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SUMMARY 
A survey of some developments in bootstrap methodology is given. Topics include confidence 
limits, significance tests, empirical likelihoods, conditioning, double bootstrapping, and 
numerical techniques. Special attention is given to regression problems. There are brief 
remarks about more complex problems, including variance component problems, time series 
and nonparametric regression. 
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1. INTRODUCTION 

The essence of bootstrap methods is the simulation of relevant properties of a statistical 
procedure with minimal model assumptions. The word 'simulation' here is used in 
the widest possible sense, from simple substitution of an estimated distribution in a 
formula to complex Monte Carlo simulation of representative samples and their 
analysis. In any given context bootstrap methods may be similar variously to 
simulation methods, permutation methods, jackknife methods or other familiar 
'resampling' methods. One major focus of research has been the search for reliable, 
automatic, empirical methods for calculating confidence limits. Because most boot- 
strap methods involve numerical approximation, potentially powerful techniques of 
theoretical and Monte Carlo approximation have been and continue to be studied. 
As to potential applications, considerable effort has been devoted to classical problems 
involving means, correlations and regression. But increasingly attention is directed 
to more complex problems such as those associated with variance components, time 
series, sample surveys and nonparametric curve fitting. 

The aim of the present paper is to review and illustrate many of the developments 
in bootstrap methodology, so as to highlight key ideas and potential usefulness. The 
choice of material inevitably reflects personal interests, however, so that the paper is 
in no way a comprehensive review. The first sections deal with the relatively simple 
context of homogeneous samples; Sections 2-5 respectively discuss the basic bootstrap 
method, numerical techniques, confidence limit methods and significance test methods. 
Regression problems are considered in Section 6, and the idea of a conditional 
bootstrap introduced there is further discussed in Section 7. Section 8 looks at some 
recent suggestions for empirical likelihoods. Some more complex applications are 
outlined in Section 9. Finally, Section 10 contains some general discussion. 

t Address for correspondence: Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, 
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2. BASIC BOOTSTRAP METHOD 

To begin with a very simple example, consider the sample of n = 10 measurements 
xl, ..., x10 in the first row of Table 1, whose average and standard deviation are 
x = 17.87 and s = 7.19. Suppose that we wish to make statistical statements about the 
accuracy of the sample average x as an estimate of s, the mean of X in the population 
from which the sample was drawn. For the sake of definiteness, suppose that we wish 
to know (a) the variance of X, (b) Pr{c < X- - d} for specified c and d, and (c) 
95 % confidence limits for ! on either side of x. 

One classical approach would be to describe random variation in sampled X values 
by a distribution function F(x I 0) = Pr{X < x}, with 0 an unknown parameter (vector 
or scalar) which includes M. Possible answers to problems (a)-{c) are found by 
theoretical calculation based on F with an estimate 0 in place of 0. For example, if 
F is the cdf of the N(y, a2) distribution, so that 0= (a, a2), then the variance of X is 
a2/n, which we usually calculate with 2= (n - (xi - i5)2 in place of a2. In 
bootstrap terminology, this is a parametric bootstrap calculation. 

The nonparametric bootstrap, more usually called simply bootstrap, approach is to 
not assume anything about the form of F, only that it exists. Then in place of F(x I 
one might use the empirical cdf 

F(x) =n- hv(x-xi), 

TABLE 1 
A random sample and small bootstrap analyses of its meant 

Bootstrap Frequencies of datum values for the following data 
sample 

9.6 10.4 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8 

Simple bootstrap 
1 1 0 0 1 3 1 1 0 2 1 19.07 
2 1 0 1 1 1 1 0 3 2 0 18.48 
3 0 0 2 1 2 0 2 0 3 0 18.08 
4 1 1 1 2 0 1 1 1 0 2 18.69 
5 1 0 1 1 3 1 1 1 1 0 16.77 
6 1 1 2 0 0 1 1 2 1 1 18.19 
7 0 1 3 1 0 1 3 0 1 0 15.75 
8 2 1 0 0 2 1 0 0 2 2 19.56 
9 1 1 1 2 0 0 1 1 1 2 19.37 
10 0 1 2 0 2 1 0 3 1 0 17.62 

Sample average of x*s= 18.16, sample variance of 5*s 1.41 

Randomized 
block bootstrap 
1 0 0 1 1 3 1 0 0 2 2 21.06 
2 1 3 1 0 1 0 0 1 2 1 17.40 
3 2 0 0 0 1 1 0 2 3 1 20.24 
4 1 0 1 0 0 3 3 1 0 1 18.17 
5 1 2 1 0 2 0 2 2 0 0 15.48 
6 0 2 2 0 1 0 1 2 1 1 18.21 
7 1 0 0 3 1 3 0 0 1 1 18.06 
8 2 1 1 2 0 0 2 0 1 1 16.50 
9 2 1 1 1 0 0 2 1 0 2 18.16 

10 0 1 2 3 1 2 0 1 0 0 15.42 

Sample average of x*s = 17.87, sample variance of x*s 3.333 

fAverage x = 17.87. 
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1988] Bootstrap Methods 323 

where hv(u) = 0 (u < 0), l(u > 0); possibly one would consider a smoothed version of F 
(Efron, 1982, ch. 5; Silverman and Young, 1987). For problem (a), a2 in the formula 
var(X) = U2/n would now be calculated with F in place of F as &2 = f x2dF(x) - 
(f xdF(x))2 = n- 1(xi -_ )2, perhaps modified to its unbiased form s2. There is nothing 
novel about this, of course, but there is about using P to do the probability calculations 
for problems (b) and (c). 

Consider problem (b) in detail, and rewrite the required probability in the more 
suggestive form 

P = Pr{c ? mean(data) - mean(F) < d}. (1) 

If this is calculated with P substituted for F everywhere, the result is the estimate 

P = Pr{c < mean(data*) - mean(F) < d}, (2) 

where data* is a random sample of size n drawn from P. Because theoretical evaluation 
of P appears impossible, one might well adopt the strategy of numerical simulation: 
draw repeated samples data*(1), ..., data*(B) from F, and calculate 

psim= number of times c < mean(data*(i)) - mean(F) ? d (3) 
Sim ~~~B 

Table 1 illustrates this for B = 10. Each bootstrap sample data*(i) is recorded in the 
form of frequencies of original data values. For c =-1 and d = + 1 we get PSim = 0.50, 
a not very accurate approximation to P = 0.37 (see Section 3) resulting from the 
ridiculously small value of B: it would be customary to have B well in excess of 100. 

Note that in the simulation, drawing a random sample from P means simply 
sampling n values from data randomly with replacement. But is this a good numerical 
strategy? It would not be if we required only var(X), because the simpler technique 
known as the jackknife (Miller, 1974; Efron, 1982) uses n systematic samples from 
data and gives the correct answer-here meaning &2/n. Can P itself be calculated 
without numerical simulation? Such questions are addressed in the next section. 

A very different question concerns the accuracy of P as an approximation to, or 
estimate of, P. If P is very inaccurate, then choosing data-dependent values c = - and 
d = d to make P = 0.95, for example, would make the natural 0.95 bootstrap confidence 
limit formula 

mean(data)- <- mean(F) < mean(data) - (4) 

unreliable. We know from experience that this is likely to happen for small samples 
of, say, normal or gamma data: the reliable confidence limit methods are based on 
probabilities for (x - ,)/s and x/,u respectively, not - ,u. Is there some way of finding 
out that P is inaccurate? Is there a general, reliable way to calculate confidence limits 
for ,u? To these questions we return in Section 4. 

The example of the average illustrates a general type of problem to which 
considerable theoretical effort has been directed. Given a statistical estimate T = t(F) 
of population characteristic 0 = t(F), we wish to calculate Q = E{R,(F, P) I F}; here 
E( I F) denotes the expectation with respect to F. The quantity RJ(F, F) might be 
simple, e.g. (X -, _)2, or complicated, e.g. the indicator of whether or not (X - u)/S < a. 
The nonparametric bootstrap approximation of Q is Q = E{Rt(F, F*) I F}, where F* 
is the empirical cdf of the bootstrap sample X*, ..., X* which is drawn randomly 
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324 HINKLEY [No. 3, 
from P. While the consistency of Q for Q flows from the consistency of F for F, a 
more detailed assessment of Q - Q is often useful, especially if one is trying to compare 
confidence limit procedures or if alternative approximations to Q are being considered. 
The majority of theoretical results (see Beran (1982, 1984) and Hall (1987a), and 
references therein) deal either with estimates T which are functions of vector averages, 
so that standard expansion techniques apply, or with estimates representable by 
Volterra series, 

T = O + n-' E a,(Xj; F) + n-2 Za2(Xi, Xj; F)+..., (5) 

in which a1 is the influence function of T. Some of the relevant results for confidence 
limit methods are reviewed by DiCiccio and Romano (1988). 

In what follows, the discussion focuses first on some of the questions raised in 
this section, and then reviews a variety of bootstrap methods, in a rather non-technical 
way. Throughout we shall denote bootstrap samples of data by X1, ..., Xn* and 
corresponding statistics by T*. 

3. NUMERICAL TECHNIQUES 

The exact calculation of property Q = E{Rt(F, F*) I P} is ordinarily not possible. 
There are essentially two ways to proceed: theoretical approximation and purely 
numerical approximation. 

The simplest type of theoretical approximation would be to replace T = t(F) by its 
linear approximation 

TL= t(F) +n1 al(Xj; F), (6) 
i.e. the first two terms on the right of (5). From TL is derived the N(0, V) approximation 
for the distribution of n1l2(T-0), with V = n-1 {a1(Xj; F)}2. This is the (infinitesimal) 
jackknife method, which may often be adequate, but which negates a potential 
advantage of bootstrap methods, namely high order or small sample accuracy. 

The simplest example of numerical approximation, illustrated by (3), is the 
generation of B samples X*, b = 1, ..., B, from F followed by calculation of 

B 
PSim = t B-E R(F, Fb*). 

b= 1 

The required magnitude of B will depend on the form of Rt, but will often be at 
least 100. 

A general discussion of improvement in numerical techniques by Thernau (1983) 
suggests several approaches, including the importance sampling and control methods 
familiar in Monte Carlo methodology. The different approach of balanced sampling 
has been studied in more detail (Obgonmwan and Wynn, 1986; Davison et al., 1987; 
Graham et al., 1987). The central idea here can be expressed in two ways, the more 
profitable of which is as follows. Write a simulated sample from F as (x<(1), ..., x<)), 
and 4 = (4(1), . . ., 4(n)). Then the B vectors 4, . . .,. B which define the bootstrap 
simulation should cover the n-dimensional lattice cube {1, 2, ..., n}n in as uniform 
a manner as possible. Exact uniformity on one- and two-dimensional margins is 
achievable by use of classical experimental designs. For example, one-dimensional 
balance is achieved if the B x n matrix with (b, i)th element 4b(i) defines a randdmized 
block design with columns as blocks, entries as treatment labels. The second half of 
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Table 1 illustrates this with B = 10, corresponding to a single randomized block. Note 
that the average of the 10 x*s is necessarily equal to x, thereby yielding a correct 
estimate of zero bias for X: 

estimated bias = B' 1 (Xb - x) = 0. 

Also the variance of the 5x*s is closer to the correct value n- 1&2 for the variance of X. 
Two-dimensional balance can be achieved using orthogonal Latin squares, and a 

somewhat weaker form of balance, suitable for homogeneous data, is achievable using 
balanced incomplete block designs (Graham et al., 1987). What two-dimensional 
balance gives is error-free approximation of bias and variance for the linear part of 
a statistic, which for large samples is adequate. 

What do such designs achieve in practical terms? Probably a fourfold or fivefold 
reduction in B for any given level of simulation error, if we are approximating moments 
of T. But for estimating the 100pth percentile, say, of T -0 by the (B + 1)pth ordered 
value of T* - T, balanced designs are not so effective, especially for p < 0.05 or p > 0.95. 
It seems quite likely that a more effective strategy is to select among one-dimensional 
balanced designs using a rejection technique along the lines suggested by Ogbonmwan 
and Wynn (1986). Further research is needed in this area. 

Switching now to theoretical approximation, particularly for the probability 
distribution of T*, one elementary approach is to modify normal approximations 
with Edgeworth corrections. More interesting, and usually more effective, is the use 
of saddlepoint approximations (Davison and Hinkley, 1988). For example, consider 
again T = X, and write the empirical cumulant generating function of X as 

K(R) = log e'xdPF(x) = log(n-1 E e"xi). 

Then a direct application of equation (4.9) of Daniels (1987) gives 

P = Pr(T*-t < y I D(wy) + qO(wy)(w - z37 1), 

where 

WY= [2n{ A+Y(t + y) - K(2+)}]"2 sgn(At+Y), 

ZY = A+ {nK"(t )J 1/2 

with At+ y the unique solution of KR'(2) = t + y. Table 2 gives a brief summary of 
numerical results so obtained for the data of Table 1, in the form of percentile 
approximations. Comparison is made to exact results (simple numerical simulation 
with B = 50 000) and normal approximation results. The saddlepoint approximation 
is excellent. 

There are two difficulties with the saddlepoint approximation method in this 
context. First is a technical difficulty associated with the discreteness of F; this makes 
formal proofs of asymptotic expansions complicated, but not impossible. More 
important is the limited range of problems to which known saddlepoint approxima- 
tions apply, essentially those for which T solves a linear estimating equation of the form 
St(Xj, T) = 0 with *f(x, t) monotone in t. An ad hoc approximation can be obtained 
via series expansions of T* - T, but the result does not have the degree of accuracy 
typical for saddlepoint methods. A key unsolved problem is to derive saddlepoint 
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326 HINKLEY [No. 3, 
TABLE 2 

Approximations to bootstrap percentage points for X - ,; data in Table 1 

p 
0.001 0.01 0.05 0.10 0.90 0.95 0.99 0.999 

Exact percentilet -6.34 -5.55 -3.34 -2.69 2.87 3.73 5.47 7.52 
Saddlepoint percentile -6.31 -5.52 -3.33 -2.69 2.85 3.75 5.48 7.46 
Normal percentile -8.46 -7.03 -3.74 -2.91 2.91 3.74 5.29 7.03 
Fisher-Cornish -6.51 -5.74 -3.48 -2.81 3.00 3.97 5.89 8.19 

t From 50000 random samples. 

approximations for non-linear statistics such as T = n - la(Xj) + n - 2Xlb(Xi, Xj): 
such approximations would give accurate results for statistics with expansion (5). 

What of the other possible numerical techniques? The Monte Carlo control method 
can be applied to approximate moments of a statistic, for example using TL in (6) as 
control, since TL has known moments under sampling from F. Use of the Monte 
Carlo method of importance sampling is currently under investigation by Dr A. C. 
Davison. For approximation of probabilities, such as (2), one obvious approach is to 
apply smoothing techniques to the empirical distribution of simulated values of the 
relevant statistical quantities, such as X*- X. 

4. CONFIDENCE LIMIT METHODS 

The most studied problem in (nonparametric) bootstrap methodology is the 
determination of reliable confidence limit procedures. This is the subject of the 
companion paper by DiCiccio and Romano (1988), so an exhaustive survey will not 
be attempted here. 

The basic problem arises from the discrepancy between (1) and (2). In principle a 
confidence interval procedure for parameter 0 based on estimate T would be solved 
by finding ap such that Pr(T -0 < ap) = P, for given P. Then, for example, equitailed 
1-a limits for 0 would be T-a, -/2 and T-aa12, cf. (4). Bootstrap estimates ap are 
usually not satisfactory, in essence because T* - T is not pivotal for Fs within probable 
range of F. A useful analogy is the problem of setting confidence limits for a normal 
mean, where the N(O, &2/n) approximation for 5x - p would not give a satisfactory 
confidence distribution for p if n were very small. Actually the solution to the latter 
problem suggests at least one of several possible approximate solutions for the 
nonparametric bootstrap problem. 

One way to construct a reliable confidence limit procedure is to construct an 
invertible pivot, say Q(T, 0, S) with S containing relevant ancillary features. Familiar 
examples in classical statistics are Student's t statistic for a normal mean, and X/4u 
for an exponential mean. In the bootstrap context we would require that Q* = Q(T*, 
T, S*) be very close to pivotal under sampling from Fs within probable range of F. 
Analogy with the normal mean problem suggests trying Q = (T* - O)/S* with S* a 
nonparametric estimate of standard error such as is provided by a jackknife method 
(Miller, 1974; Efron, 1982, ch. 6). In his detailed theoretical comparison of confidence 
limit procedures, Hall (1988) shows that this Studentized form leads to ond-sided 
confidence limits whose coverage is correct to O(n- 1/2). 
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A different pivotal construction is offered by Beran (1987), who mimics the 
prqbability integral transform approach. Thus if Qo(T, t) has cdf Go under sampling 
from F, then Q = GO(QO(T, 0)) is very nearly pivotal. If G is the distribution function 
of Q under sampling from F, and if Q is monotone in 0, then solutions to 

G(Q(T, 0)) = ocx and 1 - 
define approximate equitailed 1 - oc limits for 0. The difficulty is that G is based on 
second-level bootstrapping, i.e. sampling from samples from P: see below. On the 
surface this suggests the need for a rather extravagant numerical simulation, perhaps 
using 105 or 106 samples. The theoretical and numerical properties are comparable 
to those for the Studentized estimate approach outlined above. The method seems 
worthy of further study. 

It may be appropriate here to say a little more about second-level bootstrapping, 
a process which has several potential uses. Suppose that one wants to check whether 
or not T - 0 is pivotal, considering this in the first instance as the limited question 
as to whether or not var(T I F) = c2(0) is in fact constant. (Note that this ignores the 
possibility of another parameter 0 affecting the distribution of T.) An empirical 
strategy is to simulate several samples from each of several populations, each of which 
has a different value of 0. For each population, then, one obtains an estimate of cT2(O): 

these estimates are compared to assess possible dependence on 0. In the nonparametric 
bootstrap context, a population and its 0 value are equated to a simulated sample 
(x*, ..., x*) and its 0 estimate t*. Therefore o2(t*) is estimated by taking samples 
(x**, ..., x**) from (x*, ..., x*) and computing the empirical variance &2(t*) of the 
t** values which are the 0 estimates calculated from (x**, ..., x**). One might take 
50 t**s for each of 20 t*s. This idea appears to be due to P. L. Chapman; see Chapman 
and Hinkley (1986). 

By way of illustration, Fig. l(a) shows estimated 5th and 95th percentiles of the 
error in sample correlation coefficient r for 20 values of population correlation 
p, all obtained from two-level bootstrapping of one sample of n = 20 bivariate normal 
pairs. Fig. l(b) gives corresponding results for Fisher's z transform, z = tanh - 'r. 
Note that in the first plot, the estimated percentiles of r - p mimic the normal theory 
trend: the fitted curves are close to + 1.645(1- p2)/e/n. The plot suggests strongly 
that r - p is not pivotal. On the other hand, the near-horizontal trends of percentiles 
in the second plot suggest that error in z is very nearly pivotal. This would imply 
that bootstrap results for z are reliable approximations to theoretical properties of z. 

Beran's pivotal construction is not the only confidence limit method based on 
second-level bootstrapping. More recently Tibshirani (1987) has considered explicit 
use of smoothed versions of &2(t*) to obtain a variance-stabilized estimate 

rT 

U = h(T) - {&2(t*)}I- /2dt*, 

to which is then applied a confidence limit procedure for the invertible function h(0). 
Initial results show the method to be competitive with the best known methods in 
many problems. 

The final method to be mentioned is the accelerated bias-corrected percentile 
method of Efron (1987), which attempts implicit rather than explicit use of variance 
stabilization, while at the same time recognizing that the variance-stabilized estimate 
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Fig. 1. Bootstrap estimates of 5% (0) and 95% (0) quantiles of (a) r - p and (b) z - = tanh-'r - tanh-1p 
obtained from analysis of one sample of n = 20 pseudo-normal pairs: values of p are B = 25 r*s; estimated quantiles 
of r are quantiles of empirical cdf of r** from 100 second-level bootstrap samples 
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h(T) may have bias of order n' and standardized skewness of order n - 1/2. This leads 
to the working assumption that for appropriate h(-) and constants z, oc and wB 

_{h(T) -h(O)} 
-1 + oczh(O) 

has a standard normal distribution. Efron's use of this assumption in the bootstrap 
context does not involve knowing h(-), r, oc or ,B. The reliability of the resulting 
confidence limit method is rather uneven, albeit often very good. One obvious defect 
is that for large enough cx, Q may not be monotone over an appropriately wide range 
for 0. DiCiccio and Romano (1988) discuss the method in detail. 

There are many empirical studies of the performances of bootstrap confidence 
limits, and the results shown in Table 3 seem quite representative. Here T is the mean 
X of samples of size n = 20, artificially generated from the x2 distribution. For each 
sample, bootstrap simulation with B = 1000 was used. Table 3, taken from Owen 
(1987) shows empirical error rates of nominal 90% equitailed intervals for mean 0, 
based on 1000 data sets. 

A different approach to bootstrap assessment of parameter uncertainty is via a 
nonparametric likelihood. This is discussed separately in Section 8. 

5. SIGNIFICANCE TESTS 

The connexion between confidence limits and significance tests (Cox and Hinkley, 
1974) may be exploited to test certain kinds of hypotheses about parameters. But a 
direct approach is also possible using bootstrap techniques, particularly for 'pure 
significance tests' (Cox and Hinkley, 1974, ch. 3). There are, of course, connexions to 
other nonparametric methods of testing. 

Suppose that T is a statistic proposed for testing hypothesis H, large values of T 
being evidence against H. We have indicated in Section 2 how the simple bootstrap 
approximates a probability such as Pr(T < d I F) by Pr(T* < d I F). Now a different 
sampling distribution is required, because the test P value is calculated under the 
restriction imposed by H. If 5(y,) is a distance measure between distributions, and if 
'H is the set of all distributions satisfying H, then the bootstrap data distribution 

might be taken as 

FH minimizing b(F, F) for F E -H. 

TABLE 3 
Error rates of bootstrap 90 % confidence intervals for mean 0 of X2, samples of size n = 20 

(Owen, 1987) 

Method Proportion of times Proportion of times Aggregate 
0 < lower limit 0 > upper limit error rate 

Exact parametric 0.051 0.056 0.107 
Bootstrap percentile 0.023 0.150 0.173 

Efron's accelerated, bias-corrected 0.050 0.105 0.155 
bootstrap 

Bootstrap Student t 0.038 0.072 0.112 
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The bootstrap test P value corresponding to observed statistic tobs would be 

PH= Pr{T tobs I FH}, (7) 
where TH is the test statistic calculated under random sampling from F 

There are basically two ways to obtain FH from F, one being to change the 
probabilities at x1, ..., x, from n- to w1, ..., wn; the other being to redistribute the 
probabilities n'- to a wider support than x1, . . ., xn. Efron (1982, ch. 10) discusses 
applications of the former, specifically embedding F in an exponential family; see also 
Owen (1987). 

Uses of modified support are described by Ducharme et al. (1985) and by Young 
(1986). For example, in one of Young's applications, the hypothesis H asserts 
independence of the two components of X = (Y, Z), and FH is naturally taken to be 
the product of the empirical marginal cdfs 6 and H of Y and Z respectively. The 
resulting test is therefore very similar to a randomization test, the difference being 
only that between sampling with and without replacement. The same phenomenon 
would occur in a two-sample comparison, where a common aggregate distribution 
would be defined by FH. 

A rather striking application of the bootstrap is Silverman's (1981) test for 
unimodality of a distribution, which uses smooth density estimates as the particular 
form of probability redistribution. This nicely illustrates the usefulness of bootstrap 
methods when classical theoretical approaches to calculation of the P value are 
intractable. Another example is outlined in Section 6. 

6. REGRESSION PROBLEMS 

Application of bootstrap methods in regression is of potential importance because 
of the ever-increasing generality of regression methods, for which the classical methods 
of assessment used in textbook linear regression are inappropriate. Efron (1986) gives 
a useful introduction, and Wu (1986) with its accompanying discussion refers to much 
of what is known about properties of the bootstrap in regression analysis. There are 
two general types of problem, one the assessment of accuracy of regression coefficients 
or fitted values of mean response, the other being selection of variables or choice of 
model on the basis of some measure of model fit. 

Suppose that we have a particular form of model yi = t4(xi, I) + si connecting 
continuous responses yi to explanatory variables xi = (x1i, ... ., xpi), with sis as random 
errors. Given some method of fitting the relationship, such as least squares or 
M estimation, we obtain coefficient estimate i and fitted values yt = 4t(xi, 0). Inspection 
of the residuals ej =yi - ti, or prior evidence, may suggest that the errors s are 
homogeneous, with distribution F estimable by the empirical distribution F of 
residuals. If so, the bootstrap methods discussed earlier extend straightforwardly, 
simulated data sets data* taking the form {(xi, y), i= 1, . . ., n} with yi=l i + e, 
where se* is randomly sampled from (e, ..., n). Fitting the model to data* gives 
simulated estimate * and fitted values ji. Repeated simulation then leads to required 
assessments of uncertainty as in earlier sections. 

As an example, consider the following significance testing problem. The mean 
relationship y(x) is either linear (hypothesis H) or piecewise linear with two linear 
segments intersecting at x = y. Statistic T is the normal theory likelihood ratio 
test statistic, whose exact null distribution is intractable even if errors e are normal. 
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In the terminology of Section 5, the empirical distribution of residuals ei from the 
linear regression is FH, and significance probability PH in (7) is calculated using 
samples yi* = 'i + 0 as described above with fii the fitted linear regression values. 
This method was applied to a small set of data from a noise signal experiment in which 
the n = 9 values of x were natural logarithms of 10, 20, 30, 50, 100, 150, 200, 300 and 
500 with corresponding values of y being 87.83, 86.50, 84.83, 83.50, 80.17, 79.50, 79.17, 
78.67 and 78.67. The estimated point of intersection in the two-segment model is 
9= 5.1 and the test statistic is t = 14.7. From B = 1000 bootstrap samples, PH was 
calculated to be approximately 0.02. The null distribution of T, as estimated by the 
empirical distribution of TH, is not at all close to the x2 distribution which an (invalid) 
appeal to classical theory might suggest; see Feder (1975). 

One might argue that raw residuals ei should be modified prior to use as simulated 
errors, e.g. by standardizing to remove the effects of leverage and by adjusting to zero 
mean. Unpublished numerical evidence supports such modifications. Whether or not 
one need use complicated modifications such as those described by Cook and Tsai 
(1985) for non-linear models is unclear. 

A more interesting context is that in which errors are not homogeneous, so that a 
single empirical error distribution is inappropriate. One simple approach is then to 
consider (xi, yi) as sampled from a joint distribution F, the implication being to sample 
vectors (x*, yi*) from the data vectors in the bootstrap simulation. There are two 
drawbacks with this approach. First, it would often be the case that var(ei) changes 
smoothly with xi or pi, and use might be made of this. Secondly, on the general 
grounds of requiring inference to be conditional on the design D = (x1 . . . x x), one 
should not risk having simulated data sets whose designs D* = (x*, ..., x*) are very 
different from D. 

The last point could be dealt with separately either by pre-stratification or 
post-stratification of the sampling of data vectors, in either case forcing D* and D to 
be close in a meaningful sense. 

The design difficulty may be moot, of course, if some form of modelling for the 
errors is used. An example of this in nonparametric regression is given by Efron 
(1986). A local smoothing algorithm is used first to fit j^(x), and is then applied to 
squared residuals e^2 to fit a smooth relationship between 2 = var(?) and x, say a 
This permits calculation of homogeneous standardized residuals ri= ei/(xi), and 
thence defines a bootstrap model 

Yi* = ^(xi) + &(xi)ri 

with the ri* randomly sampled from (r1, ..., rn). Bootstrap samples are then used to 
obtain confidence bands for u(x). 

So far we have assumed that responses y are continuous and that errors are additive. 
How might one apply bootstrap methods to responses which are counts, i.e. 
non-negative integers, say? One approach is to use the local linearization which GLIM 
uses for its iterative weighted least squares fitting of generalized linear models. But 
such an approach offers little more than jackknife methods. If count data are thought 
of as extended Poisson, that is with variance function 4(x),u, then a locally smooth 
estimate of 0(x) could be produced and the data could be analysed appropriately in 
GLIM. More needs to be learned about the possible role of bootstrap methods in 
such situations. 
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Special mention should be made of cases where replication exists at every design 
point. In such cases it would be possible to estimate response distributions Fi at each 
xi, and thence bootstrap by sampling from Pi at each xi. This approach of course 
applies to multisample problems, unless separate variance components are involved 
(Section 9). An open question is how well the bootstrap will perform when each of 
very many Fis is based on few responses. The results of Bickel and Freedman (1982) 
are probably relevant. There is a very useful series of papers by Freedman and Peters 
(1984 and references therein) on the performance of bootstrap methods in econometric 
regression models. 

The rather different types of problems typified by model selection, variable selection 
and prediction assessment are problems to which cross-validation techniques (Stone, 
1974) are often applied. A detailed analysis by Efron (1983) shows that cross-validation 
techniques may be inferior to bootstrap assessments in many cases; see also Bunke 
and Droge (1984). This important problem will not be discussed here. 

7. CONDITIONAL BOOTSTRAP METHODS 
In the preceding section the idea of conditioning was mentioned briefly. Condition- 

ing on ancillary statistics is an important general component of statistical inference. 
As to whether or not relevant conditioning is generally possible in bootstrap methods, 
the situation is unclear. 

A crucial issue may be the nature of the conditioning variable, or ancillary statistic. 
For example, suppose that E(T-6 0a, F)=b(a-ac, F) with o=E(AIF) or with 
a = a(F) and a = a(F). A bootstrap simulation can estimate b(-, F) by b(-, F), but this 
cannot be used without knowing a, at least with error negligible compared to a -a. 
This difficulty seems to preclude conditional bootstrap analysis of the sample mean, 
for example. The regression application suggested in Section 6 is different in the sense 
that the effect of an ancillary measure a of the design D does not involve the mean of A. 

There is also the difficulty of choosing a in the absence of a model, accompanied 
by the difficulty of estimating properties conditional on a. For example, in a regression 
problem with non-homogeneous errors, the precise form of effect of the design D on 
the variances of coefficients will usually be unknown. However, if the regression fit 
is approximately linear with weight wi attached to (xi, yi), and if var(yi I xi) is estimated 
by &V, then it would seem appropriate to define a in terms of the elements of lw3 VxixT, 
by analogy with weighted least squares linear regression. Once a is chosen, the 
required conditional property would be estimated using discrete partitions of the 
bootstrap simulation. For example, var(, I a) could be approximated by a smoothed 
version of var(p* I a*) evaluated at a* = a. 

In some, possibly rare, cases conditional distributions will be amenable to special 
numerical techniques, such as stratified simulation or conditional saddlepoint 
approximations. One example of the latter is given by Davison and Hinkley (1988). 

It may be worth remarking that in classical statistics the likelihood function itself 
provides exact or approximate conditional inference (Barndorff-Nielsen, 1983; Cox 
and Reid, 1987). Quite possibly one might use the bootstrap likelihoods of Section 8 
in the same way. 

8. BOOTSTRAP PARTIAL LIKELIHOODS 

Alchemy failed. But bootstrappers have produced likelihoods, or confidence 
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distributions. For want of something better, the term partial likelihood may be 
appropriate. 

One direct approach by Hall (1987) is to derive a smooth density estimate from 
the bootstrap simulation values of the Studentized pivot Q = (T - 0)/S mentioned in 
Section 4. Such a partial likelihood has good properties when used to calculate 
confidence sets, and may show interesting features which standard normal approxima- 
tions do not. A second approach is via the second-level bootstrap of Section 4, with 
likelihood evaluations at 0 = t* being calculated as approximate densities of T** at t*. 

A more classical analogy is pursued by Ogbonmwan and Wynn (1988) for problems 
involving contrast parameters. Suppose that data y = Yl, ..., yn are such that, for the 
correct value of 0, the transformed vector g(y, 0) = g1(0), . . ., g.(0) may be assumed 
to be a random sample from a fixed distribution function Fo. If T = t(y) is the 
estimating function for 0, define To = t(g(y, 0)) with observed value to. Then a partial 
likelihood for 0 is the density of To at to. The bootstrap version of this definition 
involves replacing Fo by the empirical distribution function Fo defined by data values 
g(y,0), and approximating the density of statistic T* obtained from samples generated 
by Fo. In some cases numerical simulation can be avoided, as in the following example, 
taken from Davison and Hinkley (1988). 

Suppose that 0 is the difference between means for two populations from which 
the following two samples were drawn 

sample 1: 37.5 34.8 38.9 38.6 37.0 37.4 36.5 38.4 38.0 30.7 

sample 2: 37.7 36.3 38.0 37.0 37.6 33.2 36.7 27.4 37.1 37.4 

Denote general samples by (x1, ..., xm) and (xm+ 1, ..., xm+n), and suppose that we 
choose to estimate 0 by t=M 1 1+nXi-_m-1E,xi. Since the two sample variances 
are nearly equal, it seems reasonable to take g(x, 0) = (x1, , XM, Xm+ 1 - 0 . 
Xm+n - 0). If g1, ..n., g*+ denotes a random sample from the elements of g(x, 0), then 
T* = n- l'm+n g m- 'mlg . A saddlepoint density approximation can be obtained 
for T, and its evaluation at to = t -0 defines the bootstrap partial likelihood. The 
result is graphed in Fig. 2, together with the normal theory modified profile 
likelihood. 

Note that this type of bootstrap partial likelihood could just as easily be based on 
any estimate T, although the saddlepoint simplification requires that T be defined 
by linear estimating equations. The method is very similar to the use of randomization 
distributions. 

A more direct approach is taken by Owen (1987), who considers F to be embedded 
in a class of distributions Yx whose support is x1, ..., xn in the simple case of 
homogeneous data. Then if 0 = t(F), the bootstrap likelihood of 0 is the profile 
likelihood under the 'model' 3x. More concretely, consider F, to attach probabilities 
Wl ... .,wn at points xl,. . ., Xn; F is the maximum likelihood estimate with wi _ n= 
i= 1, ..., n. Then define the bootstrap likelihood to be 

n 

BL(0)= sup H wi. 
w:t(Fw)=0 i=l 

Owen (1987) outlines and applies an algorithm for calculating BL(f). He also 
demonstrates that, at least in simple cases, conventional chi-squared asymptotics 
apply to the log-likelihood ratio. 
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Fig. 2. Relative likelihoods for two-sample contrast parameter 0: the full curve is the saddlepoint approximation 
to bootstrap likelihood; the broken curve is the normal theory modified profile likelihood 

One unusually simple model where an empirical likelihood and resulting conditional 
analysis are possible is the change-point model. The basic theory and one application 
are described by Hinkley and Schechtman (1986). Another application is to the 
mean shift analysis of the series of UK coal-mining disasters (Andrews and Herzberg, 
1985, p. 51). The model for count xi in the ith period of length one year is that 
Pr(Xi = r) = fo(r), i < 0, and Pr(Xi = r) = f1(r), i > 0, successve counts being independ- 
ent. A nonparametric profile likelihood for 0 is therefore 

t n 

PL(t) = Hl 0(xi t) Hl SJ(xit), 
i=1 i=t+1 

where 
t n 

t0(rjIt) =t-' 6 (xi-r), t1(rjIt) =(n-t)- 1 E 6(xi-r). 
i=l i=t+l 

Table 4 shows the crucial part of the data series and corresponding values of PL(t) 
after normalizing to unit sum: the result is an approximate conditional distribution, 
in that if D maximizes PL then 

Pr(O-0 = d I a) oc PL() - d). 
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TABLE 4 

Part of the annual UK coal-mining disaster frequencies xt and corresponding normalized bootstrap 
likelihood PL (t), t = calendar year - 1850 

Year t 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
(1884) 

Frequency x, 2 3 4 2 1 3 2 2 1 1 1 1 3 0 

Normalized 0.002 .003 .189 .199 .048 .100 .130 .220 .061 .021 .008 .004 .008 .001 
PL(t) 

The ancillary a here is the set of likelihood ratio increments PL(0 + k)/PL(O + k - 1), 
most influential being those for small I k 1. These same increments could be used to 
partition a bootstrap simulation if a non-likelihood analysis were performed (Hinkley 
and Schechtman, 1987). Note that bootstrap simulation extends easily to more 
complicated models, such as first-order Markov processes. 

9. OTHER APPLICATIONS 
The types of applications mentioned thus far are mostly elementary, save for 

regression. There is a growing literature on other, more complex applications, some 
of which are mentioned in this section; see also the general remarks in Section 10. 

One traditional area of application for subsampling techniques is the analysis of 
complex sample surveys. In the usual case where data sampling is without replacement 
from finite populations, ordinary bootstrapping (done with replacement) may produce 
inadmissible simulated samples. Partly for this reason, a series of special bootstrap 
techniques has been proposed in the sample survey literature. Some of the techniques 
are appraised by McCarthy and Snowden (1985), who give preliminary endorsement 
to the simple modification of increasing bootstrap sample size from n to n/(1 -f), 
where f is the data sampling fraction. 

Problems involving time series, or more generally a stochastic process, raise the 
difficulty of the single realization. What plays the role of F? There are two possible 
elementary strategies: (i) split the realization into several pieces, and sample from 
these, or (ii) fit a model with independent innovations, and simulate realizations by 
adding sampled residuals to fitted values. More sophisticated versions of these 
strategies will be required for fairly general application. 

Perhaps more conventional are problems involving variance components, such as 
occur in empirical Bayes models. The essential point here is that bootstrap simulation 
should, implicitly or explicitly, simulate each component of variability. Precisely how 
will depend on the application. Suppose, for example, that a notional model for the 
data matrix xij of p samples is xj = pi + gij, where the ps and ?s respectively have 
distributions G and F. If we are interested in a statistic symmetric in the samples, 
such as x.. or maxi xi., then we can simulate data x!k by x.* = pi* + ei*, where pi* is 
randomly sampled from estimates (ft1, ..., j4) and e!k are randomly sampled from 
residuals {xi - xi.}. The estimates ji would be of empirical Bayes type but corrected 
to have appropriate mean and variance, e.g. 5x.. and the unbiased estimate of var(p). 
Such a simulation would not be appropriate if, say, we were interested in mean P1 a 
priori, for then one simulated sample should use =14 Further discussion of these 
kinds of applications will be found in Hill (1986) and Laird and Louis (1987). 

This content downloaded from 128.252.121.153 on Mon, 07 Sep 2015 14:22:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


336 HINKLEY [No. 3, 

10. GENERAL REMARKS 

One might observe that bootstrap methods essentially embrace, or enlarge upon, 
familiar methods of simulation, subsampling and permutation. What is new is the 
generality of approach, the range of potential applications and the massive use of 
computer power. 

It would be presumptive to dismiss the many simple applications because of existing 
classical methods: such applications are mere scale exercises, which help to tune the 
instruments and their players in the bootstrap orchestra so that they will perform 
better in the complex pieces of modern data analysis. Thus, for example, bootstrap 
methods may prove to be uniquely reliable tools for analysing nonparametric curve 
fits, complex pure significance test problems and nonstationary time series models. 
At the very least bootstrap methods provide a simple approach to assessment of the 
sensitivity of traditional methods to model assumptions. This thought also suggests 
the possible use of simulated samples to generate diagnostics, akin to the more usual 
case deletion diagnostics. 

Because bootstrap methods also apply in the arena of model assessment, they are 
pertinent to the larger, often neglected area of decision analysis under model 
uncertainty. 

In the previous sections we have not commented on the non-negligible tendency 
for misapplication of bootstrap methods, in particular the misuse of simple random 
sampling from data sets. There is a very clear need to bring classical statistical theory 
to bear in the development of reliable methodology, as evidenced by the importance 
of pivots in confidence limit methods. In this context one should also consider Bayesian 
approaches to bootstrapping, which involve Dirichlet models; see Rubin (1981) and 
Banks (1987). 

REFERENCES 

Andrews, D. F. and Herzberg, A. M. (1985) Data: a Collection of Many Problems from Many Fieldsfor the Student and 
Research Worker. New York: Springer. 

Banks, D. L. (1987) Improving the Bayesian bootstrap. Unpublished. 
Barndorff-Nielsen, 0. (1983) On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 

345-365. 
Beran, R. J. (1982) Estimated sampling distributions: the bootstrap and its competitors. Ann. Statist., 10, 212-225. 

(1984) Bootstrap methods in statistics. Jber. Dtsch. Math-Ver., 86, 14-30. I 
(1987) Prepivoting to reduce level error of confidence sets. Biometrika, 74, 457-468. 

Bickel, P. J. and Freedman, D. A. (1982) Bootstrapping regression models with many parameters. Unpublished, 
University of California at Berkeley. 

Bunke, 0. and Droge, B. (1984) Bootstrap and cross-validation estimates of the prediction error for linear regression 
models. Ann. Statist., 12, 1400-1424. 

Chapman, P. L. and Hinkley, D. V. (1986) The double bootstrap, pivots and confidence limits. Report 26. Center 
for Statistical Sciences, University of Texas at Austin. 

Cook, R. D. and Tsai, C. L. (1985) Residuals in nonlinear regression. Biometrika, 72, 23-29. 
Cox, D. R. and Hinkley, D. V. (1974) Theoretical Statistics. London: Chapman and Hall. 
Cox, D. R. and Reid, N. (1987) Parameter orthogonality and approximate conditional likelihood. J. R. Statist. 

Soc. B, 49, 1-39. 
Daniels, H. E. (1987) Tail probability approximations. Int. Statist. Rev., 55, 37-48. 
Davison, A. C. and Hinkley, D. V. (1988) Saddlepoint approximations in resampling methods. Biometrika, 75 (to 

appear). 
Davison, A. C., Hinkley, D. V. and Schechtman, E. (1987) Efficient bootstrap simulation. Biometrika, 74, 555-566. 
DiCiccio, T. J. and Romano, J. P. (1988) A review of bootstrap confidence intervals. J. R. Statist. Soc. B, 50, 338-354. 
Ducharme, G. R., Jhun, M., Romano, J. P. and Truong, K. N. (1985) Bootstrap confidence cones for directional 

data. Biometrika, 72, 637-645. 
Efron, B. (1982) The jackknife, the bootstrap and other resampling plans. In Regional Conference Series in Applied 

Mathematics, No. 38. Philadephia: SIAM. 

This content downloaded from 128.252.121.153 on Mon, 07 Sep 2015 14:22:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1988] Bootstrap Methods 337 

(1983) Estimating the error rate of a prediction rule: improvements in cross-validation. J. Amer. Statist. 
Ass., 78, 316-331. 

(1986) Computer-intensive methods in statistical regression. Unpublished, Department of Statistics, Stanford 
University. 

(1987) Better bootstrap confidence intervals. J. Amer. Statist. Ass., 82, 171-200. 
Feder, P. I. (1975) On asymptotic distribution theory in segmented regression problems: identified case. Ann. Statist., 

3, 49-83. 
Freedman, D. A. and Peters, S. C. (1983) Bootstrapping a regression equation: some empirical results. 
Graham, R. L., Hinkley, D. V., John, P. W. M. and Shi, S. (1987) Balanced design of bootstrap simulations. Report 

48. Center for Statistical Sciences, University of Texas at Austin. 
Hall, P. (1987) On the bootstrap and likelihood-based confidence regions. Biometrika, 74, 481-493. 

(1988) Theoretical comparison of bootstrap confidence intervals. Ann. Statist., to be published. 
Hill, J. R. (1986) Empirical Bayes statistics: a comprehensive theory for data analysis. PhD Thesis. Department 

of Mathematics, University of Texas at Austin. 
Hinkley, D. V. and Schechtman, E. (1987) Conditional bootstrap methods in the mean-shift model. Biometrika, 74, 

85-93. 
Laird, N. M. and Louis, T. A. (1987) Empirical Bayes confidence intervals based on bootstrap samples. J. Amer. 

Statist. Ass., 82, 739-750. 
McCarthy, P. J. and Snowden, C. B. (1985) The bootstrap and finite population sampling. In Vital and Health Statistics, 

Series 2, No. 95. Washington DC: Public Health Service. 
Miller, R. G., Jr (1974) The jackknife: a review. Biometrika, 61, 1-17. 
Ogbonmwan, S. M. and Wynn, H. P. (1986) Accelerated resampling codes with low discrepancy. Unpublished, 

Department of Statistics, Imperial College. 
(1988) Resampling generated likelihoods. In Statistical Decision Theory and Related Topics IV(eds S. S. Gupta 

and J. 0. Berger), vol. 1, pp. 133-147. New York: Springer. 
Owen, A. B. (1987) Empirical likelihood ratio confidence intervals for a single functional. Unpublished, Department 

of Statistics, Stanford University. 
Rubin, D. B. (1981) The Bayesian bootstrap. Ann. Statist., 9, 130-134. 
Silverman, B. W. (1981) Using kernel density estimates to investigate multimodality: J. R. Statist. Soc. B, 43, 97-99. 
Silverman, B. W. and Young, A. (1987) The bootstrap: to smooth or not to smooth? Biometrika, 74, 469-479. 
Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions. J. R. Statist. Soc. B, 36, 111-147. 
Thernau, T. (1983) Variance reduction techniques for the bootstrap. PhD Thesis. Department of Statistics, 

Stanford University. 
Tibshirani, R. (1987) Variance stabilization and the bootstrap. Unpublished, Department of Statistics, University of 

Toronto. 
Wu, C. F. J. (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist., 14, 

1261-1350. 
Young, A. (1986) Conditioned data-based simulations: some examples from geometrical statistics. Int. Statist. Rev., 

54, 1-13. 

This content downloaded from 128.252.121.153 on Mon, 07 Sep 2015 14:22:15 UTC
All use subject to JSTOR Terms and Conditions



J. R. Statist. Soc. B (1988) 
50, No. 3, pp. 338-354 

A Review of Bootstrap Confidence Intervals 

By THOMAS J. DICICCIO and JOSEPH P. ROMANOt 

Stanford University, USA 

[Read before the Royal Statistical Society on Wednesday, March 16th, 1988 
at a meeting organized by the Birmingham Group, Professor J. B. Copas in the Chair] 

SUMMARY 
A survey of bootstrap procedures for constructing confidence regions is given. In particular, 
several distinct bootstrap methods are considered, with emphasis on the mathematical 
correctness of these procedures. The percentile, bias-corrected percentile and accelerated 
bias-corrected percentile methods, developed by Efron, are reviewed in both parametric 
and nonparametric situations. A procedure related to the accelerated bias-corrected method, 
which avoids explicit calculation of the analytical corrections required in Efron's method, 
is also introduced. In the context of a functional approach for the construction of confidence 
regions, the bootstrap is motivated as a method to estimate the distributions of approximate 
pivots. Finally, iterative bootstrap methods are discussed as means to improve coverage 
accuracy. 

Keywords: ASYMPTOTIC THEORY; BOOTSTRAP; CONFIDENCE REGIONS; PERCENTILE METHOD; 
BIAS-CORRECTED PERCENTILE METHOD; ACCELERATED BIAS-CORRECTED 
PERCENTILE METHOD; PERCENTILE-t; PIVOT; LEAST FAVOURABLE FAMILY; 
ORTHOGONAL PARAMETERS; SECOND-ORDER ACCURACY; PREPIVOTING 

1. INTRODUCTION 

This paper is a survey of bootstrap procedures for constructing confidence regions 
for parameters of interest. Such procedures rely on estimating the sampling distribu- 
tion of a statistic or an approximate pivot. In general, bootstrap methods consist of 
estimating a characteristic of the unknown population by simulating the characteristic 
when the true population is replaced by an estimated one. The appeal of this approach 
is its wide applicability to complex data structures in both parametric and nonpara- 
metric problems. Several distinct bootstrap methods will be reviewed, with the 
emphasis on the mathematical correctness of these procedures. 

In Section 2, Efron's percentile, bias-corrected (BC) percentile and accelerated 
bias-corrected (BCa) percentile methods are developed in both parametric and 
nonparametric situations. These procedures arise from transformation theory con- 
siderations, and they have the property of invariance under reparameterization. The 
most promising of these techniques is the BCa' which depends on the calculation of 
the acceleration constant. A general formula is given for this analytical adjustment 
for situations other than maximum likelihood estimation. A procedure related to the 
accelerated bias-corrected method is also introduced which avoids explicit calculation 
of analytical corrections required in Efron's method. These methods are compared 
and the percentile-t method is considered in some numerical examples. 

In Section 3, some bootstrap methods, including the percentile-t, are motivated as 
a functional approach to the construction of confidence regions by using the bootstrap 
to estimate the distribution of approximate pivots. The mathematical analysis of these 

t Address for correspondence: Department of Statistics, Stanford University, Sequoia Hall, Stanford, CA 
94305-4065, USA. 
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methods is outlined, including conditions required to justify them and a discussion 
of examples where they lead to inconsistencies. 

Section 4 focuses on refined bootstrap methods with the goal being improved 
coverage accuracy. In particular, iterative methods proposed by Beran, Loh and Hall 
are discussed. Beran's method of prepivoting and Loh's calibrated confidence sets 
are seen to be equivalent. These methods offer the potential for increased accuracy 
of coverage for confidence sets, but their computational feasibility needs to be 
established for them to be considered viable general approaches. 

In any given situation, the choice of bootstrap procedure depends on available 
theoretical results, computational considerations, the level of accuracy desired, 
simulation results and experience with similar problems. For example, both the BCa 
and the percentile-t are second order correct; however, the BCa requires knowledge 
of an analytical constant while the percentile-t requires a stable estimate of variance. 
Given the diversity of criteria in choosing a procedure, it is unlikely that a single 
procedure will emerge as a preferred method in all problems. 

A common feature of all the procedures considered is the use of simulation to 
approximate a sampling distribution by treating an estimate of the population as the 
true one. The computational aspects of this problem are not treated here, but the 
reader is referred to section 3 of Hinkley (1988) and Johns (1988). 

2. PERCENTILE METHOD AND RELATED PROCEDURES 

2.1. Introduction 
In a series of articles, Efron (1981, 1982, 1985, 1987) has introduced and refined the 

percentile method of using bootstrap calculations to set approximate confidence limits 
for scalar parameters. These refinements of the percentile method are the bias- 
corrected (BC) percentile method and the accelerated bias-corrected (BCa) percentile 
method. Efron's approach is to first develop these procedures in the simple context of a 
parametric model indexed by a scalar parameter, for which there are no nuisance 
parameters present, and then to adapt them for application in multiparameter families 
and nonparametric situations. This development relies on transformation theory, and 
the resulting procedures have the desirable property of invariance under reparam- 
eterization. 

For a review of the percentile method in the simplest case, suppose that x,, = (X1, 
. X) is a sample from a distribution having probability density function fo which 

depends upon the scalar parameter of interest 0. Let D be an estimator of 0 based on 
xn with distribution function G0(s) = P0(P < s). The exact upper 1- a confidence limit 
for 0 is taken to be that value 0[1 - oa] satisfying Go[l -a](0) = a, and the bootstrap 
distribution for D is Go. Now suppose there exists a monotonically increasing 
transformation g and a constant z such that for all values of 0 

T{0g() - g(0)} ' Z, (2.1) 
where Z is symmetrically distributed about zero with distribution function H. Then 

G6(s) = H[T{g(s) -g(0)1]; 

hence, in terms of the a quantile z( = H- -(a), 
0[1 - ax] = g '(g(t) + z( a)/T) 
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and 

Go '(x) = g -'(g(O) + Z(a)/T). 

Since 0[1 - oa] = Go'(1 - ac), the confidence limits for 0 can be obtained directly from 
the bootstrap distribution for D without explicit knowledge of the transformation g. 

The quantity G '(1 -a) is called the percentile bootstrap confidence limit. 
Typically, no transformation g exists for which (2.1) obtains exactly, and the 
difference between Gij '(1 - ox) and 0[1 - ox] is Op(n- '). Thus the percentile method 
can give poor approximations in small sample situations. For example, consider n = 8 
observations from a bivariate normal distribution with known means and variances 
and unknown correlation coefficient 0. For each of the values 0, 0.3 and 0.8 of the 
usual estimator r, the exact upper and lower 97.5 % confidence limits for 0 are 
compared with the corresponding percentile bootstrap limits in Table 1. 

One approach for improvement of the percentile method is to account for bias in 
(2.1). Assume then that there exists a monotonically increasing transformation g and 
constants T and z0 such that for all 0 

T{g(O)- g(0)} + Zo Z, 

where Z is as described above. In this case, G6(s) = H(T{g(O) - g(0)} + zo), from which 
it follows that 

0[1 - CX] = g '(g(O) + (z"' a + Z0)/T) 

and 
G0 '(l) = g- '(g(O) + (z() -zo)/T) 

Since 0[1 - a] = G, '{H(z('- ) + 2z0)}, the confidence limits for 0 can be obtained 
from the bootstrap distribution for 0. The bias correction z0 can be determined 
similarly by zo = H-'{G0(0)}. Efron (1982) uses the standard normal distribution 
function F for H, and he calls Go- {F)(z(' + 2zo)} the bias-corrected percentile 
bootstrap confidence limit. If z0 = 0, then the BC method reduces to the percentile 
method. The upper and lower 97.5 % BC limits are shown for the correlation coefficient 
example in Table 1. 

The BC limits, like the percentile limits, typically differ from the exact ones by 
terms of order Op(n- '). In the correlation coefficient example the BC method produces 
fairly accurate approximations; however, for an example in which the BC method 
performs poorly, consider a sample of size n = 5 from the exponential distribution 
with mean 0, and take 0 to be the sample mean. Table 2 compares the exact upper 
and lower 97.5 % confidence limits for 0 with the corresponding approximations 
obtained by the percentile and BC methods. Although use of the bias correction 
produces an improvement over the percentile method, the BC limits are inadequate. 
This example is similar to one considered by Schenker (1985), which in part motivated 
the development of the BCa method. 

To improve the BC method, Efron (1987) supposes there exists a monotonically 
increasing transformation g and constants T, z0 and a such that for all values of 0 

Tg(o) g(o) + z0o Z, (2.2) 1 + aTg(0)) 
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TABLE 1 
Upper and lower 97.5% confidence limits for the correlation coefficient (n = 8) 

r zO Exact Percentile BC (2.4) Percentile-t 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

0 0 -0.666 0.666 -0.707 0.707 -0.707 0.707 -0.659 0.659 -1.412 1.412 
(2.50) (2.50) (1.66) (1.66) (1.66) (1.66) (2.68) (2.68) 

0.3 -0.0611 -0.479 0.797 -0.495 0.838 -0.539 0.819 -0.475 0.792 -1.342 1.257 
(2.50) (2.50) (2.24) (1.30) (1.61) (1.80) (2.56) (2.71) 

0.8 -0.1656 0.199 0.952 0.307 0.966 0.153 0.954 0.183 0.951 -0.107 0.996 
(2.50) (2.50) (4.39) (0.91) (1.96) (2.19) (2.30) (2.59) (0.47) (0.00) 

Below each lower limit OL and each upper limit Ou is shown 1 - GoL(r) and Gou(r), respectively, expressed as a percentage. 

TABLE 2 
Upper and lower 97.5 % confidence limits for the exponential mean (n = 5) 

Exact Percentile BC BC, 

Lower Upper Lower Upper Lower Upper Lower Upper 

0.4880 3.0800 0.3250 2.0480 0.3900 2.2700 0.4880 3.0830 
(2.50) (2.50) (0.06) (10.11) (0.43) (7.28) (2.50) (2.49) 

Below each confidence limit is shown its true error rate in coverage expressed as a percentage. zo = 0.1497, a = 0.1491. 

where Z is as previously described. Under this assumption 

GO(s) = H>{g(s) - g(O)} {1 a(O)} ? zo 

so that 

0[1 = - g(O) 4 Tll_ a(z - 
Z)] 

and 

GJe l(ax) = g- ?[ + (z(') - zO){1 + a? g(O)] 

The confidence limits for 0 can be obtained from the bootstrap distribution for 0, since 

0[1-ocx] = Go [Hzo + 1 _(z z) (2.3) 0 1 ~~- a(z (' -a) ? z0)Jj 

and zo = H '{Go( )}. Using the standard normal distribution function for H, Efron 
calls (2.3) the accelerated bias-corrected percentile bootstrap confidence limit. The 
BCa method reduces to the BC method if a = 0. 

Efron (1987) shows that for suitable choice of a the BCa confidence limits are 
second order correct, which means that the BCa limits differ from the corresponding 
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342 DICICCIO AND ROMANO [No. 3, 
exact limits by terms of order Op(n- 3/2). Unlike zo, the acceleration adjustment a 
cannot be easily determined from the bootstrap distribution Go. If to error of order 
O(n-') the first three cumulants of n'/2(o- 0) are n-1/22J(0), A2(0) and n 1/2)A3(0), 
and if 

y n 2{3 /2 23/2} 

and 

( = n __{-2 6 21/2}, 

where 2 = dA2(0)/dO, then a should be chosen to satisfy a = y(O)/6 + Op(n- 1), while 
ZO = 6(0)/6 + Op(n- 1). When 0 is the maximum likelihood estimator, y and ( are both 
equal to the skewness of the score function for 0 based on xn. DiCiccio and Tibshirani 
(1987) consider the construction of a transformation g which approximately satisfies 
(2.2). 

As shown in Table 2, the BCa method is very accurate in the exponential mean 
example. In this case, y = 6 = 2/n1/2. For the correlation coefficient example, these 
formulae give y = 0 and = 30/n1/2. Thus in this example, a = 0 and the BC and 
BCa limits are equal. 

2.2. Multiparameter Families 
Suppose that x. = (X1, . .., X.) is a sample from a distribution having probability 

density function f,1 which depends upon a vector parameter tj = (1, . . ., tIP). Let i be 
an estimator of tj based on x", and suppose that the scalar parameter 0= t(?l) is of 
interest. Let the distribution function of the estimator D = t(il) be Gq(s) = Pq7(0 < s); 
then the bootstrap distribution of D is Gq. 

Having calculated the bootstrap distribution Gq,, the upper 1 - a percentile 
bootstrap confidence limit for 0 is G,j 1(1 - x), and the BC limit is G 1{q)(z(1 -a) + 2z0)}, 
where zo = FD 1 {G0(0)}. The implementation of the BCa method is less straightforward 
in multiparameter situations because of complications arising in the calculation of 
the acceleration adjustment a. In this case, Efron (1987) restricts attention to maximum 
likelihood estimators. 

To introduce the notation required for Efron's formulation of a, let l(ii; x") be the 
log-likelihood function for tj based on x", and let Kij= E{lili} and Kijk= E{liljlk} 

where li = 81(ii; x,)/8t6. For brevity of notation in the expressions that follow, the 
usual convention is used whereby summation is understood over indices that appear 
as both subscripts and superscripts. Take (Ki) = (Kij)- 1, ti = 8t(1)/8t1, and set p = Ki- t i 
Efron reduces the multiparameter family to a scalar parameter one by restricting 
attention to the line ti(z) = i + zT, called the least favourable family, where f = (ftt, 
..P) and i = ,pi(Q). In analogy with the scalar parameter case, Efron takes y(z) to 

be the skewness of 81(ti(z); x.)/8z evaluated at ti(T), so that y(O) = U U K U U 
and then he recommends using a = y(O)/6. Alternatively, observed information can 
be used in place of expected information for the calculation of a. 

The difference between the true and nominal coverage levels of the percentile and 
BC confidence limits is typically O(n- 1/2), and for the BCa method this difference is 
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O(n- 1). For multiparameter families, comparison of the approximate limits with exact 
ones is difficult, since a definition for exactness is not clear cut. See Bickel (1987) and 
Hall (1988) for further discussion concerning accuracy of the BCa limits. Efron shows 
that, in certain circumstances, the BCa limits agree to order Op(n 1) with limits derived 
by Cox (1980) and McCullagh (1984). 

It is possible to obtain an expression for a which is appropriate for more general 
estimators. Let 5' = n2(i - qi), and suppose that to error of order O(n 1), E(5i)= 
n"- 12)i, cov(5 b,) = )iij, and cum(5', bJ, 5k) = n- 1/2Aijkk where cum(5', bi, bk) iS the third 
order cumulant of 5i, b5 and bk. Let 

v( ) -in- 1/2{(3ijlk - 2iijk)tit tk}/Q titj)3,. 

where )4j = i then a should be chosen to satisfy a = v(^)/6 + Op(n 1). 
For an example that illustrates the accuracy of the various approximate procedures, 

consider a sample from the bivariate distribution having probability density function 
f(x, y)j= l1(q2)C exp{-(qlx + 2y)/{yl -cF(c)} for x > 0, y > 0, and let 0 = q 2/q 1. In 
this case, y = 2(c - 1)/{n(c2 + c)}1/ . Table 3 compares the upper and lower 97.5 % 
percentile, BC and BCa limits with the exact limits in the case n = 5 and c = 0.4. The 
BCa method is very accurate in this situation. In the case c = 1, the percentile limits 
are exact. 

2.3. Related Procedures 
The BCa method has been criticized because it is not fully automatic; that is, it 

requires the calculation of the analytic adjustment a. DiCiccio and Romano (1987) 
have considered related procedures which closely approximate the BCa method, but 
do not require the explicit calculation of adjustments like zo and a. 

Consider the simple case of a family indexed by a scalar parameter 0, and suppose 
there exists a transformation satisfying (2.2). The exact upper 1 - ax confidence limit 
0[1 - ox] can be found by the formula 

G 1 {Go,(00)} (2.4) 
where 00 is any value of the parameter 0 and 0 = G -1(o). Moreover, formula (2.4) 
is often exact when (2.2) is not exactly satisfied. As an example, this formula produces 
exact confidence limits for 0 when 0/0 is pivotal; the BCa method is not exact in this 
case. 

In practice, a reasonable choice for the initial value 00 is the percentile limit 
GJ (1 - ox). Table 1 shows the approximate limits obtained by using this choice and 

TABLE 3 
Upper and lower 97.5 % confidence limits for 0 = tI2/t 1 (n = 5) 

Exact Percentile BC BC. 
Lower Upper Lower Upper Lower Upper Lower Upper 

0.113a 4.468a 0.224a 8.844a 0.184a 6.506a 0.1050 4.404a 
(2.50) (2.50) (8.10) (0.25) (5.87) (0.76) (2.18) (2.61) 

Below each confidence limit is shown its true error rate in coverage expressed as a percentage. zo = -0.1217, a = -0.1195. 
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(2.4) for the correlation coefficient example. In the exponential mean example, (2.4) 
is exact. An important feature of this procedure is that it can be iterated according 
to Oi +1 = G -1 {G0o(0j)} (i = O, 1, .. .), where 0! = G4, 1(oa). Under certain conditions the 
difference between Oi and 0[1 -a] is Op(n -1-i/2). Moreover, the numbers of 
calculations involved in this iterative procedure are linear in i, unlike other iterative 
methods discussed in Section 4. 

For the extension of this method to multiparameter families, suppose that the 
model has been parameterized so as to be indexed by (0, i/), where V/ = (i1/, . .., frP 1) 
consists of nuisance parameters orthogonal to 0, i.e. cov{nl/2(D - 0), nl 2( 7ii - qfi)} = 
O(n- 1). Cox and Reid (1987) give a detailed account of orthogonal parameters with 
reference to maximum likelihood estimation. To implement the method, commence 
with some initial value 00, perhaps the percentile limit 00 = G-,1q;)(l - cx), let 
0= G(-1 ;,)(oa), and then take 01 = G ,'a2){G(o,, ,)(00)}. The difference between the BCa 
limit and 01 is Op(n- 32), and the error in coverage ofthe approximate limit 01 is O(n- 1). 
However, further iteration in the multiparameter case does not improve coverage 
accuracy. 

In practice, it can be inconvenient to determine an orthogonal parameterization 
directly, and the preceding procedure can be sufficiently well approximated by using 
the least favourable family. In terms of the notation introduced previously for an 
estimator , consider the line q(z)- + zT, where ,u = )!jtj,it = 1Ui(i) and y = 
. P). Let G,(s) = P+ ,0 s s), so that Go is the bootstrap distribution for 0 = t(i). 

Starting with an initial value 00, perhaps taken to be the percentile limit Go- 1(1 - cx), 
the approximate limit is Go- 1 {G4, (00)}, where z0 is the value of X such that 00 =t{q(T)J 

00 = GO1 (o), and z' is the value of z satisfying 0 = t{q(z)}. This approximate limit 
differs from the one obtained using the orthogonal parameterization by terms of order 
O (n - 3/2) 

For the multiparameter problem considered in Table 3, this procedure is exact. 
However, in the case of a sample drawn from the normal distribution with unknown 
mean ,u and variance U2 where ,u is the parameter of interest, the percentile method 
and related procedures perform poorly for small sample sizes. The approximate limits 
for ,u given by these methods are the exact ones that would be obtained if the variance 
was known and equal to &2. 

A procedure which does give the correct limits in the normal mean example is the 
percentile-t method. This method, further discussed in Sections 3 and 4, makes use 
of the bootstrap distribution of an approximately pivotal quantity instead of using 
the bootstrap distribution for P. In the multiparameter context, consider the 
approximate pivot (0-0)/(2iJ7i^)1I2, and let Kt be its distribution function. Thus 
Ku(s) = Pt,{(0 - 0)/(2iritj)1l2 < s}, and the bootstrap distribution is KC The percentile-t 
approximation to an upper 1 - cx confidence limit for 0 is D-(lifit )1/2K 1 (ax). The 
difference between the true and nominal coverage levels of the percentile-t limits is 
O(n - 1). Although these limits are not invariant under reparameterization, the 
difference between the percentile-t and BCa limits is Op(n - 3/2). For the examples 
considered in Tables 2 and 3, the percentile-t method produces exact confidence limits. 
However, for the correlation coefficient example, with var(O) = (1- 02)2/(n - 1) + 
O(n 2), this method produces poor approximations as shown in Table 1. 

The percentile-t method can be extended to the construction of approximate 
confidence regions for vector-valued parameters of interest, which has been distussed 
by Hall (1988); such an extension for the BCa method has yet to be as fully developed. 
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For the case of maximum likelihood estimation, it may be appealing to Studentize 
by using observed rather than expected information in deriving the percentile-t limits. 
Beran (1987) considers the use of bootstrap distributions for log-likelihood ratio test 
statistics. 

2.4. Nonparametric Inference 
Suppose that xn = (X1, ..., Xn) is a sample from an unknown distribution F, and 

suppose that 0 = T(F) is the scalar parameter of interest. Let ',Fn be the empirical 
distribution function of xw, and consider the estimator D = T(Fn) of 0. Let GE(S) = 

PF(O < s) be the distribution function of D under F; then the bootstrap distribution for 
D is GFt. 

The percentile and BC limits are easily found in this situation. The approximate 
upper 1 - a confidence limits for 0 obtained by the percentile and BC methods are 
G1n1(1-a) and G1 {.D(z(1 -a) + 2zO)}, respectively, where zO = D- 1{Gp(D)}. The 
implementation of the BCa method is less straightforward since it requires the 
calculation of the adjustment a. 

To calculate a, Efron reduces the nonparametric situation to a multiparameter one 
by restricting attention to distribution functions with support on X1, ..., X,. 
Corresponding to each such distribution F is a vector w = (wl, . .., wn), where wi is 
the probability mass assigned to Xi. Efron considers the problem of setting confidence 
limits for 0= 0(w) having made n draws from such an n-category multinomial 
distribution and observed each category to appear once; that is w- = (n-1, ..., n-1). 
The least favourable family in this situation is w(z) = (wt(z), ..., wn(z)), where 

-'T etui {> e tUi} 
/ j= 1 } 

and 

Ui = lim T{(1 - A)n + Abi} - T(Fn) 
A-+O A 

is the ith component of the empirical influence function with bi denoting a point mass 
at Xi. The formula for the acceleration adjustment is 

n=( n~ {( u3/2} 

Efron suggests the Uis be calculated numerically, and he has used A = 0.001 in practice. 
Hall (1988) has considered these procedures in the nonparametric context of a 

'smooth function' model for which the estimator can be expressed as a function of 
multivariate vector means. In such cases, the difference between the nominal and true 
coverage levels of the approximate limits is O(n - 1/2) for the percentile and BC methods 
and is O(n- 1) for the BCa method. Hall (1988) also considers the percentile-t method 
for this model, and he shows that the percentile-t limits differ from the BCa limits by 
terms of order Op(n- 3/2). Hall (1987) considers the percentile-t method for vector- 
valued parameters in the nonparametric context. 

The procedure given by expression (2.4) and extended to the multiparameter families 
in Section 2.3 can be applied in an obvious way to the nonparametric case by making 
use of the least favourable family w(z). 
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3. FUNCTIONAL APPROACH 

3.1. Consistency 
In this section, the bootstrap is motivated as a natural functional approach to the 

construction of a confidence region. The development begins by focusing on the 
independent identically distributed case. 

Let xn = (X1, . . ., Xn) be a sample of n random variables taking values in a sample 
space S and having unknown distribution F, where F is assumed to belong to a 
certain collection F of distributions. The collection F may be finite or infinite 
dimensional. The interest lies in constructing a confidence interval for some parameter 
T(F), whose range {T(F): F e F} will be denoted T. This leads to considering a root 
Rn(Xn, T(F)), which is just some functional depending on both xn and T(F). For 
example, an estimator Tn of a real-valued parameter T(F) might be given so that a 
natural choice is Rn(Xn, T(F)) = Tn- T(F), or alternatively, Rn(Xn, T(F)) = [Tn - 
T(F)]/s, where sn is some estimate of the standard deviation of Tn. 

When F is suitably large, a natural construction for an estimator Tn of T(F) is 
Tn= T(F"), where Fn is the empirical measure of X1, ..., Xn. In regular parametric 
problems for which F is indexed by a parameter q belonging to a subset of lRP, T(F) 
can be described as a parameter t(ti), and hence Tn is often taken to be Tn = t(Qn), where 
rin is some desirable estimate of 71, such as a maximum likelihood estimate, a one-step 
maximum likelihood estimate, a minimum distance estimate, etc. 

Let Jn(F) be the law of Rn(Xn, T(F)) when xn = (X1, . . ., Xn) is a random sample 
from F, and let Jn(x, F) be the corresponding cumulative distribution function. Also, 
let J- l(x, F) = inf{x: Jn(x, F)>; a} be an a quantile of the law Jn(F). In order to 
construct a confidence region for T(F), the sampling distribution or the appropriate 
quantiles of Jn(F) must be known or estimated. The bootstrap procedure is to estimate 
Jn(F) by Jn(Gn), where Gn is some estimate of F, and then estimate the appropriate 
quantiles of Jn(F) by those of Jn(G;). In nonparametric problems, Gn is typically (but 
not always) taken to be the empirical distribution Fn; in parametric problems, G6 is 
usually G4.. A resulting bootstrap confidence region for T(F) takes the form 

Bn(a, xn) = {t E T: Rn(x, t) <GJ 1(1-x G}. (3.1) 
Note that when Jn(F) is independent of F, the root Rn(Xn, T(F)) is said to be a 

pivot, in which case the bootstrap procedure is clearly valid. In general, it may not 
be possible to find an exact pivot. Some of the bootstrap literature refers to this 
procedure of estimating Jn(F) by Jn(Gn) as the bootstrap pivotal method, but the term 
root is adapted here from Beran (1987) to distinguish a general root from a pivot 
defined in the classical sense. 

How well does this bootstrap procedure work? Is it consistent, or perhaps optimal 
in any sense? Typically, one can show Jn(F) converges weakly to a continuous limit 
law J(F). In order for the bootstrap to be valid, Jn(F) must be smooth in F. Smoothness 
in F can often be described in terms of a suitable metric d, depending on the choice 
of root Rn. Specifically, let d be a metric on F such that the estimate Gn of F satisfies 
d(Gn, F) -- 0 in probability as n -s oc. Then, a sufficient condition for the bootstrap 
to be consistent is that the convergence of Jn(F) to J(F) be locally uniform in F, 
where uniformity is described in terms of d. Formally, the following uniform weak 
convergence result (denoted TAC from Beran (1987) for triangular array convergence) 
must hold. 
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Triangular Array Convergence. If {Fn, Fn e F} is any sequence of distributions in 
F satisfying d(F", F) -+0, then J,(F,) converges weakly to a continuous limit law J(F), 
which depends only on F. 

When TAC holds and d(G"', F)-+ 0 in probability, it follows that 

sup I Jn(x, G) - Jn(x, F) I 0 in probability. (3.2) 
x 

Moreover, the continuity of the limit law J(F) entails the convergence in probability 
of Jn- '(cx, &n) to the a quantile, J` ((a, F) of J(F). It follows (see Beran (1984a), theorem 
1) that a bootstrap confidence region Bn given by (3.1) satisfies, for any F in F, 

PF{T(F) e Bn(c, xn)} -* 1- oa as n-* so. (3.3) 
Several papers in the bootstrap literature show that the TAC condition holds. See, 

for example, Babu and Singh (1983), Beran (1984a), Beran and Millar (1985), Beran 
and Srivastava (1985), Bickel and Freedman (1981), Ducharme et al. (1985), Freedman 
(1981), Romano (1987) and Singh (1981). Two well-studied examples are the following. 

Example 3.1. Let F be the collection of distributions on the line with finite variance. 
The problem is to construct a confidence interval for T(F)= f x dF(x). Here, 

Rn(Xn5 F) = n 1/2 l T(F')-T(F) 1 5 
where F' is the empirical distribution so that T(Ftn) is the sample mean. Then, TAC 
holds when d is, for example, Mallow's metric d2 defined by: d 2(F, G) is the infimum 
of E(X - Y)2 over all joint distributions of X and Y whose fixed marginals are F and 
G, respectively. Convergence of d(Fn, F) to 0 is equivalent to Fn converging weakly 
to F and Var(Fn) -+ Var(F). See Bickel and Freedman (1981). 

Example 3.2. Let F be the collection of all distributions F on the line. The problem 
is to construct a confidence region for F based on the root 

Rn(xn, F) = n'S2 sup I Fn(t)-F(t) 
t 

where fFn is the empirical measure based on xn = (X1, ..., Xn). Then, the TAC holds 
with 

d(F, G)= sup I F(t)-G(t)I, 
t 

the usual Kolmogorov distance. This example was first considered in Bickel and 
Freedman (1981) and has been generalized to constructing a confidence set for a 
measure in an arbitrary sample space S based on a supremum distance over a 
Vapnik-Cervonenkis class of sets; see Beran and Millar (1987). 

Based on the validity of the bootstrap in example 2, it is natural to expect the 
asymptotic correctness of bootstrap confidence intervals for smooth functionals T(F) 
of F, since the distribution of n"2{T(in) -T(F)} can often be approximated by some 
smooth functional of the empirical process. In particular, suppose T is a real-valued 
functional defined on a large class F of distribution functions on the real line. Assume 
that T is Frechet differentiable; that is, for each fixed F, there exists a function VF 

This content downloaded from 128.252.121.153 on Mon, 07 Sep 2015 14:21:56 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


348 DICICCIO AND ROMANO [No. 3, 

such that 

T(G)- T(F)= j /Fd(G-F) + o( IG-F F 0K) 

where I G - F I is the supremum norm between distribution functions. Suppose 
further that 

J F dF < oo (3.4) 

and 

(VG - IF)2dG = 0(I G - F I ). (3.5) 

Proposition 3.1. If T is Frechet differentiable with derivative i/F satisfying (3.4) 
and (3.5), then TAC holds for the root 

Rn(x., T(F)) = nt2{ T("n) - T(F)} 

when d(F, G)= F - G . Hence, (3.2) and (3.3) hold when resampling from Gn = Fn5 
the empirical distribution. 

An argument for this proposition is essentially given in Bickel and Freedman (1981). 
In fact, the result holds under the weaker assumption that T is compactly differentiable 
with derivative 4/F satisfying (3.4) and (3.5). See Liu et al. (1986) for a 
discussion of the negligibility of the remainder term, although the TAC condition is 
not made explicit. Proposition 3.1 applies to many M estimators, L estimators and 
U statistics, for example. 

Extensions of the bootstrap outside of the independent and identically distributed 
framework are clearly possible. Given a root R(xn, T(F)) based on data xn with 
distribution F, let Jn(F) be the distribution of the root. As before, the bootstrap 
procedure is to estimate Jn(F) by Jn(&) for some suitable estimate G. Freedman (1981) 
discusses regression models, Freedman (1984) and Haycock (1986) discuss time series 
models, and Sugahara (1987) discusses Markov chain models. The simplest example 
outside of the independent and identically distributed context is confidence intervals 
for two-sample problems. 

Example 3.3. Let x,, be a random sample of size n from F and let Ym be an 
independent random sample of size m from G. The problem is to construct a confidence 
interval for T(F) - T(G) where T is some functional (such as the mean or a quantile). 
Let 

Rnm(Xn, Ymi, T(F), T(G))= [T(n) - T(Gm)] -[T(F) -T(G)] 

where Fn is an estimate of F based on xn and GM is an estimate of G based on Y.. 
Let Jnm(F, G) be the law of Rnm(Xn3 ymS T(F), T(G)) when xn is a sample of size n from 
F and Ym is a sample of size m from G. The bootstrap procedure approximates the 
appropriate quantiles of Jn.(F, G) by those of Jnm(F", Gm)n As in proposition 3.1, 
smoothness assumptions on T yield consistency by taking F" and GC the empirical 
distributions corresponding to xn and Ym. With respect to example 3.2, one may also 
construct a confidence band for the difference F - G; see Beran (1984a). 
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3.2. Optimality 

We have seen that smoothness of JJ(F) in F entails the consistency of the bootstrap. 
A natural question to ask is whether the bootstrap estimate JJ(Gn) of J (F) is optimal 
in any sense. In nonparametric problems where F is the class of all distribution 
functions, it is well known that the empirical distribution function Fn is an optimal 
estimator of F in a local asymptotic minimax (LAM) sense. One would expect similar 
optimality results for smooth functionals of F, such as Jn(F); such results are 
well established in the literature, with a unifying approach developed in Millar (1983). 
In a decision-theoretic framework, Beran (1982) establishes the LAM property for 
the bootstrap distribution estimate Jn(i'), assuming a locally uniform first-order 
Edgeworth expansion for Jn(F) (which entails a certain differentiability property in 
F for Jn(F)). Bootstrap estimates of bias, variance and skewness, which can be viewed 
as functionals of Jn(F); are also typically LAM; see Beran (1984a) for details. 

Having derived optimality properties for the bootstrap estimate Jn(Fn) of Jn(F), a 
natural question is: do the resulting confidence sets possess any optimality property? 
In Beran and Millar (1985), a general asymptotic theory of optimal confidence sets 
is presented. In their framework, confidence sets should not only have the approximate 
stated level, but should also be properly centred and small in size. In particular, 
suppose the problem is to construct a confidence set for T(F), where T takes values 
in a Banach space B with norm 1 IB. If Cn is a confidence set for T(F), the risk of Cn 
is given by 

EF{SUP g( t- T(F) I B): t E Cn} 

for some increasing function g. The goal is to find a procedure Cn,, a ball in B specified 
by its centre and radius, that achieves the minimum LAM risk subject to the constraint 
on level. Uner suitable conditions, the confidence set 

=f-t: It-T(F"n) I B <- rn} 

is LAM, where ̂ n is determined by bootstrapping the root Rn(x, T(F))F= I T(F)- 
T(F) IB. Their framework applies to both nonparametric and parametric problems. 

3.3. Inconsistency 
The bootstrap need not be consistent, even in the weakest sense (3.3). The problem 

is due to lack of uniformity in F of Jn(F). Bickel and Freedman (1981) give two such 
examples. Other counterexamples may be found in Beran (1982) and Athreya (1987). 
Ghosh et al. (1984) discuss the bootstrap estimate of the variance of the sample median 
T(Fn), where T(F) = inf{t: F(t) > 1/2}. They show it is possible for (3.3) to hold based 
on the root 

Rn (Xn , T(F)) = n1/2 {T(P) -T(F); 

however, the bootstrap estimate of variance of Rn(Xn, F) is inconsistent. Although 
Studentization typically improves coverage accuracy, their results suggest that using 
a root based on Studentization can be inappropriate. The problem lies in the fact 
that the variance functional is not weakly continuous. The following example shows 
the problems that can occur when constructing bootstrap confidence intervals for 
functionals of a density. 
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Example 3.4. Given a sample x, = (X1, ..., Xn) of n observations from a 

distribution F having density f, the problem is to construct a confidence interval for 
T(F) = f(t) for some fixed t. Let fflh(t) be a kernel density estimate of f given by 

fnh (t)~ Z nh i1 K(thx) 

for some appropriate smooth kernel K, and let Fnh be the corresponding distribution 
satisfying h) = n.h The density f is assumed to be smooth (say, having two 
continuous derivatives) but is otherwise unknown. Let 

Rnh(xn, T(F)) = (nh) 2 {Lnh(t) -f(01} 

Let Jnh(F) be the distribution of Rnh(Xn, T(F)) under F. The optimal rate at which 
h = hn should be chosen is well known to be nh' - q for some q > 0. For such a choice 
of hn, the following uniformity result holds (which can easily be translated into the 
TAC condition). If Gn is a distribution having density gn such that the first two 
derivatives of g converge uniformly to those of f in a neighbourhood of t, then Jnhn(Gn) 
converges weakly to a continuous limit law J(F). Hence, if nbA/log(n) -+ CX and b? -+0, 
then Jnhn(Fnbn) is a consistent bootstrap estimate so that (3.2) and (3.3) hold. On the 
other hand, when bn = hn, the second derivative of the kernel density estimate fnh, is 
not a consistent estimate of f (2) and failure of the bootstrap results. Unfortunately, 
the appropriate class of distributions which one may resample from often depends 
heavily on the parameter of interest when this parameter is a local property of the 
distribution. This emphasizes the need to be careful in a naive application of the 
bootstrap when bootstrapping functionals of a density; see Romano (1988). 

Finally, we remark that bootstrap confidence intervals may be consistent in the 
sense that (3.3) holds for any fixed F, but the convergence is not uniform over F. 
That is, define the level of a confidence set itn for T(F) to be 

inf PF{T(F) E Cn}. 
F 

For fixed F, one may have PF(T(F) e Cn) tends to 1 -ax (or at least 1 - a), but the 
level converges to a number less than 1 - cx. The following example, adapted from 
Romano (1986) shows this can happen even in a parametric setting; see Romano 
(1986) for a nonparametric example. 

Example 3.5. Let xn = (X1, ..., Xn) be independent Bernoulli variables such that 
PO(Xi = 1) = 0. The problem is to construct a confidence interval for 0. Let 

Rn(xn, 6) = n1/2(on -0) 

where On is the sample mean. Let Jn(6) be the distribution of Rn(xn, 0) under 0, and 
let Bn be the bootstrap confidence set 

BnOQ, xn) = {O: R (xn, 0) s 0 Jn- '(1 - On 
Fix any a in (0, 1), and f in (a, 1) and choose On > 0 SO (1 - On)n >/ p. If xn is a sample 
from PO, the chance that all observations are zero is at least fl. In such a cas6, the 
resulting bootstrap confidence set is just the set {0} and does not contain the true 
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value On6. It follows that 

limsup PO.{6 E Bn(OC, xX)} < 1- 
n-oo 

For fixed a, # was arbitrary, so in fact the level tends to zero. 

4. ITERATIVE BOOTSTRAP REFINEMENTS 

4.1. Introduction and Studentized Roots 
Bootstrap methods discussed in Section 3 offer a widely applicable construction 

of confidence sets. In this Section, we review some refinements of the method, with the 
goal of improved coverage accuracy. Other methods, based in part on analytical 
corrections, are discussed in Abramovitch and Singh (1985), Hall (1983) and Withers 
(1983). 

In order to construct a bootstrap confidence set (3.1), a choice of root must be 
specified. In particular, consider the root 

Rn(Xn T(F)) = n1/2(Tn - T(F)) 

and the Studentized root 

Sn (Xn , T(F)) = n1/2( Tn -T(F))1Snq 

where Tn is some estimate of T(F) and n"/2s , is some (consistent) estimate of the 
(asymptotic) standard deviation of Tn. In large samples, the distribution of Rn under 
F, say Jn(q F), is typically normal with mean 0 and variance o2(F), which depends 
on F. On the other hand, the distribution of Sn under F, say Kn(q F), is asymptotically 
standard normal, and so is at least asymptotically pivotal. This suggests the (finite 
sample) distribution of Sn is less dependent on F than that of Rn. Indeed (see Beran 
(1982) or Hall (1988), for example), in regular cases, bootstrapping a Studentized 
root results in improved coverage accuracy. In particular, 

Jn(x3 F) -Jn(Xq Fn) = OF(n -1/2 

and 

Kn(x, F) - Kn(x Fn) = OF(n 1), 

and the same orders of coverage error apply to the corresponding one-sided bootstrap 
confidence intervals. It should be noted, however, that coverage error of OF(n- 1/2) 

based on the root Rn is not really a fault of the bootstrap as Beran (1982) has shown 
that there does not exist an estimate of Jn(, F) that can improve upon this rate of 
convergence. Rather, the problem lies in a perhaps poor choice of root. 

Of course, the drawback of bootstrapping a Studentized root is that one must have 
a consistent estimate of c(F). One possibility is to use a bootstrap estimate of variance, 
but the resulting confidence procedure would involve nested bootstrap calculations, 
and so may be computationally undesirable. Moreover, as remarked in Section 3.3, 
bootstrap estimates of variance typically are, but need not be, consistent. 
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4.2. Prepivoting 

As in Section 3, let Jn(F) be the distribution function of a root Rn(xn, T(F)). The 
resulting bootstrap confidence region Bjcx, x,) is given by (3.1). Letting 

Rnl(xn, T(F)) = Jn{Rn(xn, T(F)), Gn5} 
we may write Bn(a, xn) as 

Bn(c., xn) = {t E T: Rn1(xn, t) < I -}. (4.1) 
Let Jnl(-, F) be the distribution function of Rnl(xn, T(F)) under F. In effect, confidence 
set (4.1) approximates the distribution Jnl(-, F) by the uniform distribution. Instead, 
analogous to (3.1), one may estimate the distribution Jnl(-, F) by Jnl(-, Gn) to obtain a 
new confidence set: 

Bn1(a, xn) = {t E T: Rn1(xn, t) < J,-1(1-x, i,)} (4.2) 
This construction is Beran's (1987) method of prepivoting. Instead of bootstrapping 
the root Rn(xn, t), a new root, Rnl(xn, t), is formed (by using the bootstrapping 
distribution of Rn(xn, t)!) and the method of Section 3 is applied to form a confidence 
set based on this new root. Beran argues that Rn1 is more nearly pivotal than Rn; 
that is, the distribution Jnl(-, F) is less dependent on F than is Jn(-, F). This seems 
plausible because one typically begins by choosing an asymptotically normal root Rn 
whose asymptotic variance depends on F. The asymptotic distribution of Rn1 
is uniform and does not depend on F. Moreover, beginning with an asymptotically 
normal root 

Rn(xn, T(F)) = n12{Tn -T(F) 

Beran argues that the prepivoting operation is asymptotically equivalent to Studentiz- 
ing. The beauty of prepivoting is the generality of the approach. 

The motivation for prepivoting may be derived from the point of view of Loh's 
(1987) calibrated confidence sets. In fact, we show these methods to be the same. In 
particular, consider the following refinement of the bootstrap confidence set (4.1). The 
exact coverage probability that T(F) is contained in Bn(x, xn) under F is given by 
inl(l - , F), and is unknown because F is unknown. We can estimate this coverage 
probability by Jnl(l - O, Qn). Now, choose cx1 so that this estimated coverage is 1 -a; 
that is, solve 

inl(l -al, GO) = 1 -a. (4.3) 
Compute a new confidence set as before, except use a, instead of a to obtain 

{teT: Rn1(xn, t) < 1 -a}. (4.4) 
By (4.3), 1- = J-'(1 - o, nn), so that (4.2) and (4.4) agree. 

The method of prepivoting may be iterated as follows. Given a root Rni(Xn5 T(F)), 
let Jnj(-, F) be its distribution function under F. Form a new root Rnj+ 1 by 

Rn,j+ J(xn T(F)) = Jni{Rnj(xn5 T(F)), Gn} 
and let 

Bnj(, xn)= {t e T: Jnj(R,J+G1(x, t), )< 1-a}* 
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Beran argues that, when Edgeworth expansions for Jn(, F) exist, the error level of 
Bnj(j,& xn) decreases as j increases. 

4.3. Hall's Iterative Additive Correction 
Let Sn1(Xn, t) - Rn(Xn, t) - Jn- 1(1 -C, Gn). Rewrite confidence set (3.1) in the form 

Bn(a, xn) = {t E T: Sn1(xn, t) < O}. (4.5) 

Let Lnl(-, F) be the distribution function of Sn1(xn, T(F)) under F. The confidence set 
(4.5) pretends that L(1 - '(-a, F)=0. Instead one may estimate L-`'(I -a, F) by 
Ln-1(l - a, Gn) and form a new confidence set 

AnI(cX, Xn) = {t E T: Sn1(xn, t) < Ln-1(1 -a, Gn)- 

This is Hall's (1986a) additive correction. Like prepivoting, this procedure may be 
iterated as follows. Let 

n,j+ 1(xn, t) = Sn( t)(-XLn n j(1 - nc 
Let Ln, j F) be the distribution function of Sn j+I(xn, t) under F and forn 

Anj+ 1(c, xn) = {t E T: Sn,j+ 1(xn, t) < Ln7 (1 - cx, 

Like prepivoting, each round of iteration reduces the level error in regular cases. 

4.4. Conclusions 
Bootstrap iterative methods offer the potential of high accuracy, at least in regular 

problems. Of course, for fixed sample size, iteration may not improve accuracy and 
can make the situation worse. It is important to note that the currently available 
supporting theory is asymptotic in the sample size. Prepivoted confidence sets, unlike 
Hall's method, offer the advantage of being invariant under monotone transformations 
of the root and reparameterizations of T(F). This can, in part, be explained by the fact 
that Beran's roots Rni obtained by prepivoting do not depend on the initial fixed 
choice of a whereas Hall's Snj do depend on ax. The current drawback with iterative 
methods is the inherent computational complexity. In some cases, however, prepivot- 
ing has analytical approximations; see Beran (1987). Otherwise, each round of iteration 
involves a nested bootstrap calculation, so that the number of computations is typically 
exponential in the number of iterations. In addition, even disregarding the computa- 
tional problems, how many iterations are possible? Current asymptotics assume the 
number of iterations j is fixed while n -+ so. Clearly, j cannot be comparable with n, 
but what is feasible? Two important open questions are the following. Can clever 
computational algorithms be designed to efficiently reduce the number of calculations 
as to make these methods viable? Second, do these iterative procedures converge and, 
if so, can one directly approximate the limiting algorithm? 
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DISCUSSION OF THE PAPERS BY HINKLEY AND DICICCIO AND ROMANO 

Dr J. T. Kent (University of Leeds): The story of the bootstrap as a well-defined area of study starts 
with Efron's (1979) paper. Over the past 10 years the bootstrap has become one of the most popular 
recent developments in statistics. I can think of four reasons to help to explain why it has caught the 
imagination of the statistical public. 

(a) Elegance: like many of the best ideas in mathematics, the principle behind the bootstrap, that of 
resampling from the empirical distribution function, is simple and elegant, yet very powerful. 

(b) Packaging: the catchy name 'bootstrap' makes it easy for people to focus on the field, though it 
is perhaps confusing that the meaning of the term bootstrap has been expanded to include 
parametric resampling as well. 

(c) Mathematical subtlety: there is sufficient complexity behind the bootstrap to lure the mathematical 
intellectuals on to the scene. The area has already attracted many deep thinkers, as these papers 
illustrate. 

(d) Ease of use: in contrast, for the practitioner, there is the hope of a fairly automatic and 
straightforward methodology that can be used without the need for any thought. 

Next I would like to comment on the language used for asymptotic bootstrap confidence intervals, 
which is a potential source of confusion. Let oBsj[] be a bootstrap estimate of an exact a confidence 
limit OEX [t] in a one-parameter model, based on n observations. The following statements are roughly 
equivalent. 

(a) OBS[tx] is accurate to second order. 
(b) 0BS [a] - OEX [aX] = Op(n- 3/2). 

(c) n'/2{OBS [lo] - OEXIIot]} = O(n- 1). 
(d) OBS[cx] is accurate to order n- 1, i.e. the error is of higher order. 
(e) The error in coverage probability using OBS [lo] is Op(n - 1). 

More specifically (aHc) are equivalent and imply (d) and (e). Amid this confusing choice of powers of 
n, DiCiccio and Romano emphasize the expressions (b) and (e), and I agree that these are the clearest 
way to express accuracy here. 

Lastly, let me address the question of whether it is even meaningful to talk about second-order 
accuracy for confidence intervals in a nonparametric problem. To set the scene, consider observations 
from the model 

N(O, (a + ao)2). 

If the acceleration parameter a is known then Efron's BCa percentile method is precisely what is 
needed here to produce confidence intervals accurate to second order. However, the case of unknown 
a is perhaps more interesting because it mirrors the situation typically arising in a nonparametric 
problem. Here there is nothing that we can do to achieve second-order accuracy. Efron's suggestion in 
this case is effectively to take a = 0 (see Section 2.4 in the paper by DiCiccio and Romano), but it is not 
clear that this will always be a sensible suggestion. 

Similar doubts arise over the use of the double bootstrap in Hinkley's paper to find a pivot in the 
normal correlation example (Fig. 1). If r is the sample correlation from an elliptically symmetric bivariate 
distribution with correlation p and kurtosis K then asymptotically 

n1/2(z-),) - N(0, 1 + K) 

where z = 2 log[(1 + r)/(1 - r)] and ' = 2 log[(1 + p)/(l - p)] (Muirhead, 1982). In Hinkley's example, 
based on the normal distribution we have K 0. However, if K = K(p) depends on p and is not constant, 
then we see that z - 4 is no longer a pivot, thus invalidating the interpretation of Hinkley's Fig. l(b). 

In other words the use of the bootstrap to produce confidence intervals accurate to second order 
involves assumptions about how the empirical distribution should be embedded into a neighbouring 
family of distributions. Schenker makes a similar point in the discussion of Efron's (1987) paper. Efron 
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himself uses the concept of a 'least favorable family'. However, it is not clear that his embedding will 
always be meaningful in practice. More work is needed here to understand the implications of these 
embeddings. 

I have found both papers a stimulating source for further discussion. I therefore have great pleasure 
in proposing the vote of thanks. 

A. C. Davison (Imperial College, London): When the bootstrap was first advertised as a method 
which substituted computer power for that of the statistician's mind, the spectre of future unemployment 
seemed to loom for members of our profession. Suspicion was deepened by the discovery that much of 
standard statistical practice, such as the calculation of confidence intervals based on Fisher information, 
was henceforth to be termed the parametric bootstrap. It is thus a relief to welcome these excellent 
papers as evidence that, far from causing redundancies, the bootstrap has become, and looks set to 
continue to be, a potent statistical job creation scheme. 

A first encounter with a bootstrap propagandist is usually something like this: 

Alice laughed. 'There's no use trying,' she said: 'one can't believe impossible things.' 
'I daresay you haven't had much practice,' said the Queen. 'When I was your age, I always 

did it for half-an-hour a day. Why, sometimes I've believed as many as six impossible things before 
breakfast.' 

However, the success of the idea forces us to think deeply about the interplay between data and model, 
and how we can use a model to make statements about the data. Its failure, for example when lack of 
appropriate conditioning leads to unsuitable sampling distribution and hence irrelevant inferences, forces 
us to think more clearly about general statistical principles such as that of conditionality: to clarify 
exactly which reference set the observed data are to be compared with. An example of the importance 
of this arises in Kendall and Kendall (1980), who use resampling distributions with modified support 
in a problem where naive sampling, either from the data or from a parametric model, would fail to 
reflect central features of the data. This issue arises both when conducting significance tests and when 
forming confidence regions, and I hope that Professor DiCiccio and Professor Romano will say what, 
if anything, can be said about conditional confidence regions in general settings. Is there a danger that 
the methods they describe could seriously mislead and, if so, how could we tell in practice? Professor 
Hinkley has pointed out that the issue of conditionality is implicit in much discussion of statistical 
methods, but it has had only passing consideration in the bootstrap literature. 

Something else that is difficult to believe, even after conning the examples in Beran (1987), is that 
iterated sampling from bootstrap samples enables the calculation of ever more accurate confidence 
intervals. The theory is fascinating, but in many practical contexts the resulting gains in accuracy will 
be unnecessary. If the results are to be used in practice, it will be necessary to say at what level the 
iteration should stop. Do the authors have any theoretical or empirical guidance to offer? 

I should like to rise to the bait offered by all three authors and to describe a method for efficient 
estimation of bootstrap tail probabilities based on importance sampling. Suppose that we wish to 
estimate the distribution of the asymptotically normal pivot Z = (T -)/Y/V, where V is the variance 
of T -0. The bootstrap estimate of this is the distribution of Z* = (T* - tob)/V*, formed by 
resampling from the observed data X1, ..., X. For suitably smooth functionals T = t(F) we can 
approximate the behaviour of Z* by the linear terms 

I n 

ZL*=-T L3 
of its von Mises expansion, where Lj* is the infinitesimal jackknife pseudovalue corresponding to Xi*, called Uj by DiCiccio and Romano. Judicious choice of the scale of T often makes ZL* highly correlated 
with Z*. We wish to estimate P = pr(Z < z I F) by the Monte Carlo approximation 

S E I(ZS*- Z) 

to the probability 
P*1* I(Z* z). 
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Here I(A) is the indicator of event A, and E* indicates summation taken over all nn bootstrap samples. 
We can estimate P* directly, by resampling from the uniform distribution F(-) on the data Xj, or we 
can sample X* from a suitably chosen distribution G(-) on the Xj and use the importance sampling 
estimate 

S S=1 s j = i dG(X*) 

A little thought suggests that G be chosen so that ZL has mean z, for example by choosing weights wj() 
for the X* so that EZL = n- "2Xwj(T)Lj = z. For I z I in the range 1.5-2.5 likely to be useful in practice, 
the importance sampling estimate of probability has variance in the range 5-10 times smaller than the 
naive sampling estimate. Estimation at more extreme quantiles is more accurate. Pilot calculations 
suggest that use of this idea can reduce the size of a double bootstrap by a factor 10 or so. I have 
recently learned of the independent but similar work by Johns (1987). 

One participant at a previous meeting remarked that he had thought the bootstrap was a simple 
method used to analyse complex problems, but that it seemed that more and more complex bootstraps 
were being invented to analyse ever simpler problems. Both are partly true: the bootstrap is found 
empirically to be the tool par excellence in problems that are too ill specified to tackle using classical 
tools, but to understand the underlying ideas requires theory more general, and hence potentially harder, 
than classical methods. For those with little faith in their distributional assumptions, the methods 
described by DiCiccio and Romano provide useful tools for confidence intervals, and, for those with 
more faith in their parametric models, the bootstrap aids assessment of the sensitivity of the conclusions 
drawn to the assumptions made, as Professor Hinkley points out. This attitude is summed up by the 
White Knight: 

'I was wondering what the mousetrap was for,' said Alice. 'It isn't very likely there would 
be any mice on the horse's back.' 

'Not very likely, perhaps,' said the Knight; 'but, if they do come, I don't choose to have them 
running all about.' 

The authors have written papers which provoke thought, repay careful study and deserve to form the 
basis of a fruitful discussion. I congratulate them, and have much pleasure in seconding the vote of thanks. 

The vote of thanks was passed by acclamation. 

Professor B. W. Silverman (University of Bath): One question that I have been interested in is the 
use of smoothing methods in a bootstrap context. In the problem considered in Silverman (1981, 1986) 
of testing whether a density was unimodal, some smoothing was inevitable, essentially because 
unimodality can only be defined by reference to the density underlying a population. 

A more delicate situation arises if there is a possibility of smoothing or not smoothing in a bootstrap 
problem. Efron (1982) mentioned and explored the idea of using a smoothed version F of the empirical 
distribution F as a basis for resampling. Efron's comparisons of this idea with the ordinary bootstrap 
were important, but they did not take account of the possibility of varying the amount of smoothing 
when constructing F, and therefore they may have presented the smoothed bootstrap in a slightly unfair 
light. Dr Young and I (Silverman and Young, 1987) have looked into the question of whether smoothing 
is likely to help at all: in technical terms, is there any non-zero value whatever of the smoothing parameter 
such that using F instead of P will give a better answer? 

If, in Hinkley's notation, we regard the property Q as a functional Q(F) of the underlying distribution 
F, our question becomes a more general one about functionals of distributions: is Q(F) ever better than 
Q(F) as an estimator of Q(F)? Superficially, we might imagine that the answer would depend on the 
smoothness of F or perhaps of Q, but the criteria we developed to answer the question show that the 
whole matter is much more subtle and less well understood. For example, if F is a normal distribution 
and F is constructed by standard kernel smoothing, then smoothing will have a deleterious effect on the 
data-based estimation of J x2 dF(x) and of J X4 dF(x), but not on that of f (X4 - 7x2) dF(x). 

One of Efron's standard bootstrap examples was the estimation of the standard error of the 
variance-stabilized sample correlation coefficient of a bivariate distribution. In this context our criterion 
showed that a suitable smoothed bootstrap procedure will give an improved estimate for a wide range 
of possible distributions F. Of course, the question of how much to smooth remains, and this is being 
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investigated by Dr Young, but it is clear from our work that the smoothed bootstrap may well have great 
unrealized potential, especially in the relatively small sample case, and I hope that it will be the subject 
of more research in the future. 

Dr G. Alastair Young (University of Cambridge): I wish to add some further comments on smoothed 
bootstraps and to make a recommendation. 

In the joint work referred to by Professor Silverman, simple theoretical conditions are obtained under 
which some smoothing will be advantageous in bootstrap estimation for linear functionals. Approxima- 
tion ideas are then used, together with computer algebra, to extend such criteria to more complicated 
problems, such as the correlation coefficient example. The results obtained do not, however, provide 
any simple universal prescription for the smoothed bootstrap. The optimal degree of smoothing depends 
both on the particular functional being estimated and the underlying distribution. Further, it is not 
necessarily the case that the smoothed bootstrap should be based on a good estimate of the density itself. 
Investigations on simple problems show, however, that the application of standard density estimation 
methods, such as cross-validatory smoothing, is unlikely .to cause much damage when used in the 
bootstrap context. Such procedures may nevertheless add greatly to the computational cost of the 
bootstrap estimation and it seems better to choose the smoothing with reference to the specific estimation 
problem in question. In the correlation coefficient example it is possible to use computer algebra to 
estimate the mean-squared error of the bootstrap estimator for all values of the smoothing parameter. 
An empirical smoothing procedure then involves data substitution to estimate the error function and 
a straightforward numerical minimization to choose the smoothing for the bootstrap estimation itself. 
For details see Young (1988). 

A procedure related to the smoothed bootstrap is that due to David Kendall, described in Kendall 
and Kendall (1980). The key notion of the Kendall bootstrap is that of perturbing each data point by 
an independent amount drawn from a smoothing distribution, rather than resampling from a density 
estimate. The Kendall idea is most appropriate when the observed data are viewed as a realization of 
an underlying process, rather than as a set of independent identically distributed observations, and has 
so far only been used in bootstrap tests of geometrical and spatial pattern. In such applications, in 
contrast with the difficulties of smoothing Efron's bootstrap, the choice of smoothing for the Kendall 
procedure is simple: the smallest degree of smoothing is applied which ensures simulated data sets 
satisfying the null hypothesis constraint. The method seems much more general than applications would 
suggest and I believe this alternative smoothed bootstrap warrants further research as a means of 
implementing an approximately conditional bootstrap inference. 

Professor H. E. Daniels (Cambridge Statistical Laboratory): Bootstrapping is not my natural habitat, 
but my curiosity was aroused by the fact that the bootstrapping procedure involves resampling from a 
data set which has finite support, whereas the underlying distribution could be, for example, normal. 
When estimating small tail probabilities in such cases, might this not lead to a noticeable bias? Dr 
Alastair Young and I decided to look into the question, starting with data sets from N(y, 1) for which 
X - j is pivotal. Suppose the data set is X1, X2, ..., XN with mean 5N from which are taken bootstrap 
samples x4, x4, ..., x"* with mean x"*. Then P(X - It > a) is estimated by P = P(X -XN> a). When 
averaged over repeated data sets of N to reduce the standard error to a reasonable size when P is small, 
an enormous number of simulations is needed. 

To obtain the results in Table 1, Dr Young took 50000 bootstrap samples from each of 2000 data 
sets, i.e. 10i samples in all! It is therefore useful to derive a saddlepoint approximation for EP(5-*XN > a) 
in the following way. 

For a particular data set the moment-generating function (MGF) of the empirical distribution is 
M(T, X1, ..., XN) = [exp(Tx1) + . . . + exp(TxN)]/N, 

and the MGF for nz = n(* - XN) is 

exp[-N (x1 +.* *+ xN)T Mn: 

Davison and Hinkley use this to obtain a saddlepoint approximation to the bootstrap estima1e of P. 
As we are interested in the bias of the estimate we have to average the MGF over all possible data sets 
before approximating. This can be done by making use of the fact that MM(T, xI, ... X XN) iS the coefficient 
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of An/n! in 
[ AA2 An ~ 

r 1+ - exp(Tx.) + N22! exp(2Txj) + + Nn! exp(nTxj) 

When multiplied by exp[-(n/N)(xl+... +xN)T] this splits into N factors which can be averaged 
independently: then E exp(nz) is the coefficient of An/n! in RN(A, T) where 

R(A, T) = exp[K (r --)T)] 
r=O N'r! N// 

Here K(T) is the cumulant-generating function of the underlying distribution, which in this case can be 
taken to be N(O, 1) with K(T) = 4T2. Then 

n! 1 RN(A, T) dT EP=- =n+ exp(-naT) dA T 

With A = exp 0, R(A, T) = exp [Q(0, T)] it becomes 
n! 1If dT 

E(P)2i 2i JJxp[N(, T)-nO-nzT] dO T 

to which Skovgaard's extension of the Lugannani-Rice approximation can be applied. 
As an example some results for n = 5 and N = 10 are given in Table 1. The bias seems to be least 

for P around 0.01. 

TABLE 1 

z E(P) (SP) E(P) (sim) SE (sim) I- ?(Z) 

0.1004 0.4005 0.4004 0.0007 0.4116 
0.3143 0.2175 0.2186 0.0013 0.2411 
0.5796 0.0804 0.0825 0.0011 0.0975 
1.0029 0.0119 0.0123 0.0004 0.0125 
1.3589 0.0022 0.0021 0.0001 0.0012 

The next distribution to examine is the exponential distribution, using the ratio pivot, which exhibits 
quite different tail behaviours at either end. 

H. Tong (University of Kent at Canterbury): The potential of bootstrap methods for non-linear 
time series analysis is enormous. I shall give a few examples which are based on naive experience at 
Canterbury and I would welcome our experts' guidance. 

Example 1. As a test for multimodality, our experience suggests that Silverman's method may be 
applied to time series data. As an illustration, for the classic Canadian lynx data (logarithmically 
transformed) Table 2 suggests that the data follow a bimodal distribution (cf the histogram in Tong 
(1983), p. 175.) It is interesting to note that the bimodality in our present context is connected with 
different singularities over the phase space of the underlying dynamical system. 

TABLE 2 

No. of modes hcrit p value 

1 0.297 0.03 
2 0.145 0.45 
3 0.087 0.72 
4 0.075 0.67 
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Example 2. Consider a threshold autoregressive model (cf. switching regression) 

Xt + OXt1 + /Xt 1I(Xt_1 r) = et, et N(0, .2), 
where I is the usual indicator function. Suppose that we wish to test Ho: 4 = O. The nuisance parameter 
r is absent under Ho, which invalidates application of classical theory. Although K. S. Chan of Chicago 
and I have shown that the asymptotic null distribution of the obvious likelihood ratio test statistic (Chan 
and Tong, 1988) is given by the first passage distribution of B2/(s - S2), where B3 denotes the Brownian 
bridge on (0, 1), for finite samples, we prefer to supplement our asymptotic results with Monte Carlo 
and bootstrap results. Chan and Tong (1984) represent one possible implementation. Another could be 
based on resampling with replacement of the fitted residuals under Ho. 

Example 3. Bootstrap study of sampling properties of parameter estimates has led us to believe that 
there is frequently a need for non-linear time series models involving exponential terms, e.g. 

Xt = [a + (fi + yXt- l exp(-6X2 1)]Xt_ 1 + et, 
to be reparameterized, such as by 'centring' exp(-5X2 1) to'exp[-_(X2I - A)], A = EX2, to avoid ill 
conditioning. 

Example 4. The bootstrap method is also very useful in giving probability limits of i-step predictions 
based on threshold models. 

Dr P. H. Garthwaite (University of Aberdeen) and Dr S. T. Buckland (Scottish Agricultural Statistics 
Service): Consider the parametric bootstrap, where the form of the population distribution is assumed 
known apart from the value of the parameter 0. We might then use a method such as the percentile t 
or the accelerated bias-corrected percentile method to determine a confidence interval, but in general 
the interval will have bias. If 0 is a scalar, an alternative is to guess one end point of the confidence 
interval for 0, resample once from the distribution this determines and use the result of the resampling 
to update the guess of the end point. An efficient method of searching for the true value of the end point 
in this way is based on the Robbins-Monro process (Robbins and Monro, 1951). 

Suppose that D is the estimate of 0 based on n-sample data and the upper end point of the central 
100(1 - 2a) % confidence interval is sought. Let Um denote the mth estimate (guess) of the end point and 
generate a bootstrap sample of size n under the assumption 0 = Um. From this sample, estimate 0 by Om. Set 

Um+ -JUm cCa/ml Om > 

m Ur + c( 1-a)/m, aM < o 

where c is a 'step length constant'. If Um is currently equal to the upper 100la % point, the expected 
distance we step is [a*c(l - o)/m] - [(1 - x*)ca/m]. This expression is zero for a* = a, positive when 
a* > a and negative for a* < , so every step reduces the expected distance from the solution. An 
independent search is carried out for the lower limit. Implementation of the method is considered by 
Garthwaite and Buckland (1988). 

The Robbins-Monro process has two useful properties. Firstly, if we know the optimum value of the 
step length constant, the variance of Ur+, is equal to the Cramer-Rao lower bound to the variance of 
estimates of the upper limit (Wetherill, 1975) and, secondly, the process yields an asymptotically exact 
method under general conditions as bootstrap replications tend to infinity irrespective of the sample 
size. The second property is important because the number of bootstrap replications b is limited only 
by computing power available, whereas we often have little control over the sample size. The double 
bootstrap described by Hinkley requires b2 replications to achieve this; the above method requires just 
2b (b for each limit). The method has similarities to the iterative methods described by DiCiccio and 
Romano but has the advantage of known convergence properties. 

In the presence of nuisance parameters, a 'conditional' interval may be obtained by carrying out the 
above search on the parameter of interest, while conditioning on the point estimates of nuisance 
parameters. With more than one parameter of interest, this might be applied to each parameter in turn, 
treating the others as nuisance parameters. The method may also prove useful when applied in conjunction 
with the methods described by DiCiccio and Romano. 

The following contributions were received in writing after the meeting. 

Professor R. Beran (University of California at Berkeley): I would like to add to Professor Hinkley's 
wide ranging review of bootstrap methods. 
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When constructing a bootstrap test, as in Section 5, the goal of correct asymptotic rejection probability 
under the null hypothesis usually imposes two requirements on the fitted model lH: 

(a) the possible values of PH should be distributions allowed by the null hypothesis; 
(b) under the null hypothesis, FH should be a consistent estimate of the actual distribution. 

The minimum distance estimate FH described by Hinkley has these properties very generally in the 
independent identically distributed case. Particularly in parametric models, much simpler consistent 
estimates FH are often also available. 

Bootstrap tests neatly resolve several long-standing, analytically intractable problems in addition to 
those mentioned in Section 5, including finding asymptotically correct critical values for minimum 
distance test statistics, for test statistics which involve estimated parameters and for tests in multivariate 
analysis when normality is not assumed (Beran, 1986; Beran and Srivastava, 1985). When the limiting 
null distribution of the test statistic does not depend on unknown parameters, a bootstrap test is usually 
second order correct. For example, a parametric bootstrap version of the likelihood ratio test 
automatically accomplishes (to second order) the Bartlett adjustment to the chi-squared asymptotics. 
Similarly, Welch's approximate solution to the Behrens-Fisher problem is achieved by the parametric 
bootstrap critical vaue for that test statistic (Beran, 1988). 

Outside the statistical literature, bootstrap methods have a prehistory. For example, Lampton et al. 
(1976) describe bootstrap-like simulations in a complex statistical problem arising in X-ray astronomy. 
Professional statisticians have greatly clarified the logical and mathematical bases for bootstrapping, 
have developed many new bootstrap methods and have reached a sound understanding of the role of 
bootstrap methods in analysing data. 

I would also like to add a few remarks to Professor DiCiccio and Professor Romano's Sections 3 and 4. 
In thinking about bootstrap confidence sets, it is useful to distinguish between two cases: case I, where 

the limit law J(F) of the root does not depend on the unknown distribution F, and case II, where it 
does. In case I, the bootstrap confidence set Bn is typically second order correct; it is asymptotically 
equivalent to the confidence set which refers the root to the estimate of the (1 - a)th quantile obtained 
from a two-term asymptotic expansion for Jn(F). For example, a parametric bootstrap version of a 
likelihood ratio confidence set automatically achieves, up to second order, the Bartlett adjustment to 
the chi-squared asymptotics (cf. Cox (1987) with Beran (1988)). Case I also includes Studentized roots 
whose limit laws are standard normal or folded-over standard normal (e.g. the Behrens-Fisher problem). 

In contrast, in case II the bootstrap confidence set Bn is usually only first order correct; it is 
asymptotically equivalent to the confidence set which refers the root to the estimated (1 - a)th quantile 
of the limit law J(F), because using additional terms from an estimated expansion for Jn(F) to adjust 
the critical value does not affect order of coverage probability error in case II. A striking instance of 
this phenomenon, in a situation where the limit law is not normal, occurs in the analysis of confidence 
cones by Ducharme et al. (1985). 

Prepivoting transforms a case II root into a preferable case I root, because the limit law of the new 
root Rn1 is uniform on (0, 1). Prepivoting a case I root is beneficial as well, because the distribution of 
Rn1 then also depends less strongly on F. More precisely, any dependence on F is pushed into higher 
order terms of the expansion for the distribution of Rn1. 

Dr Peter Hall (Australian National University, Canberra): The statistical community will be most 
grateful for the careful and thorough job which Hinkley and DiCiccio and Romano have done to 
consolidate our knowledge of the bootstrap. The last few years have led us to a good appreciation of 
theory for the bootstrap, and these two papers do much to put that work into perspective. 

While we now have a good understanding of the bootstrap, our knowledge of the overall problem 
of nonparametric confidence interval construction is still very rudimentary. To indicate some of the 
avenues up which statisticians have scarcely glanced, let us pose a theoretical question whose solution 
has obvious practical implications. For simplicity I shall assume that the parameter of interest is a 
univariate mean, and that a major attribute of the confidence interval is coverage accuracy. A modified 
version of my problem admits interval length as a major issue, and that leads to consideration of 
nonparametric likelihood-based intervals. 

Assume that the underlying density f vanishes outside a given finite interval (a, b), so that all moments 
exist. Given a random n sample from this distribution we wish to construct a nonparametric, cx-level, 
two-sided confidence interval I [c, d] for the unknown mean 4Uf. How accurately can we construct 
the interval? That is, how close to a can the coverage probability be? 
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This sort of question is perhaps best posed in a minimax setting. To remove pathological intervals 
from consideration we ask that the length of I be of order n -1/22 + for each e > 0. Therefore, select a class 
C of fs supported on (a, b), insist that 

inf Pf( c<- n 1/2)+ 1 for all e >0 (1) 
feC 

and ask how small we can make 
sJ(C) inf* sup I oc-Pf(,Uf e I)I, (2) 

feC 

where inf* denotes the infimum over all nonparametric constructions of I with given nominal level a. 
Presumably C is determined by a smoothness condition on its elements, and the convergence rate of 

s.(C) to zero depends on that condition. It is relatively easy to derive upper bounds to sn(Q for given 
smoothness classes, but more difficult to obtain lower bounds. The type of smoothness assumption 
imposed appears linked to the smoothness condition needed to assert existence of an Edgeworth 
expansion. Of course, it is of interest to know whether taking I to be a bootstrap-related interval confers 
any optimality properties of the type suggested by this problem. A more detailed analysis may require 
conditions (1) or (2) to be modified. 

Scott Koslow and David W. Stewart (University of Southern California, Los Angeles): Both papers 
raise intriguing points and suggest a variety of directions for future research. We discuss only one of 
those directions: conditional bootstrap methods. 

As we have been engaged in this area for some time, we believe that the conditional bootstrap offers 
one potential solution to problems involving parameter estimation of observations arising from mixed 
distributions. This may occur when longitudinal data are collected at the individual level. Here, it may 
be unreasonable to assume that parameters estimated from an aggregation of the observations are 
consistent with parameters obtained at the individual level. If segments of individuals exist, it also may 
be unreasonable to assume that all the observations arise from the same underlying distribution. An 
example of such a situation involves scanner panel data that are now routinely collected in many retail 
outlets. 

A conditional bootstrap approach to estimation may be applied in scanner data since the distribution 
of one parameter of interest, say the number of runs of identical purchases, is conditional, in part, on 
the total number of different brands purchased in a given time. Hinkley suggests that the direct 
determination of such conditional distributions via the bootstrap is not possible without an explicit 
model or a knowledge of the parameter on which conditioning occurs. While this is strictly true, we 
have found an alternative approach to this problem. Our work employs the bootstrap to determine a 
null conditional di"stribution, i.e. the chance distribution that would be expected given known 
characteristics of the data. Such a null distribution then allows us to ascertain whether the number of 
runs is significantly different from what might be expected by chance given that the individual has 
purchased n brands. 

Although we cite but one example, the conditional null distribution can be computed whenever the 
distribution of one parameter may be constrained by the distribution of another observable characteristic 
of the data. While the computation of a null conditional distribution does not directly solve the problem 
of estimating a conditional distribution, it does offer an opportunity to test whether such conditionality 
should be of concern. 

Professor Robert J. Tibshirani (University of Toronto): The power of the bootstrap method stems 
from the fact that (in Hinkley's notation) 

(a) R,(F, F) can be arbitrarily complicated and hence not amenable to theoretical approximations, 
(b) it is automatic and 
(c) it is exact. 

It is automatic because, having chosen P and R,(F, F), no special calculations are needed for specific 
problems, as in say an Edgeworth expansion. It is exact because, given an infinite number of Monte 
Carlo samples, we can compute the distribution of Rt(F, F) exactly. 

For this reason, I was somewhat disappointed in Professor Hinkley's emphasis on methods for efficient 
computation and theoretical approximation. In particular, balanced sampling would seem to require 
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too much special effort in setting up the simulation (beyond first-order balance) and an empirical 
saddlepoint introduces an extra fixed source of error in the computation, namely the difference between 
the true distribution of R,(F, F) and its saddlepoint approximation based on F. Furthermore, Feuerverger 
(1988) has shown that the saddlepoint approximation of V/n(X - pi) has an error of order Op(n 1/2), no 
better than a normal approximation. The same holds for the bootstrap distribution of ln(X - ) 
(Hartigan, 1986), but we can achieve an error of Op(n- 1) by bootstrapping a Studentized pivot. 

The 'bootstrap partial likelihood' problem (Hinkley's Section 8) is extremely interesting. Here is 
another (simple-minded) approach. Given some second-order correct confidence procedure with a end 
point 0[a], define -2 log-lik(O[a]) to be the so-called 'confidence distribution' for 0. In detail, 
-2 log-lik(O[cx]) =-2 log-lik[O([1 - CZ])] =X12(0.5) - X2(1 _- C), for all ca E [0, 0. 5], X2(t) being the tth 
percentile of the X2 distribution. This is similar to Hall's method, but simpler. If 0[a] comes from the 
BCa procedure, this can be justified as being equivalent to the likelihood for the variance-stabilized 
parameter h(O) based on h(O). I tried this on the problem of Section 8 and the resulting likelihood was 
very close to those in Hinkley's Fig. 2. Any comments on this suggestion would be welcomed. 

Professor DiCiccio and Professor Romano give a detailed but very clear tour through the complicated 
jungle of bootstrap confidence intervals. I find the new procedure of Section 2.3 intriguing in its notational 
compactness. While this area is very fruitful for theoreticians, we must not lose sight of the practical 
issues, specifically 

(a) bootstrap confidence intervals are primarily useful for nonparametric problems: parametric 
problems, for which exact and likelihood intervals are available, act as a test-bed and 

(b) while we are all guilty of bootstrapping the mean in theoretical studies, it would be more prudent 
to bootstrap less sensitive functionals (like medians) in real problems (see Tibshirani and Wasserman 
(1987) for a discussion of this). 

Finally, a question for any of the authors: is there evidence that nonparametric bootstrap methods 
are more effective than flexible parametric modelling, when both are applicable? 

Professor D. M. Titterington (University of Glasgow): I should like to make some comments, mainly 
related to Professor Hinkley's paper. 

First, I have a couple of brief remarks. 
(a) In Section 3 it is remarked that the discreteness of F renders difficult the theoretical work on the 

saddlepoint method. Would the use of a smoothed version of F lead to any meaningful easing of 
this difficulty? 

(b) The dog-leg regression problem of Section 6 generates a likelihood ratio test statistic with 
non-standard null distribution. An equivalent problem arises in testing for the number of 
components in a mixture, for which the bootstrap procedure is described by McLachlan (1987). 
I would have been interested to see how far the empirical distribution of TH really is from that 
of a X2 distribution. In Figs 1 and 2 of McLachlan (1987) corresponding empirical distributions 
appear to be, intriguingly, not too far away from a x2 shape. 

My other comments concern the problem of a non-pure significance test. In the pure case, Monte 
Carlo tests can sometimes be derived that have exact significance levels associated with them. In the 
non-pure case (testing a parametric distributional hypothesis with unspecified values for the parameters, 
for instance), corresponding Monte Carlo tests are not so 'exact'. How close they are to being exact 
seems to be an open problem. 

I have recently been looking at another aproach to this which uses a two-sample test statistic to test 
such a distributional hypothesis. In the terminology of Section 5, suppose that the null hypothesis is H 
and that FH is obtained from the data. Two independent bootstrap samples are generated, one (possibly 
parametric) from FH and one from P. Suppose that these samples are denoted by FH and F* respectively. 
A two-sample test statistic (of the null hypothesis that two distributions are identical) is then evaluated 
with F* and F* as arguments and is referred to the relevant, standard rejection region. Although the 
theory of the method is not yet established, the procedure seems to work well in the one or two problems 
that I have looked at so far. An important point is that, if the two-sample test is one based on ranks or 
runs, it is crucial to generate F* as a smoothed bootstrap sample, to avoid ties. 

Mr R. J. Verrall and Professor H. P. Wynn (City University, London): We should like to expand a 
little on the method of Ogbonmwan and Wynn (1988) referred to by Professor Hinkley. The basic 
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technique is to resample from a set S(O) of y* vectors generated from yo = go(x) where x = (xl, . . ., x") is 
the data set. For each y* we compute a statistic T(y*). The set of all T(y*) has an empirical CDF 
FT(t I 0) which depends on 0. By simulating for a range of 0 values we may obtain a cumulative likelihood 
in the usual way. We have suggested using a smoothed version of the density !T(t I 0). 

For some models a different version may be derived by reconstructing alternative samples for the 
original data x. If y* is a member of S(0) we may construct x* = g- i(y*). The tilde here denotes the fact 
that g- l may not be the precise inverse of g. This method is explained in more detail in Ogbonmwan 
et al. (1987) and is applied to time series where it is a natural procedure for autoregressive (AR(p)) processes. 

There is a close connection with nonparametric methods. Indeed the proper rerandomization likelihood 
is 

- prob(t(y*) = t(yo) I 0) B 

where B = card(S(0)). Nonparametric confidence regions are based on 

Po = 
I 

prob(t(y*) < t(yO) I 0), B 

the cumulative likelihood, which is then essentially the same as FT(t l 0). The outstanding problem is to 
invert statements like Po > 1 - a to make statements about 0 which depend only on 0 and the 
randomization procedure which generates S(0). The moral from this, in elementary terms, is to bootstrap 
the true residuals using stored values of 0 rather than estimated residuals. If we do this the thin dividing 
line between nonparametrics and resampling is breached. 

Professor C. F. J. Wu (University of Waterloo, Canada, and University of Wisconsin, USA): My 
comments are directed to four issues. 

Bootstrap for complex problems 
Despite its simplicity and versatility the bootstrap is not supported in complex situations by current 

theoretical advances. The bootstrap is readily applicable only if a complex problem can be described 
by a model driven by an exchangeable stochastic component. Otherwise the method is not automatic 
and cannot be used routinely. Modification of the independent identically distributed (IID) bootstrap by 
taking into account the nature of the problem's complexity seems necessary. Hinkley recognizes this in 
regression and suggests using stratification or local smoothing to obtain near exchangeability within 
stratum, requiring the assumption that the covariates {xi} are reasonably dense. Otherwise the set of 
D* close to D is too small for inference. It may not even give good variance estimators. In contrast a 
weighted jackknife (Wu, 1986) gives consistent variance estimators for general heteroscedastic regression 
including GLIM. Can the delete-d version of this jackknife be used for interval estimation? Another 
example is complex surveys, in which the independence assumption is often violated. For simple random 
sampling without replacement, increasing the sample size to n/(1 - f) gives consistent variance estimation 
but not O(n- 1/2) correction in the distribution approximation, since the bootstrap does not mimic 
without replacement sampling. Rao and Wu (1988) point out some serious problems with the current 
methods of adjusting sample sizes for more complex sampling plans and propose alternative procedures 
which are valid for variance estimation in general survey designs. 

Bootstrap versus jackknife for variance estimation 
For the sample median the delete-i jackknife variance estimator is inconsistent because it resamples 

from too few values. By using a delete-d jackknife with d depending on a smoothness measure of 0 
(Shao and Wu, 1987), the support of resampled values is broadened to ensure consistency. Recently Shi 
(1987) showed that the delete-d jackknife variance estimator with d = An, 0 < A < 1, is strongly consistent 
under no assumption on the moments or tails of F. The delete-d jackknife does not resample from very 
extreme quantiles whereas the bootstrap does so with non-negligible probability. This explains the 
inconsistency of the bootstrap variance estimator for heavy-tailed distributions (Ghosh et al., 1984). 

Non-uniformity in confidence estimation and testing 
Non-uniformity over F of confidence intervals is shown by Bahadur and Savage (1956). For bootstrap 

intervals Loh (1988) recognizes the same problem and proposes a calibration method. Similarly the 
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bootstrap test P value discussed by Hinkley has this problem. His PH value evaluated at H may be 
too liberal. A corrective measure is to take the supremum of PH over a neighbourhood of FH, which 
can be chosen using the frequentist approach (Loh, 1985) or the Bayesian approach. 

Confidence intervals: asymptotic theory and empirical evidence 
Most theoretical advances have been made in this area, primarily for simple models. Results on 

iterative bootstrap refinements are too good to be true in finite samples. However, for fixed n, there is 
a limit on the number of iterations yielding improvement. A more sensible asymptotic framework is to 
let both n -+ oo and j -+ oo with the latter at a slower rate depending on n. (Loh (1988) has recently 
refined his calibration method to avoid nested bootstrap calculations.) There is a gap between asymptotic 
theory and empirical results. An objective and extensive simulation study is called for. 

The authors replied later, in writing, as follows. 

Professor David Hinkley: In principle, bootstrap methods enrich our abilities to perform increasingly 
complex data analyses. The extent to which this becomes reliable practice depends on the kind of critical 
discussion which has taken place here, which helps to temper the often extravagant claims to which 
Dr Kent and Dr Davison obliquely refer. I hope that in the near future the Royal Statistical 
Society will arrange a corresponding discussion of bootstrap applications, wherein lies the real test. For 
the moment, however, we remain with the many interesting theoretical points raised here. 

Although the bootstrap is usually applied by resampling from the discrete data distribution, it would 
often seem more natural to sample from a smooth estimate. Professor Silverman and Dr Young correctly 
point out that the utility of smoothing will depend on the type of statistic being considered. Further 
results in this direction have been obtained by Hall et al. (1988), their main application being quantile 
estimation. It would be interesting to see Professor Daniels's ingenious analysis extended to consideration 
of smooth bootstraps. 

One illustration of the need to consider smoothing is the following example due to Taylor and 
Thompson (1986). Points x are vectors representing random deviations of a missile from a point target, 
the quantity of operational interest being Pr( I X I < r) = i. The usual bootstrap will give the absurd 
upper confidence limit zero for X if none of the data points are within r units of the target. There are 
various ways of introducing smoothness to deal with this difficulty, one being to smooth the data 
distribution. 

Concern about computational efficiency is surely not quite the waste of time that Professor Tibshirani 
seems to suggest, although, if his point is that we should carefully weigh statistical and numerical errors, 
then I agree wholeheartedly. The theoretical improvements offered by first-order balance can be effected 
by careful algorithmic development, as shown by Gleason (1988). The importance sampling techniques 
explored by Johns (1986), and the similar technique mentioned by Dr Davison, can be genuine time 
savers, although the savings are not quite as spectacular as Dr Davison's numbers suggest when actual 
computation time is taken into account. Importance sampling can be easily adapted to reduce the heavy 
computational burden of the double bootstrap (Hinkley and Shi, 1988). One would hope that some of 
the special Monte Carlo techniques developed by Professor Adrian Smith and his co-workers for high 
dimensional likelihood integration will have useful analogues in resampling analysis. 

Incidentally, Professor Tibshirani's remarks about saddlepoint approximation confuse numerical and 
statistical error, and in no way represent a case for using one minute of computer time when the same 
answer can be obtained in one second. The trick is to make the same numerical technique work when 
the statistical error is also controlled, and to do this requires a non-trivial generalization of the existing 
saddlepoint approximation-I hope that Professor Daniels will rise to this challenge! It would be 
interesting to know how much of the discrepancy calculated by Professor Daniels is due to discreteness 
and how much to lack of pivotality: the bootstrap refinements such as those described by DiCiccio and 
Romano, as well as the double-bootstrap methods, deal with the latter. 

The double bootstrap arises quite naturally if we are considering use of the bootstrap to estimate the 
average statistical error of a bootstrap procedure. This simple but elegant concept, described to me by 
Dr Hall, should appeal to Dr Davison. A very simple bootstrap confidence limit method can be 
obtained by bootstrapping Efron's percentile method. For an upper 1 - a confidence limit we first 
determine that value y for which 

Pr(Pr(T** < T y*)KyIF)- 1- 
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and then take as the upper limit the y quantile of the empirical distribution of T*. Simple test cases for 
this method are the parametric bootstrap analyses for normal and exponential means. The theory and 
numerical implementation of the procedure will be described elsewhere. 

The double-bootstrap approach can also be used to offset the potential difficulty with bootstrap 
significance tests, correctly noted by Professor Wu. 

Dr Kent's doubts about the double-bootstrap plot are very perceptive. In general it would be 
useful to plot percentile or variance estimates obtained from T** against any potentially relevant 
characteristic, such as sample standard deviation s* when dealing with T = X or kurtosis when dealing 
with any second moment. In some cases, hidden effects can be diagnosed by noting excess variability in 
a plot such as Fig. 1, as outlined by Chapman and Hinkley (1986). 

It will be interesting to see how well the various ideas for resampling significance tests work. I am 
indebted to Dr Young for reminding us about data corruption. Professor Titterington's suggestion is 
an interesting one, but it seems to contain a basic flaw. His test will tend to give a significant result simply 
because FH # F, i.e. the null hypothesis of his test is false even when the null hypothesis H of interest 
is true. To take a simple example, consider a parametric bootstrap two-sided test for a single mean in 
which F is N(X, s2) and FH is N(O, s2 + X2), corresponding to the hypothesis that the population mean 
is zero. Suppose that FH and F* are compared through their averages alone, using the usual two-sided 
two-sample t test. If the nominal level of this latter test is 5 %, then its overall error rate would be close 
to 10 %. The conditional rejection rate ranges from 5 % to 40 % for values of x and s2 which would 
not lead to rejection in the direct classical one-sample t test. 

The mention of empirical likelihood in Section 8 was perhaps too brief, and regrettably there was no 
discussion of this. Owen (1988a) has since extended the earlier work to vector parameters, and DiCiccio 
et al. (1988) have further pursued the extent to which empirical likelihood behaves like a classical 
likelihood function. 

I was intrigued by Professor Wynn's outline of an alternative resampling likelihood. The randomization 
approach is necessarily of much more restricted legitimate applicability than the bootstrap. When 
randomization is valid, the implicit conditioning (Young, 1986) is helpful. An interesting non-trivial 
application of constrained randomization is described by Efron (1988). 

Professor Tong is far too modest about his excellent start on applying bootstrap methods to non-linear 
time series. He might consider use of the double-bootstrap methods to offset the clear lack of pivots in 
several such problems, e.g. his example 3. The same advice is relevant in non-linear regression analysis, 
of course. 

Nothing was said in the paper about jackknife methods, so I am grateful to Professor Wu for mentioning 
some of the work in this area. The key feature of the multiple-deletion jackknife was realized by Brillinger 
(1964), and there is some related material in Hinkley (1977). What the jackknife cannot give us is simple 
distribution estimates with second-order accuracy. It is a pity that Professor Wu does not give a suggestion 
about the choice of deletion set size d. The recent work by Graham et al. (1988) on balanced bootstraps 
suggests that n balanced subsamples with d =n may work well, the particular subsample design having 
elements in common with Wu's implementation of the jackknife. 

The interesting applications mentioned by several authors suggest the considerable potential of 
bootstrap methods in testing, which may ultimately prove more important to applied statisticians than 
bootstrap confidence limit methods are. 

The final question raised by Professor Tibshirani is important, with many facets. Perhaps the only 
satisfactory answer will come from discussions of bootstrap applications. I think that a fully integrated 
Bayesian aproach will always be best when all the relevant components are available. The kinds of 
applications which bootstrappers have in mind are different. 

Professor Thomas J. DiCiccio and Professor Joseph P. Romano: It is clear from the contributed 
discussions that the bootstrap is a thriving area of theoretical research and practical application. 

Dr Kent questions the possibility of defining second-order accuracy for nonparametric confidence 
intervals. Perhaps the following development of the bootstrap t clarifies the definition. Let x, = (X1, ... I 

X.) be a sample of size n from an unknown distribution F on some arbitrary sample space. 
The problem is to construct a confidence interval for a functional 0= 0(F) based on some estimator 
3. Let a. denote an estimator of the variance of n1129 and set 

J,(x, F) = PF{n112[O -a0(F)]/&n < x}. 
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Also, let 

Jn `(cx, F) = inf{x: J(x, F) > a} 
be an oa quantile of the distribution Jn(, F). Then, an exact upper 1 - a confidence limit for 0 is 

(1 -a) = - n- 1/2 J- '(a, F), (3) 

i.e. PF{0(F) < EX(1 - a)} > 1 - a and is exactly 1 - a provided that J,(x, F) is continuous and strictly 
increasing in x. 

In general, we say that a proposed upper 1 - a confidence limit, Ou (or Ou(1 - a) to show the dependence 
on a) is second order correct if 

u- X) - OEX(1X- cx) = Op(n- 312). (4) 
It typically then follows that 

PF{0(F) < OU} = 1-a + O(n-'). (5) 
The 'exact' upper 1 - a confidence limit OEX(1 -) given by equation (3) is usually unknown because 

F is unknown. The bootstrap t method, introduced by Efron (1981), estimates J,(x, F) by J,(x, F.) and 
then estimates the a quantile of J,(x, F) by the corresponding a quantile of J,(x, F.), i.e. the upper 1 - a 
bootstrap t confidence limit for 0(F) is defined to be 

BT(1 - a) = O-n - n &Jn '(a, Fn) (6) 
Hall (1988) shows in the 'smooth function' model that OBT iS second order accurate in the sense that 
equations (4) and (5) hold for the choice OU = OBT. 

Dr Kent considers the parametric model where observations are normally distributed with unknown 
mean 0 and unknown variance (v + ao)2. If a is unknown, the unknown mean and variance 
parameters vary freely and the exact solution is the t interval. The bootstrap t solution to nonparametric 
problems also removes the effect of not knowing the variance. As Professor Beran points out, the 
bootstrap t is second order accurate because the 'root' (3 - 0)/1& is typically asymptotically standard 
normal so that its asymptotic distribution does not depend on any unknown parameters. In the correlation 
example discussed by Dr Kent, the asymptotic distribution depends on unknown parameters, and so 
one way to improve on the construction of the interval is to apply the bootstrap t with an appropriate 
estimate of standard error. Alternatively, we may apply Professor Beran's prepivoting operation. 

As Dr Kent observes, the accuracy of bootstrap methods depends on the behaviour of the 
statistic or 'root' whose distribution is being estimated. The less dependent the distribution is on F (in 
some 'neighbourhood' of the true F), the more reliable is the bootstrap based on substitution of F by 
the empirical distribution P.. Certain methods rely explicitly or implicitly on reducing a nonparametric 
problem to a parametric problem by considering the behaviour of the statistic or root under a 
one-dimensional family of distributions containing F.. Such methods include nonparametric tilting, the 
BCa method and Owen's (1988b) empirical likelihood. If such reductions are achieved through 'least 
favourable' families, then corrections to more simple-minded procedures such as the percentile method 
are non-trivial and second-order accuracy is achievable; see DiCiccio and Romano (1988a, b). However, 
for one-sided confidence limits, the empirical likelihood method is not in general second order accurate, 
though its construction relies on a least favourable family generated by maximizing out nuisance 
parameters; see DiCiccio et al. (1988). However, bootstrap calibration of the empirical likelihood method 
does produce second-order accurate intervals. 

The issue of smoothing the empirical distribution before resampling, raised by Professor Silverman 
and Dr Young, deserves further investigation. The proper amount of smoothing is a delicate 
question, as illustrated in example 3.4. In this example and others (such as constructing a confidence 
interval for the mode), the naive amount of smoothing results in bootstrap confidence intervals that do 
not even have the correct level asymptotically. In Silverman's (1981) interesting approach to testing for 
unimodality, some theoretical justification is needed to apply his bootstrap procedure safely. 

Silverman and Young (1987) attempt a more general approach to the problem of smoothing and 
obtain an interesting result for linear functionals. Though many statistical functionals are approximately 
linear, it seems that the proper amount of smoothing cannot be simply determined on the basis of such 
an approximation, since smoothing will typically have a secondary effect on the quality of the resulting 
confidence procedure because second-order properties of the functional reflected in the error of such a 
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linear approximation play a role. Improving the second-order asymptotic properties of any procedure 
can be extremely beneficial for finite sample sizes, so that the question of how much smoothing is 
worthwhile needs to be addressed. Perhaps more important, for smooth functionals such as the correlation 
where the bootstrap t is second order accurate, the benefits of smoothing need to be made more explicit. 
For example, it is doubtful that the order of error, typically n- I for the bootstrap t with no smoothing, 
can be improved with smoothing. Substantial gains, however, are possible when dealing with less smooth 
functionals of a distribution, especially when local properties of the distribution play a prominent role. 
As a start, in Hall et al. (1988), the bootstrap estimator of the variance of a quantile estimator has a 
convergence rate of n-4ll if no smoothing is done, but can be improved to n-"2 +e for any & >0, if 
smoothing is applied, and the precise optimal amount of smoothing can be made explicit. 

Professor Titterington addresses the problem of the accuracy of bootstrap tests when parameters need 
to be estimated under the null hypothesis to specify the appropriate resampling mechanism. Some 
asymptotic results have been obtained by Beran (1986, 1988) and Romano (1988a). For example, it has 
been shown that bootstrap goodness-of-fit tests and minimum distance tests are asymptotically valid. 
The power of resampling methods is quite evident in such problems since the asymptotic distributions 
of such minimum distance test statistics often do not possess a known analytical form. Even if they did, 
the asymptotic distribution would depend on nuisance parameters as well; also see Romano (1988b). 

We thank Professor Wu for his remarks, particularly for his update on jackknife techniques. He 
reminds us of the need to extend bootstrap theory to more complex and interesting situations, such as 
those discussed by Professor Tong. On the issue of uniformity, not much is known, and the challenging 
problem raised by Dr Hall is most relevant. Sometimes, the bootstrap does behave well uniformly, 
and corrections to the bootstrap may be unnecessary. For example, reconsider example 3.2, the problem 
of constructing a confidence band for a distribution function F on the line. For ? > 0, let F(s) be the 
class of distributions on the line with no atoms having probability greater than I - e Then, for example, 
F(e) includes all continuous distributions and those discrete distributions that are essentially not 
degenerate so that an outcome from F cannot be predicted correctly with probability greater than I -s. 
Let g (1 - a, F) be the actual coverage probability of the nominal I - a bootstrap confidence set based 
on a sample of size n from F. Then, for any e > 0, 

SUP{ I n(l- a, F) - (I1- o) : F F(e)j }0 
as n-* oo. The result is proved in Romano (1987). A variation of example 3.5 shows this result cannot 
be extended to ? = 0. 

Dr Garthwaite and Dr Buckland present an interesting simulation approach to the construction of 
confidence limits, based on the Robbins-Monro process. We look forward to comparing it with the 
method given by equation (2.4). Our proposed method, now called the automatic percentile method, 
has been extended to parametric problems with nuisance parameters and nonparametric problems and 
is second order accurate in general; see DiCiccio and Romano (1988a, b). Garthwaite and Buckland's 
approach to extending their method relies on conditioning on estimates of nuisance parameters. We do 
not believe that this will result in second-order accuracy, unless the parameters are parameterized 
orthogonally. 

Professor Tibshirani claims the bootstrap to be exact. A clarification of this point is necessary. In our 
notation, the thrust of the bootstrap method of forming confidence intervals is to approximate the 
distribution of a statistic or root, Jn(F), by J"(&) for some estimate & of F. Usually, Jn(G) cannot be 
calculated exactly, but can be approximated by Monte Carlo methods. Moreover, it can be approximated 
to any desired degree of accuracy given sufficient Monte Carlo repetitions. In this sense, Professor 
Tibshirani describes the bootstrap to be exact. Unfortunately, the error in approximating Jn(F) by Jn(D) 
is the main component of error in the bootstrap method, unless the initial choice of root is a pivot. Hence, it 
should be understood that the bootstrap method does not in general yield exact inference, though we 
can often be satisfied with second-order correctness. 

Professor Tibshirani's final question is intriguing. Though the question is vague in its present form, 
we do not believe the bootstrap to be the only solution to any inferential problem. If, indeed, a flexible 
parametric approach is sensible, one would hopefully compare results. 

A very nice presentation of bootstrap iteration is given in the recent work of Hall and Martin (1988). 
The important problem of deciding when to stop iterating, as raised by Professor Davison, has yet to 
be properly addressed. An advantage of being able to correct a confidence set by a bootstrap calib,ration 
method is that we can simultaneously estimate the coverage error of the initial procedure; see, for 
example, section 3.3 of Beran (1988). The importance of efficient algorithms to implement bootstrap 
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procedures is more clear with iterative bootstrap methods, and the contributions by Professor Davison 
and of Professor Daniels may be helpful. Also, see Efron (1988). 

Professor Davison has raised the issue of conditioning. In certain parametric contexts, the application 
of simulation methods to likelihood ratio statistics, as mentioned by Professor Beran, may take relevant 
sets into account. Cox (1980) and McCullagh (1984) have shown that these statistics can in certain cases 
account for natural ancillaries to second order. However, in nonparametric situations, conditioning is 
less clearly understood, and this important topic deserves further attention. We await with interest a 
fuller report of the approach taken by Professor Koslow and Professor Stewart. 
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