a possible increase in bias.
 In certain semiparametric situations there is a choice between the two within the same framework of
 assumptions, and it is not clear which should be preferred. To illustrate, consider the modelling of survival
 time t as a function of covariates x through a proportional hazards model for the survival distribution,
 namely

 S(t|Ix) == So (tyexpwlx)

 with So(t) unspecified. Bootstrap methods can be very useful when interest is in estimating S(to xo) for
 fixed (to, x0), and the additional information given by the JAB is therefore potentially valuable.
 However, we have to decide how to obtain the bootstrap sample and which JAB to use. Assume for
 simplicity no censoring so that the bootstrap sample can be obtained by either

 (a) sampling from the observations (t,, x,) directly,
 (b) considering the x, as being fixed and, for each, sampling from the empirical conditional

 distribution of t given x, which is discrete with support at t,, t2, . .,, or
 (c) sampling from the empirical distribution F of the x, and then from the conditional distribution

 of t given x, which is not the same as (a).

 Under (a) either equation (3.5) or equation (3.18) based on S0 can be used for the JAB, but under
 (b) and (c) only approximation (3.18) is available since the bootstrap samples contain combinations

 (t, xj) that do not appear in the original data. Though not conclusive, preliminary simulation results
 indicate that the combination of (a) with approximation (3.5) leads to jackknife estimates of standard
 error which are considerably smaller than obtained by (a) with approximation (3.18) or either of (b)
 or (c). Otherwise, there seems to be little difference between the four methods. More work is required
 before a firm recommendation can be made but it is clear that the problem of choice of JAB is not trivial.

 B. J. Worton (University of Oxford): I would like to comment on the tau data set analysis. As Professor
 Efron points out, it is possible to use a second level of bootstrapping to assess the variability of the
 bootstrap variance v(q, A) of the q0/o estimator based on the trimmed mean of the contrast parameter
 A shown in Fig. 6. This has been done and the results are shown in Fig. 8. Each curve was obtained
 by bootstrapping first-level bootstrap samples in the same way as the original data were bootstrapped.
 The plot shows that there is little to choose between the estimators, especially for q 0.3.

 I would now like to mention an alternative use for the first- and second-level bootstrap statistics,
 in the construction of a bootstrap-generated likelihood. The basic method of calculating a bootstrap
 likelihood is, in brief, as follows. Assume for the moment that we have a single independent random

 sample X =(XI, . . ., Xn)' from an unknown distribution F, and the population characteristic of
 interest is 0 = t(F) which is estimated by T= t(F), where F is the empirical distribution calculated from

 X. If to is the observed value of the statistic T calculated from the observed data, the idea is to use
 the second-level bootstrapping to estimate the density of T at to for various 0= t* first-level bootstrap
 statistic values. The algorithm proceeds by generating first-level bootstrap data sets, x ,. x and
 from these calculating corresponding statistics t*,..., thin the usual way. For each of the first-level
 samples x*, generate second-level data sets, x**, x ** and from these calculate statistics
 t,*,*, . . . . , smooth the t. t** with a kernel density smoother and evaluate at to. This gives
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 M point estimates of likelihood at 0 = t*,. , tm*. These points can then be scatterplot smoothed (on
 the log-scale) to produce a bootstrap likelihood curve estimate. The basic method extends easily to
 situations where the characteristic of interest is a function of several sample populations, as in the tau
 decay example.

 Applying the bootstrap likelihood algorithm to the tau data example, taking the statistics of interest
 as being based on the means, the 25%o trimmed means and the medians, we obtain the likelihoods shown

This content downloaded from 128.252.121.143 on Tue, 13 Aug 2019 16:58:03 UTC
All use subject to https://about.jstor.org/terms



 118 DISCUSSION OF THE PAPER BY EFRON [No. 1,

 in Fig. 9. These likelihoods can be used to assess how informative the various estimators are about
 ,A. Evidently the median-based statistic seems to contain less information than the estimators based on
 the mean and 25% trimmed mean. We can also use the likelihoods to assess the plausibility of various
 ,A values.

 The double bootstrap may appear to be a rather extravagant use of computer resources in this example.
 However, if we compare this cost against the effort that went into collecting the original data it seems
 quite negligible. It is possible in certain problems to reduce the computation time taken to construct
 a bootstrap likelihood dramatically by replacing the Monte Carlo simulation at the second level by accurate
 approximations.

 Further details of bootstrap likelihood are given in Davison et al. (1991).

 A. P. Dawid (University College London): The jackknife-after-bootstrap method involves removing
 from the collection of all bootstrap samples those for which any of the values take on the one that
 we want to omit. An alternative is simply to remove from each single bootstrap sample all those elements
 equal to the value that we want to omit. Admittedly, this would give a random bootstrap sample size,
 but I cannot see this as a major problem. This method would have the advantage of yielding a larger
 basis for performing calculations.

 A. C. Atkinson (London School of Economics and Political Science): I have two brief comments
 on Professor Efron's interesting paper.

 (a) Why could we not transform the correlation coefficient to approximate symmetry by using the
 z-transformation, as do Graham et al. (1990)? Smaller bootstrap samples should then be needed
 for the same degree of accuracy.

 (b) Has Professor Efron any advice on the design of bootstrap studies? For whole sample studies
 references to the advantages of various forms of balanced design include Wynn and Ogbonmwan
 (1986), Davison et al. (1986) and Graham et al. (1990). The desirability of balance when individual
 observations are deleted appears to raise new problems.

 My third comment elaborates on a remark by another discussant who mentions masking. The paper'-s
 statistics are examples of 'leave-one-out' diagnostics. It is well known that such methods may fail in
 the presence of groups of outliers or influential observations, as also may the local influence methods
 of Cook (1986). An example in regression is given by Atkinson and Weisberg (1991). To overcome these
 problems my colleague Dr Shephard and I have been using methods incorporating genetic algorithms
 (Goldberg, 1989; Davis, 1991). Initial results are encouraging, although the computer requirements are
 such as to satisfy the appetite of even the most ardent advocate of computer-intensive methods in statistics.

 Frank Critchley (Warwick University, Coventry): In welcoming this paper, I would like to make four
 comments.

 (a) Designer bootstraps: balance considerations suggest that, in the context of this paper (and also
 more generally, as others have remarked), there are gains to be made from designing bootstrap
 samples rather than producing them by Monte Carlo methods. For example, a design can be chosen
 so that the resampling vector P has all its elements equal. This contrasts with the Monte Carlo
 approach under which P is stochastic. In this latter case, by chance, some accuracy-of-accuracy
 measures are more accurate than others. Designs with higher order balance could helpfully be
 employed to extend the present one-at-a-time approach to the study of the joint effect of subsets
 of observations.

 (b) Multiple re-use . . . of the same bootstrap samples induces (potentially very high) dependence
 between the resulting statistics. Where this is likely to be a problem, but further resampling is
 prohibitive for some reason, one approach might be to reduce this dependence-at some loss of
 efficiency-by calculating each statistic only on some (designed) subset of the relevant bootstrap
 samples.

 (c) The simple random sample model (2.1), mimicked by the bootstrap samples, can be pressed too
 far. For example, A is clearly an outlier in the law school data. In such cases, it may seem
 inappropriate, and lead to at best inefficiency, and at worst error, to retain model (2.1). Put
 positively, there seems to me to be potential in developing a general data analysis strategy based
 on a constructive interplay between diagnostic and bootstrap methods.
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 (d) Delta versus jackknife: the author poses the interesting question about what determines which
 of these approaches makes the more efficient use of the fixed available number B of bootstrap
 replications. It seems that the answer may depend essentially on a trade-off between non-linearity
 and 'sample' size. The delta method calculations can use all B 'observations', unlike the jackknife
 method. However, since it is based on first-order derivatives, the efficiency of the delta method
 calculations depends inter a/ia on linearity considerations, which will vary from one functional
 to another (cf. remark 4).

 C. Jennison (University of Bath): The basic idea of the bootstrap is summarized on p. 88 of the paper:
 a functional -y(F) of the true data distribution is to be approximated by the bootstrap version, -y(x) = y(F).
 The adequacy of this approximation relies on asymptotic theory, but this theory can be of only limited
 value for small data sets, especially if the true F is not well behaved and convergence to the asymptotic
 result is slow.

 I wonder what the true F looks like in the law school data example. There is one notable outlier in
 the data set, so let us suppose that F is a mixture of something well behaved, like a bivariate normal
 distribution, plus a more dispersed outlier distribution. If the data contain only one observation from
 the 'outlier' part, it is obvious that asymptotic theory which relies on consistently estimating both the
 normal and the outlier parts of F will not be of much help.

 Diagnostics such as the influence function can still be helpful in the absence of an accurate estimate
 of F. But the paper also discusses estimates of quantities such as the standard error of the estimated
 correlation, se(j5), which depend very much on the whole of F. Given the problem in estimating the
 outlier component of F, do the proposed quantities have any supporting theory which is relevant to
 such a small and awkward example? Even if we invoked parametric assumptions, modelling the outlier
 part of F as a second bivariate normal distribution, there is only one observation from which to estimate
 its location and dispersion, so no real progress can be made: it would be very surprising if an all-purpose,
 automatic bootstrap technique could succeed in this difficult problem.

 On a more positive note, I am sure that the bootstrap has much to offer in the analysis of moderately
 large and fairly well-behaved data sets. Such mundane problems fall between the extremes of a
 mathematical asymptotic theory and the simple analyses of small examples that we seem to see rather
 often. Has Professor Efron any advice or encouragement to applied statisticians wishing to make use
 of bootstrap methods in these intermediate situations?

 Robert J. Tibshirani (University of Toronto): We often forget that bootstrap estimates, like most
 random variables, are subject to sampling variation. In this interesting paper, Professor Efron gives
 a simple way of estimating the standard deviation of a functional 0 of the bootstrap distribution of
 a statistic T. I like his idea because it is simple and can be applied in a straightforward way, without

 having to worry about the form of T or 0.
 Assessment of the variability of prediction error estimates is a potentially important area of application

 for the jackknife-after-bootstrap. I carried out a small experiment to investigate how it works for that

 problem. 50 data pairs were generated from the model z = :0 + to, + e where f0 = 0, /3 = 1, t N(0, 1)
 and E--N(0, 0.752). Denote the average squared residual (ASR) by

 n

 E(Z, - - ti :1 )2/150

 where (:, 3) are the least squares estimates. The quantity of interest is the optimism OP which is
 the (downward) bias in ASR as an estimate of the true prediction error (Efron, 1983). For my sample,
 ASR = 0.438 and OP = 0.030. I used only B = 10 bootstrap samples; since model fitting procedures can
 be very costly in complicated models, this is often practically reasonable. Table 8 shows some standard
 errors for OP.

 TABLE 8

 True jackknife: 0.033
 Jackknife-after-bootstrap: 0.283
 Simple bootstrap formula: 0.086

 True jackknife for cross-validation: 0.056
 Simple cross-validation formula: 0.086
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 The first line was obtained by leaving one point out at a time and explicitly recomputing OP for
 a new set of bootstrap samples. The second line is Efron's approximation (3.5). (To avoid the possibility
 of differences due to bootstrap sample variability, the first and second results are actually averages
 over 25 realizations of the bootstrap process, as is the third result.) The jackknife-after-bootstrap method
 seems to overestimate the standard error of OP badly. I believe that this is because of the small value
 of B: when I increased B to 50 and 100, the standard error fell to 0.153 and 0.095 respectively. However,
 as the first result indicates, this discrepancy does not reflect the true variability of OP but instead reflects
 error in the jackknife-after-bootstrap estimate. It appears then that the jackknife-after-bootstrap method
 may not be very useful unless B is large, say at least 100. This would restrict its usefulness to situations
 in which the estimator Tis relatively simple. I would be grateful if Professor Efron could comment on this.

 The third result uses the simple formula I(1 + 1/B) c21l/2, where J is the bootstrap variance of the
 B individual OP estimates (see above Efron's equation (6.13)). This seems to perform reasonably well;
 such an approach can be used for any statistic of the expectation type. The fourth and fifth results
 refer to leave-one-out cross-validation. The fourth result gives the true jackknife standard error of the

 cross-validation estimate, whereas the fifth is the standard error of the n = 50 individual error estimates.
 The simple formula is quite accurate; intuitively, it is reasonable because the individual cross-validation
 estimates are fairly independent, more so than the individual bootstrap estimates. This method is used
 in the CART algorithm (Breiman et al., 1985). A 'jackknife after cross-validation' method may not
 be needed.

 As a final general point, should not formula (3.4) read

 7(,)=(t [ T(x*, F-i)l P,=0]
 where P-' puts mass 1/(n- 1) on xl, x2 . . .x, x, + . . , x, and similarly in formula (4.5), i.e.
 should not xi be left out of P as well? I tried this change in the above example, but it made little
 difference.

 John W. Tukey (Princeton University): I am pleased to see Professor Efron using a jackknife, even
 in the limited way that he proposes. It is difficult to reconcile 'a second level of bootstrapping is certainly
 the most direct and efficient way' (emphasis added) with 'jackknife-after-bootstrap requires perhaps
 100-1000 times less computation than bootstrap-after-bootstrap' (both near the close of Section 1).

 If y - 0, centred near 0, is more often large positive than large negative (is right skewed) then 0 -y
 is left skewed, and

 2y (0-50) - y (0 95) <0< 2y (0-50)- y(O.05)

 also left skewed, is a more reasonable 90% confidence interval for 0 than

 y(O.05) < 0 <y0.95)

 which is right skewed (and of the same length). It is, I assert, appropriate to call the latter interval
 a seductive interval, since its simplicity can seduce statisticians into forgetting the distinction between
 y-6 and 0-y.

 (a) If we can re-express and reparameterize our problem to make the distribution of y - 0 more nearly
 symmetric, or more slowly changing with 0, we should.

 (b) We should study the effectiveness of the first inequalities, especially in comparison with the seductive
 interval.

 (c) All this applies to bootstrap sampling, where I believe that we badly need to avoid the seductive
 bootstrap interval (defined as the percentile confidence interval near Fig. 2). (Why should we
 want to know about the shape of the seductive bootstrap interval, rather than about that of the
 natural confidence interval?)

 I am concerned with an apparent willingness to forget anything that we know or understand
 about statistical behaviour-just pushing on with the question as originally formulated. Although
 (just before remark 1) we are invited to follow Tibshirani's suggestion and to work with z=
 tanh- r, the author chooses not to do this. Fisher's z often has a more stable variance and
 a more symmetric distribution than r, in non-Gaussian as well as Gaussian situations (Haldane,
 1949). Thus we can expect a bootstrap interval for z to function better than one for r. Indeed,
 near the author's Fig. 4, the interval lengths for z, 1.22=1.84-0.62 and 1.04=2.11-1.07,
 are much more nearly equal than those for r. The relative influence of point A for length
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 in terms of z will be much smaller than it was, presumably as an artefact, for length in terms of r.

 Rudolf Beran (University of California, Berkeley): Let Fn denote the empirical distribution of an
 independent, identically distributed sample of size n, drawn from an unknown distribution F. Then,
 the theoretical nonparametric bootstrap estimate of a functional H(F) is just the plug-in estimate

 H(F,). In the present paper, H(F) is a real-valued function of a sampling distribution, such as a
 quantile or a tuning parameter. If H is sufficiently smooth in F, we know that the usual jackknife and

 delta method estimates for the standard error of H(F,) are consistent, and even asymptotically efficient
 among all nonparametric competitors. But what can be said when only a Monte Carlo approximation

 is available for the theoretical bootstrap estimate H(F,)? Professor Efron's paper makes the important
 point that valid jackknife and delta method estimates for the standard error of H(F,) can be calculated
 from the same bootstrap samples that were used to approximate H(F,).

 It is natural to consider an extension of Efron's results. When H is smoother, consistent jackknife

 and delta method estimates exist for the bias, skewness and kurtosis of H(F,). By fitting an Edgeworth
 expansion to these moments, we can estimate the sampling distribution of H(F,). This estimate can
 be asymptotically equivalent to the theoretical bootstrap distribution of H(F,), as shown in Beran
 (1984). In Efron's context, this means that a second round of bootstrapping might be completely replaced
 by a suitable Edgeworth estimate, with coefficients obtained from the jackknife or delta method. Of
 course, difficulties may arise in this more ambitious approach: estimates of skewness or kurtosis are
 not very good in small samples, and the effects of a finite number of first-round bootstrap samples
 on the fitted Edgeworth expansions need to be analysed.

 Efron's introduction rightly notes that jackknife methods for assessing the variability of bootstrap
 estimates are narrower in scope than double-bootstrap methods. In particular, jackknife methods are

 designed for asymptotically normal estimates H(F,). Even asymptotic normality is not enough. It
 would be tricky, for instance, to make jackknife methods work for a function of the nonparametric
 bootstrap distribution of a sample quantile.

 Hall's (1986) analysis indicates that using B= 1000 bootstrap samples biases coverage probability of
 a 90% bootstrap confidence interval by about 0.001. Using B = 999 removes this Monte Carlo bias easily.
 It would be of interest to hear Professor Efron's reasons for choosing B = 1000 in his confidence interval
 examples.

 The following contributions were received in writing after the meeting.

 Hung Chen (State University of New York, Stony Brook) and Hung Kung Liu (National Institute
 of Standards and Technology, Gaithersburg): We shall only comment on Professor Efron's use of the
 jackknife to assess the accuracy of bootstrap statistics. As is well known, the jackknife method may
 not reveal the effect of multiple outliers in the data. Also, sequential deletions of observations cannot
 be relied on to reveal multiple outliers. A possible cure is to delete several observations at once. But
 this extension is a computational nightmare, since there are many possibilities to be explored. However,
 this approach is computationally feasible if equation (2.12) can still be used. Can the author comment
 on the use of equation (2.12) in this case?

 Next, we compare the bootstrap-after-bootstrap with the jackknife-after-bootstrap by considering
 the estimation of the population mean by the sample mean under a gross error model. In our simulation,
 50 observations are drawn from the standard normal distribution and then we add 3 to the first two
 observations, so that the final data consist of two widely separate clusters with size 48 and 2 respectively.
 The number of bootstrap replications in the jackknife-after-bootstrap is 6000 and in the bootstrap-after-
 bootstrap it is 1000 for the first-level bootstrap and 2000 for the second-level bootstrap. Fig. 10 and
 Fig. 11 illustrate our calculations for the jackknife-after-bootstrap with the deletion of one and two
 observations respectively. In both figures, we follow the same description as for Fig. 3 with the broken
 lines indicating the 5th, 10th, 16th and 32nd bootstrap percentiles in ascending order. Fig. 12 shows
 a different summary of the results in Fig. 11. The curves from left to right are the estimated density
 functions of the four percentiles. Each is based on 1225 observations. Fig. 13 is the same density plot
 based on results from the bootstrap-after-bootstrap.

 One observation from Figs 12 and 13 is that the overlapping patterns are quite different. Consider
 these methods as repeated resampling procedures. An intuitive explanation lies in the number of outliers
 that may appear in each of the first-level samples. A jackknife sample may contain at most two outliers,
 whereas a bootstrap sample may contain any number of outliers with different probabilities.
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 The variability from bootstrapping a jackknife sample is expected to be less than the variability from
 bootstrapping a bootstrap sample. Therefore these results indicate that the bootstrap-after-bootstrap
 may provide information that cannot be revealed by the jackknife-after-bootstrap. However, the
 disadvantages of the bootstrap-after-bootstrap include the substantial extra computations and the
 difficulty in singling out atypical observations.

 David Cox (Nuffield College, Oxford): Professor Efron's paper is characteristically impressive. The
 rather sweeping statement in the second sentence is presumably restricted to problems with a strong
 'independent and identically distributed' component and the extension of his techniques to the assessment
 of precision in more complex systems raises interesting issues. The analysis of the nuclear physics data
 is dependent on an assumption such as symmetry which, although consistent with the data, seems rather
 strong. For otherwise the different trimmed means are estimating different parameters and there is no
 reason to think that because a parameter is estimated with maximum precision it is therefore the most
 meaningful.

 Daniela De Angelis (Universita di Roma 'La Sapienza'): Bootstrap methods are generally either
 implemented in a completely nonparametric fashion, by resampling from the observed data, or by
 parametric sampling from a fitted distribution. An intermediate approach, not discussed in this paper,
 but due to Professor Efron himself (Efron, 1979), involves resampling from a nonparametrically smoothed
 version of the empirical distribution. Use of such a smoothed bootstrap can lead to a considerable
 reduction in the mean-squared error of the bootstrap estimator in many problems, though in most
 common applications, where Hall's (1988) 'smooth function model' applies, the benefit due to smoothing
 is only of second order (De Angelis and Young, 1990a). First-order improvement in the performance
 of the bootstrap estimator can, however, be achieved in certain cases where the smooth function model
 does not apply, such as the problem of estimating the variance of a sample quantile: see Hall et al. (1989).

 The ability to reproduce in practice the theoretical advantages of smoothing depends crucially on
 being able to choose an appropriate value for some smoothing parameter. A data-based procedure for
 such a choice is discussed by De Angelis and Young (1990a, b) and by Bowman and Hall (1991). The
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 key idea of the method is that of constructing, from the given sample data, a bootstrap estimate of
 the mean-squared error associated with the smoothed bootstrap estimation, and of choosing the smoothing
 parameter for the estimation itself to minimize this error estimate. The procedure has much in common
 with the method described in Section 4 of Professor Efron's paper, the main difference being that since
 the estimator is now a bootstrap estimator, which will generally require resampling in its construction,
 the estimation of the mean-squared error is already a bootstrap-after-bootstrap calculation. In many
 simple cases it is possible to construct explicitly, or at least to approximate, the error estimate without
 the need for a double level of bootstrap sampling, though the approach is perhaps most fruitful where
 computational short-cuts are most difficult to obtain (De Angelis and Young, 1990a). Although the
 method performs most effectively, Professor Efron's paper may provide the basis for a further refinement
 of the empirical smoothing, through the use of a jackknife-after-bootstrap-after-bootstrap calculation
 to investigate how well determined the choice of smoothing parameter is.

 Thomas J. DiCiccio and Michael A. Martin (Stanford University): Professor Efron's development
 of the bootstrap has revolutionized the way that data are used. His article emphasizes that statisticians
 must think critically about the bootstrap quantities that they use, but that such an assessment need
 not incur much more computational cost than that expended in obtaining the original quantities.

 How might jackknife-after-bootstrap calculations be applied generally? One possible way in which
 the technique might be adapted to a wider class of problems is the use of a delete-d jackknife-after-
 bootstrap, but such a technique might rival double bootstrapping in terms of computation.

 The application of the jackknife to estimate the standard error of bootstrap-t percentiles is intriguing.
 There, the function X is discontinuous, so there is some question about whether the jackknife-after-
 bootstrap estimate is consistent. It is well known that the delete-I jackknife yields inconsistent variance
 estimates for samples quantiles. A useful heuristic approach is to view the jackknife-after-bootstrap
 technique as similar to a delete-d jackknife on the set of resamples T*, b = 1, . B, where d- B/2,
 rather than as a delete-I jackknife on the original data. This value of d follows from noting that, typically,
 the number of distinct resamples is (2n, 1) and the number of resamples not containing the ith data point

 iS (2n 2)- Consequently, for large n, each of the i(i) is based on approximately half of all possible
 resamples. Analogously, each of the 'K(i) is based on roughly half of the B resamples drawn. Results
 of Shao and Wu (1989) indicate that, provided B'12/d -- 0, the delete-d jackknife quantile variance
 estimate based on all (d) delete-d jackknife samples is consistent. Further, the variance estimate based

 on a balanced set of subsets of the (d) jackknife samples is also consistent; see Shao and Wu (1989)
 for a discussion of balanced sets. Now, the set of subsets of resamples on which the j(,) are based is far
 from balanced-resamples containing n copies of any particular data point appear n - 1 times in the
 set of subsets, whereas the most likely resample, the original data, does not appear. Similarly, the set of
 samples on which the 'K(i) is based is unlikely to be balanced. In principle, the set of samples corresponding

 to ^w, i = 1, . . ., n, could be embedded in a balanced set of subsamples, but at least B such subsamples
 are necessary to ensure balance. Can the requirement that the set of subsamples be balanced be relaxed?
 If not, it appears that at least B subsamples are needed to ensure consistency in this example. Procedures
 employing B subsamples are about as computationally demanding as double-bootstrap algorithms.

 Nicholas I. Fisher (CSIRO Division of Mathematics and Statistics, Lindfield) and Peter Hall (Australian
 National University, Canberra): As always, Professor Efron has demonstrated his extraordinary ability
 to uncover and develop significant new research areas. His work on jackknife-after-bootstrap methods
 will undoubtedly prove seminal in stimulating research activity.

 Along with a large number of challenging suggestions for future avenues of research, a number of
 gauntlets are thrown down. We wish to comment on just one of them here, stemming from the comparison
 of jackknife-after-bootstrap and bootstrap-after-bootstrap methods. Now, the efficacy of the jackknife
 is founded, analytically, on correcting a Taylor expansion for the 'linear' term. This presupposes a certain
 level of smoothness of the underlying statistical functional. In particular, jackknife methods do not
 perform well with indicator functions. For example, the leave-one-out jackknife estimate of the
 distribution function of a statistic is usually not consistent.

 More specifically, if X denotes the mean of a random sample of size n from a distribution with mean

 It and finite variance, and if Xi represents the mean of the (n - 1)-sample obtained by deleting the ith
 data value, then the leave-one-out jackknife estimate of p = Prob(X ? n,u + n'12x) is

 n

 w = n h IEr e(Xi < does not2X) = I(X < nn + nvg2X) +,

 where i\ O- in probability. Therefore pi does not converge to p.
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 Similarly, the usefulness of jackknife methods for correcting errors in, say, the percentile method
 bootstrap estimate of a distribution function seems to be severely limited. It is in such cases, where
 estimation of the expected value of a discontinuous quantity is the main issue, that techniques based
 on the bootstrap-after-bootstrap can be deployed to good advantage.

 Is the 'iterated bootstrap' as computationally impractical as some suggest? In samples of small to
 moderate size (where bootstrap methods come into their own) and for problems involving univariate
 statistics (where large values of B are relatively unimportant) the iterated bootstrap is already an eminently
 practical tool, using only the sort of late 20th-century technology which many statisticians currently
 have on their desks.

 It will be helpful to give a new intuitive explanation of the way that the double bootstrap affects
 calibration, as the technique is not yet widely understood.

 Let 6 be an estimate of a parameter 0, based on data Y, and suppose that we seek to approximate
 the sampling distribution of 0 by bootstrap methods. Let 0 , . be the corresponding bootstrap

 estimates calculated from resamples ,*, . . ., YB*, and denote their order statistics by 06 . . . < 6B.
 Then 6(*,, purports to be a value such that

 P( -<6 0) =j/(B + 1), j = 1, . B.

 This may not be correct, to a satisfactory approximation, especially in small samples, so we might seek

 a closer approximation to P( < 0( *)). For each resample ,*, a complete bootstrap experiment based
 on b resamples from 97i* can be carried out, leading to the B sets of ordered double-bootstrap estimates
 01(l) J ' ' * > a i. . , B.

 Sacrificing generality on the altar of simplicity, suppose that b = B. Then a better approximation to

 P( 66(* ) is given by
 B

 B-' I(6< 6, (**), j=1, . B.

 The author replied later, in writing, as follows.

 Let me restate the main idea of the paper. A bootstrap analysis has been run to assess the accuracy
 of some primary statistical results. This produces bootstrap statistics, like standard errors or confidence
 intervals, which are assessments of error for the primary results. By suitably rearranging the output
 of the bootstrap analysis we obtain jackknife estimates of accuracy for the bootstrap estimates themselves.

 The advantage here is simplicity and ease of computation. The same analysis that gives the bootstrap
 statistics also gives their accuracies. The disadvantage is that we only derive approximate jackknife
 accuracy estimates.

 Both adjectives, 'approximate' and 'jackknife', limit the jackknife-after-bootstrap's (JAB's) usefulness.
 For the approximations to be tolerable, the original bootstrap analysis must be fairly large, of the order
 of B= 1000 replications. Professor Tibshirani's example shows that small values of B can terribly inflate
 the JAB estimates of error.

 Using the jackknife or the delta method for error analysis virtually restricts attention to standard
 errors and biases, which are the only error quantities easily obtained from influence functions. The
 bootstrap-after-bootstrap method is a more flexible approach, and likely to give more satisfactory answers,
 as shown for example by Dr Worton's reanalysis of the tau data. It was not included here because of
 my self-imposed restriction to error estimates that can be obtained from the original bootstrap
 computations. (This restriction rules out Professor Dawid's suggestion.) I apologize for any impression
 of negativity about iterated bootstrap methods. Several of the contributions show how promising this
 area has become: see Fisher and Hall, Young, De Angelis and Worton.

 It was early 1990 when I wrote 'At present, bootstrap-after-bootstrap seems too computationally
 intensive for routine use'. This is probably still true, but an inexorable tide of inexpensive superfast
 computing continues to wash in. My Sun 3/50 personal computer is obsolete these days. I expect, and
 hope, that the quotation above will soon be rendered false.

 This still leaves the question of how to use superintensive methods like the bootstrap-after-bootstrap.
 Some of the uses are clear. As Dr De Angelis points out, if an estimator is 'tuned' by using a bootstrap
 analysis, then evaluating its standard error probably involves a second level of bootstrapping. The
 bootstrap calibration idea, neatly explicated by Dr Young and Dr Fisher and Professor Hall, is another
 promising candidate. The Hinkley-Davison-Worton partial likelihood is a good example of new
 technology engendering interesting new theory.
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 A simpler question, in the spirit of Professor Atkinson's comments, is how to design an iterated
 bootstrap experiment. Given a constraint of say 100000 replications, is 1000 x 100 better or worse than
 100 x 1000, etc.? Still another avenue is the elimination of Monte Carlo methods entirely from one or
 both of the bootstrap levels, as with Dr Young's saddlepoint methods, or Professor Beran's Edgeworth
 series.

 All this is in apology for not going sufficiently far here in the pursuit of computer-based statistical
 methodology. Dr Chatfield, and to some extent Professor Tukey, seems to feel that I have gone too
 far. There can be no quarrel with the advice to get more data whenever possible, but eventually we
 are still left with a finite data set and inferences to make.

 The more I work with the bootstrap and other resampling schemes the more they seem to be an
 application of classical statistical ideas (like plugging in F for F), carried out with the help of computers
 rather than mathematical approximations. This still may be torture, but it is torture with a classical
 provenance. In fact the paper offers a check on the bootstrap, to see whether it is generating more
 detail than the data support. Professor Copas states this point neatly in his last remarks.

 Professor Tukey, who probably deserves most of the blame for the current interest in computational
 methods, worries that we (I) forget good statistical practice in pursuit of the computational muse. He,
 along with Professor Atkinson, wonders why the law school example was not analysed on the
 tanh- '-scale. An important point of research into the bootstrap, and other computer-based methods,
 is the automation of large parts of good statistical practice. For example the percentile intervals, being
 transformation invariant, work equally well or poorly on any scale. In complicated situations the
 statistician, even a very good applied statistician, will not know what transformation to make, so it
 is helpful to be using a transformation invariant method.

 Fig. 4 is transformation invariant. Changing from the correlation s to z = tanh- '(s) maps every point
 (u, s) in Fig. 4 to (u, tanh-' (s)). The lowest broken horizontal line goes from height 0.549 to height
 0.617 = tanh- I (0.549). The lowest jagged curve has height 1.066 = tanh- ' (0.788) at point A on the right,
 still just below the 500Vo horizontal line, etc. In this sense, point A has the same huge negative influence
 on the tanh -'-scale, or on any other scale. (The JAB numerical calculations will not be perfectly
 invariant, because the jackknife is not.)

 Professor Copas and Professor Tukey raise an important point about translation families: if X= 0 + Z,
 where Z is centred at 0 but symmetric and long tailed to the right, should not the confidence interval
 for 0 be long tailed to the left of the observed value X= x? This is commonsensical, and the opposite
 of what the percentile interval does. In fact, the translation model does not extend well to more general
 confidence interval situations. If X is Poisson(0) for example, then its distribution is asymmetric to
 the right, but so is its confidence interval: likewise for the other familiar one-parameter families. The

 better version of the percentile method called BC, does the right thing in these families, and also in
 translation families. See Section 10 of Efron (1987).

 I could have plotted the BC, confidence interval limits in Fig. 4 instead of the percentile limits, as
 Professor Copas hints. Length and shape in Table 1, and the subsequent JAB analysis, could just as

 easily (well, almost as easily; see the next paragraph) have referred to the BC, intervals. For some
 reason there has not been much interest in influence calculations for confidence intervals. Even traditional
 non-bootstrap confidence intervals can be quite sensitive to outlying data points, often more so than
 a point estimate. The jackknife or delta method influence functions can be used to uncover these
 sensitivities.

 Now is the time for confession. Professor Tibshirani caught a serious error in my original equation

 (3.4), since corrected. I originally wrote ^(i) = 4 [ T(x*, F)I Pi = 0 ], forgetting that 'F' needs be modified
 to 'F(i)' in the deleted point computations. This affects the bootstrap-t calculations (3.11), where
 the deleted point statistics Ti*b in approximation (3.5) are [s(x*b)-s(xi)J/d(x*b) and not
 fs(x*b)-s(x)J/d(x*b). (It is easy to calculate Ti*b from the bootstrap statistics (s(x*b), d(x*b)) and
 s(x(i)). As stated in the paper, no new bootstrap evaluations are required.) In answer to Professor
 Copas's reasonable concerns, Fig. 5 as shown is based on the correct version of equation (3.4).

 The interesting thing about Fig. 5 is its clear demonstration that the T-statistic (3.8) is not even

 approximately pivotal here. This raises the prospect of a data-based search for an approximate pivotal,
 but I do not know how one would carry out such a search.

 Fig. 14 shows the entire population of 82 law schools from which the 15 schools in Fig. l(a) were
 selected. Point A still looks like an outlier, though less egregious. Dr Jennison's reasonable guess that
 it represents a separate mode of the bivariate distribution turns out to be unfounded. (Professor Copas's
 belief that point A is not so unusual is vindicated.) Our sample of 15 did not include the spectacular

This content downloaded from 128.252.121.143 on Tue, 13 Aug 2019 16:58:03 UTC
All use subject to https://about.jstor.org/terms



 126 DISCUSSION OF THE PAPER BY EFRON [No. 1,

 + +0

 S + + +
 + + 4-

 is 6

 ++ +
 O_ ~ ~~ +++ +

 N + ,

 I I I I
 500 550 600 650 700

 LSAT

 Fig. 14. (LSAT, GPA) scores for all 82 law schools: *, school selected for Fig. l(a)

 outlier at the lower left-hand side, which is the only point of the 82 that looks incommensurate with
 bivariate normality.

 Professor Cox raises a very reasonable question about the tau example: why should we be comparing
 different trimmed means according to their variances if they are estimating different quantities? One
 answer is that all trimmed means are translation equivariant, so that their power in detecting translation
 alternatives will be inversely proportional to their variances. Another possible answer concerns the
 parameter A, expression (4.1). The corresponding estimator a is a contrast of two similar parts,
 decay, and (decayp +. . .), and as such is likely to have nearly the same mean for any trimming
 proportions (so we need only worry about variance). For example, if X and Y are independent gamma
 variates of degrees 10 and 4 respectively, then the difference of their distribution trimmed means ranges
 from 6 for the true mean to 5.996 for the median.

 The question of parametric versus nonparametric JAB analyses is raised by Dr Henderson, who makes
 an interesting point about intermediate semiparametric situations. It is worth noting that variability
 estimates do not necessarily increase as we go from parametric to nonparametric assessments. A parametric
 model that is wrong can easily force an overly large assessment of variance, as later revealed by a
 nonparametric, or semiparametric, bootstrap analysis.

 I like Dr Critchley's suggestion for an interplay between diagnostic and bootstrap methods. Figs 4
 and 5 were conceived in that spirit. Both Dr Critchley and Professor Atkinson wonder about designing
 bootstrap experiments that are more efficient than pure Monte Carlo methods. The ultimate designed
 bootstrap would be a Simpson's rule for integration over the resampling simplex, but alas this seems
 impossible. Less dramatic improvements over simple Monte Carlo methods can be found in Efron (1990),
 as well as in Professor Atkinson's references.

 Bootstrap statistics (2.12) are more complicated functions of x than primary statistics like means,
 quantiles, etc. As a compensating virtue, they tend to be smoother functions of the underlying distributions
 F than their primary counterparts. (This makes them good candidates for jackknifing.) In particular,
 the quantiles of the bootstrap distribution of some statistic 6 = t( F) are usually more smoothly behaved
 than the quantiles of x itself. This is in answer to the concerns of Dr DiCiccio and Dr Martin, and
 also of Dr Fisher and Professor Hall, regarding some of the applications in the paper.

 Dr Chen and Dr Liu, as well as Dr Davison and Professor Atkinson, worry about the masking of
 outliers by other outliers. Chen and Liu make a case for removing the points two at a time instead
 of singly. About 13%Vo of the bootstrap samples will be missing any two given points, compared with
 370Vo for any one point. We would need B to be of the order of 3000 to make the approach in
 approximation (3.5) feasible for two-at-a-time removal. The equivalent of Fig. 7 might help to reduce
 this number.

 Dr Jennison overestimates my self-control if he thinks that I can resist answering his last question.
 I have started to use resampling methods regularly in my own applied work and find them very satisfactory
 for Jennison's 'mundane' problems. It is nice to be able to supplement a standard parametric error
 analysis with a nonparametric bootstrap investigation, if for no other reason than that often my clients
 better understand the bootstrap analysis. Resampling methods may look strange to us, because of
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 our training in mathematical statistics, but they seem to strike most scientists as little more than common
 sense.

 Bootstrap methods come into their own in complicated situations, which, as with the tau data, may
 not necessarily be large sample situations. There is a natural tendency to be less critical about a complicated
 analysis, e.g. a robust regression following a variable selection procedure, than a simple analysis, just
 because it is more difficult to do the complicated analysis. Resampling methods can help the applied
 statistician to avoid this obvious logical fallacy. Bootstrap methods themselves are complicated procedures,
 whose complications should not be an excuse for uncritical acceptance. That is the point of this paper,
 and many of the commentaries.

 I am grateful to the Society and the commentators for arranging this discussion.
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