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Summary. Birch reported an apparent ‘statistical asymmetry of the Universe’. 
The authors here develop ‘indirectional analysis’ as a technique for investi- 
gating statistical effects of this kind and conclude that the reported effect 
(whatever may be its origin) is strongly supported by the observations. The 
estimated pole of the asymmetry is at RA 13h 30m, Dec. —37°. The 
angular error in its estimation is unlikely to exceed 20—30°. 

1 Introduction 

Birch (1982) examined the position angles of elongation and polarization of 137 high 
luminosity classical double radio sources and reported a surprising topographic variation 
in the angular difference between the two position angles. He remarked that this could have 
an explanation on the cosmic scale and might even be an indication that ‘the Universe is 
rotating’. The statistical significance of the Birch effect was queried by Phinney & Webster 
(1983), who moreover remarked that the effect, if it exists, might be an artefact associated 
with an error in the correction for galactic Faraday rotation. They invited us to examine the 
evidence for the effect, suggesting that we replace the first 45 measures in Birch’s table 1 
(PB Sample from 3CR) by more recent measures on 42 similar objects by Conway et al. 
(1983). This we have done, the number of objects in the total sample being now TV = 134. 

We find the effect discovered by Birch to be supported to a high level of significance. We 
have nothing here to add to the debate concerning the interpretation of the effect, but feel 
that the statistical techniques used, which have some novel features, may be of interest to 
astronomers as well as statisticians and are applicable to other similar studies. 

2 Indirectional statistics 

We are concerned here with a problem in a novel field which might be called indirectional 

statistics. Directional statistics, now a much studied subject, began with von Mises (1918) 
who introduced the probability law 

exp(K cos0) 
————de (—7T < 0 « Tr), (1) 

2ttI0(k) 

*G. A. Young was supported during the course of this work by a SERC research studentship and by a 
Benefactors’ research studentship at St John’s College, Cambridge. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

4M
N

RA
S.

20
7.
 .

63
7K

 

638 D. G. Kendall and G. A. Young 

which bears his name, as the simplest non-uniform distribution for the direction from 

the centre of a circle S1 to a point labelled Q on its circumference. [Here In{K) denotes 
the modified Bessel function of the first kind and of the nth order.] Its importance was 
more clearly realized when Fisher (1953) introduced the corresponding probability law 

exp (k cos i//) 
^ . x-v--—sm\pd\¡;d(l) (2) 
(47r/ic)smh/c 

as the simplest non-uniform distribution for the direction from the centre of a sphere S2 

to a point labelled (\¡j, 0) on its surface, 0 being the polar angle. The present problem 
differs from those considered by von Mises and Fisher in being partly projective in 
character; the position angle of an axis of plane symmetry is only defined up to multiples 
of 7T (rather than Itt). This is why we choose to speak here of an indirection. The so-called 
elongation of the double radio source has this character, and so has the polarization. Thus 
the discrepancy angle A studied by Birch is actually the acute angle embraced by these 
two indirections in the tangent plane to the celestial sphere. The unit vector p locating 
the line-of-sight to the object is a direction in the ordinary sense. Birch counts A as 
positive if the rotation from the geometric axis to the nearest arm of the polarization axis 
is (say) clockwise about the line-of-sight and negative otherwise. Plainly A lies between 
-tt/2 and +7t/2 and furthermore these two extremes are to be identified. In fact A is also 
an indirection and when so measuring it we are making use of the familiar ‘halving’ map 
which converts the real projective space RP1 into S1. 

An adaptation of the von Mises law, 

exp (k cos 2 A) 
 — dA (-tt/2 < A < tt/2), (3) 

tt/oOO 

gives us a useful way of describing a non-uniform indirectional distribution symmetrical 
about A = 0. To accommodate asymmetries of the kind in question here we add a multiple 
of sin2A to the exponent. If the asymmetry is to be controlled by a topographic 
regression, then to a first approximation it will be appropriate to replace the exponent 
at (3) by 

a cos 2A + (X • p) sin2A. (4) 

Here p is the unit line-of-sight (directional) vector and X is a (directional) vector parameter 
whose modulus 0 = 1X1 measures the strength of the topographic effect. In n = \/ß we 
have a unit vector — also a true direction — which locates the positive pole of the effect, 
the ‘topographic pole’. To maintain total probability unity we must replace /o(k) at (3) by 

^oh/[a2 + (X* p)2]}. 

Finally, to complete the model, we must adjoin to this conditional A-distribution a 

multiplicative factor, say 

f(p)dp (peS2) (5) 

which describes the distribution of source directions. This might, for instance, have the 
Fisher form (2), but in the present problem we leave it unspecified. It will not affect our 

calculations and is descriptive more of the social science of observatory building than of 
the natural science of the Universe. 
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Statistical asymmetry of the Universe 639 

Figure 1. A fit (shown by ***) of the indirectional version of the von Mises distribution (ce = 0.703) 
to the whole ensemble of A-values, when the topographic relationship is ignored. This is the so-called 
marginal distribution of A. 

3 Model for the Birch effect 

We now have a model (model II) for the Birch effect expressed in the form of a joint 
probability law for p and A, 

/(p)^p 
exp (a cos 2A + (X • p) sin 2A) 

itl0{s/[a2 + (X • p)2]} 
dA. (6) 

Apart from the /-factor it involves the four parameters a, Xl5 X2, X3. When ß = 1X1 = 0, it 
reduces to the null model (model I) in the form 

exp (a cos 2 A) 
/(pMp) 77T— 

7r/0(a) 
(7) 

Fig. 1 shows that the marginal A-distribution is approximately of this type. 
To test model I (the null hypothesis) against model II as alternative, we write down the 

log-likelihoods Li and Lu for the data with respect to the two models, and maximize each 
of them separately with respect to the parameters; the appropriate Neyman—Pearson test 
statistic is then 

T = max(Ln) - max^p). 

From likelihood-ratio theory when N is large we shall expect T to have a sampling 

distribution of the form X3/2 on the null hypothesis; it will indicate evidence for a genuine 
effect (ß > 0) by a significantly large positive value provided that the noise associated with 
the small value of TV is not too big. Notice that the density /(p) contributes nothing to T. 
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640 D. G. Kendall and G. A. Young 

The maximization of Li is straightforward, but the maximization of 

N 
L\i = £ {log/[p^] + a cos 2 + [X • p^] sin 2A^ — logrr — 

r = i 

where 

^ = log/o(V{a2 + [X-p('')]2}), 

is a much more delicate matter because the geometric disposition of the sources then 
plays a role. The question is important and so we give a careful discussion; the reader who 
will accept the results on trust can jump at once to Section 4 below. The terms in/and tt 
cancel out and can be ignored, and the remaining terms in a and X are linear apart from 
the 'T-term, so we start by examining the latter. Now 

'h(p;a)X1,A2,A3) = log/o{V[a2 +(AiPi + X2P2 +X3P3)2]} 

is a multiply real-analytic function of (a, Xj, X2, X3) over all of RA, because /0 is an even 
entire function of its argument, and /0 > 1 always. 

To test 4>(p) for convexity, as a function of a and the À/s, for any given p, we must 
inspect the Hessian quadratic form which with dummy variables {a, L) reduces to 

H(^ = /0/l2 ,20 ^a0i + (L * ‘ P)]2 +~^T ’ P) ~ a(L ‘ P)]2- 

Here each modified Bessel function has argument ß = Vi^2+(X * p)2]. Now /¿ > 0 
for ß > 0 and =0 if ß = 0, while an application of the Schwarz inequality shows that 

¡¿'lo > I¿2 with equality if and only if ß = 0. Thus //(p) > 0 always. In verifying this, 
notice that the singularity at ß = 0 is only apparent; in fact, near to ß = 0, 

tf(p) =4 [«2 + (L • p)2] - + (L • p)(X • p)]2 

2 16 

- 77 [a(X • p) -a(L • p)]2 + 0(Q2), 
16 

so that at ß = 0 we shall have a = (X • p) = 0 and 

^(p)=-[«2 +(L • p)2] > 0. 

It follows that \P(p) is weakly convex over the whole off?4 for every choice of p. 
Now Lu as a function of (a, X) is the sum of two components; one is linear and the 

other is equal to 

r = l 

Thus Lu is weakly concave everywhere in Æ4, and it will be everywhere strongly concave 
if we can show that, for each choice of (a, X), 

N 
£ H[VV] > o when a2 + (L ' L)> 0. 
r=l 

Let then a and X be arbitrary and given, and let a and L be also fixed, with ¿z2 + (L • L) > 0. 
We must show that //[p^] > 0 for some r. 
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Statistical asymmetry of the Universe 641 

(i) Let ß(p) = 0, so that ce = (X • p) = 0. Then //(p) vanishes if and only if # = 0 and 

(L • p) = 0. (Notice that a = 0 implies L ^ 0 ! ) 
(ii) Let ß(p) > 0. Then //(p) vanishes if and only if both 

¿za + (L • p)(X * p) = 0, 

and 

- (L • p) a + tf(X • p) = 0. 

Because ß(p) > 0 we know that the determinant of coefficients in these linear equations 
must vanish, so Z/(p) again equals zero if and only if a = (L • p) = 0. 

Putting (i) and (ii) together, we see that 

I ^[p^i 
r= 1 

will fail to be everywhere strictly positive if and only if [L • p^] = 0 for some one 
non-vanishing vector L and every r. 

Now the direction of this L will be the pole of a great circle, and so we have proved the 

Theorem, ¿n is everywhere strictly concave if and only if the sources do not all lie on a 
single great circle. 

This makes clear what is the topographic situation in which our method breaks down. 
Of course in the present problem the condition is amply satisfied. In passing we note that 
we may expect large sampling errors in the estimates of the parameters whenever all the 
sources lie close to some one great circle, but in the present study the distribution of 
sources, patchy though it is, need not be expected to produce such disasters. 

In order to assert that Ln has a global maximum at some finite point (necessarily a point 
of differentiability) we have to add to its strict concavity a guarantee that Lu tends to minus 
infinity in all directions in R*. So choose (a*, X*) so that ce*2 + SjA*2 = 1, put ce = a*t, 

X = X*i, and consider what happens when t->°°. We can of course assume that the 
condition of the theorem is satisfied. Now either (i) ce* ^ 0, or (ii) ce* = 0 and X* ^ 0. 
In the case (i), each while in case (ii) 0^ vanishes if [X* * p^] = 0 and 

otherwise. But for X* ^ 0, we must have [X* • p^] ^ 0 for at least one r, so we can 
conclude that some at any rate of the g^s tend to infinity and that all the others vanish. 

On looking back at the formula for Ln we see that its component terms can be sorted 
into two groups. Those associated with vanishing gs all vanish, because for these terms 

a = [X * p(r)] = 0 and log /otô^] = 0. The non-constant contribution of each one of the 
remaining terms is of the form 

cos [2A^ + e^] - +-log [InQ^] + o(l) 

as g^-^00, and so converges to -°o unless the cosine is +1. In practice it is clear that we 
can ignore accidents associated with exact A-values, and so we can confidently expect 
Lu to possess a finitely located global maximum which will be accessible to numerical 

analysis because of the global smoothness of Lu. 

4 Method 

The maximum of Lu can now be found by any of the standard packaged iterative routines 

as soon as we have suitable initial values. Our approach to obtaining starting values 
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642 D. G. Kendall and G. A. Young 

is to make a first-order approximation to the modified Bessel function /0; with this 
approximation, suitable when a and ß are not too large, the problem linearizes, giving 
initial estimates of (a, X) in simple algebraic form and at the same time a linear 
approximation to the test statistic T itself. 

Let A be the 3x3 matrix with components 

aii - Î pfVf 
r = \ 

and let B be the inverse of A (which certainly exists in view of the great circle assumption). 
We find that the first-order estimates of the parameters in model II are 

2 N 
à- — V cos2A^, 

and 

X= Bv, ß = I Bv I, 

where v is the vector with components 

Ui = 2 f pf)sm2A(,'). 

The corresponding first-order test statistic is 

1 T 
T\ — v f?v, 

4 

where vT is the transpose of v. 

5 Results 

The results of the exact and the first-order calculations are as follows (W=134). It is 
interesting that the first-order approximation should work so well for values of a and ß 
which are far from small. 

We have remarked that for large N the sampling distribution of T will be x?/2 on the null 
hypothesis. The corresponding significance levels are i* = 0.005 for T = 6A2 and P = 0.001 
for T = 8.13. So the evidence for the Birch effect is significant at about the P= 0.001 level. 

It is highly desirable to check this result in a manner which does not make use of 
asymptotic theory appropriate only for W^00. Accordingly we used a data-based simulation 
test, set up as follows: for each simulation, hold the positions p^ of the sources fixed, and 
also keep the overall assemblage of observed A^s fixed, but assign the A-values randomly 
to the source positions. For each such scrambling of the A-values recompute the test 
statistic. Compare the observed value with the collection of simulated values. 

Table 1. Estimates of parameters. 

Basis T 

First-order 
Exact 

7.32 
8.02 

0.663 
0.727 

0.823 
0.933 

RA 
(h m) 

13 30 
13 30 

Pole 
Dec. 

-37°.2 
— 37°.4 
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Statistical asymmetry of the Universe 643 

Figure 2. First-order analysis: the histogram of 10 000 simulated ^-values. The T^-value obtained from 
the data is shown by an arrow. 

When the first-order statistic 7\ is being employed it is easy to perform this test with 

10 000 simulations. When this is done a P-value of the order of 0.0005 is obtained, in 
agreement with the above asymptotic result. The histogram of simulated 7^-values is very 
striking (Fig. 2). It follows roughly, but far from exactly, the course of the xl/2 curve, 
and the observed 7^-value stands well out in the ‘tail’. 

A data-based simulation test was also carried out using the exact test statistic 71, but 
computation of that is slow and it is therefore very time-consuming to do more than a few 
hundred simulations. A few such experiments were carried out, these supporting the earlier 
conclusions. 

6 Discussion 

6.1 DISSECTING THE DATA 

The 134 data values arise naturally in four sets: 134 = 42 (Conway)+ 39 (Laing) + 28 
(Ekers) + 25 (Conway). We repeated both types of analysis for each of the four subsets. 
The exact T-values were, respectively, 3.289, 4.627, 1.308 and 2.964. A useful, if rough, 
analysis of variance can now be constructed. In Table 2 we have doubled the T-values to 
get approximate x! random variables. 

The ‘between groups’ x2 is not significant, and indeed is below expectation. So there is 
no reason to suppose that the varying responses from the different groups reflect any more 
than the high sampling errors associated with the small sizes of the groups. What the 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

4M
N

RA
S.

20
7.
 .

63
7K

 

644 D. G. Kendall and G. A. Young 

Table 2. Analysis of variance. 

Data 2 T-valu es d.f. 

Conway 1 (7^ = 42) 
Laing (7V= 39) 
Ekers(7V=28) 
Conway 2 {N - 25) 

Between groups 
Pooled 

6.578 
9.254 
2.616 
5.928 

8.335 
16.041 

Total 24.376 12 

individual subsets have to tell us is largely drowned by noise, but when they speak with 
one voice, in the ‘pooled’ line, the message is clear. 

The two larger groups do in fact yield individual T-values which, compared with the 
asymptotic null distribution, are significant at the levels ^ = 0.09 and 0.025 respectively, 
but on account of the small sample sizes these should not be taken too seriously. For these 
two subsets simulation tests of 10000 simulations (using T^) gave P-values of 0.04 and 
0.03 respectively. 

We feel that it is worth reporting here the results of an analysis of variance test based 
on the contrast between the ‘pooled’ and ‘between groups’ mean squares. This is 

16.041/3 

8.335/9 
5.77. 

The significance levels for this situation, 

2.5 per cent: F = 5.08, 

1.0 per cent: F = 6.99, 

indicate that the overall Birch-effect is also significant when tested against the noise repre- 
sented by the discrepancies between the four groups. 

6.2 POWER OF THE TEST 

It is desirable to check the power of the test, i.e. to see how it responds to a ‘faked’ effect. 
Accordingly we kept the source positions fixed, we set a and ß-IXI to the values 
estimated from the data by the exact method (see Table 1) and then assigned A-values 
to sources by sampling from the model II probability density with the pole /i of the 
topographic regression set to each in turn of four widely different positions. The four 
resulting data-sets were then analysed, by the exact procedure, and yielded F-values as 
shown in Table 3. 

In each case the faked effect is successfully detected (at P = 2.5 per cent or better; see 
the values of T) and the pole of the topographic regression is identified to within about 
20-30° (angle between true and estimated directions of maximum effect). Experiment 2 
indicates that reasonably large errors can occur purely as a result of sampling from the 
model II probability density. 

A useful graphical illustration of our results makes use of the following measure of the 
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Statistical asymmetry of the Universe 645 

Table 3. Power of the test. 

Experiment 1 

Topographic pole: 
RA (h) 6 
Dec. (°) 45 

T-value 14.89 

Estimated pole: 
RA (h m) 5 31 
Dec. (°) 52.5 

Angular error in pole (°) 8.9 

2 3 4 

6 18 18 
-45 45 -45 

4.65 5.56 15.49 

2 41 18 33 18 4 
-62.6 39.4 -21.9 

33.0 8.3 23.1 

ÔGK/GPY'S TUSYMfH «GH 1 « ) OF 13 PpR 83 *DATfl#*Dñ"rfl**DflTfl* Nr 134 
CONTOURS FOR EST/D FXP/N OF SIN( 2*DRL Tfl ) : STRP--0.02S 
INTRPNr 718623 
a« EXRCT SOLUTION «« 

Figure 3. The contour plot of Z = Esin2A as a function of position p, based on the whole set of 
parameters estimated from the data by the exact procedure. The points indicate positions of observed 
sources (* for A > 0, # for A < 0). The estimated topographic pole is at MAXOBS. The vertical scale 
is of declination; the horizontal scale is of 6 (degrees) where RA = 240/360. Note that RA is shown as 
increasing from left to right. 
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646 D. G. Kendall and G. A. Young 

DGK/G^Y'S T'JSYrr : ttGHitt ) pf- ^ rpr 83 *FGKF**FqKF**FRKE* Nr 134 
CONTC'JRS FOR FST/n FXP/N CF 0 !N( 2*DF'. TP Î : STi D G OFF 
INTRPNr 387793 °0LPR FRRORr 23-1 OrGS 
«« FXPCT SOL.JTION «n 

Figure 4. As for Fig. 3, but now, while the source positions are the same as before, the A-values are 
simulated using model II and the data-based values of a and ß. The topographic pole of the distribution 
sampled from is at MAXDLT. 

average degree of ‘twist’ in direction p, when the model II A-distribution, conditional on p. 
has parameters a and X = ß/x : 

Z(p) = Zf(sin 2A I p) 
00*-p) 8(0) 

Q /o(ß) 

Here E(-) denotes mathematical expectation with respect to the conditional distribution and 

Ô = V[a2 + 02(M * P)2]- 

Figures 3 and 4 show contour plots of the estimated Z (with contour interval 0.025) for 
(a) the actual observations and (b) the fourth of the four sets of ‘faked’ observations of 
Table 3. On these plots the observed source positions are shown as * when A > 0 and as 
# when A < 0. 

In Fig. 4 the point marked MAXDLT shows the position of the pole of the faked 
effect, whilst in both Figs 3 and 4 the estimated pole is shown as the point marked 
MAXOBS. We can thus, in Fig. 4, examine the pole of the faked topographic regression, the 
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647 Statistical asymmetry of the Universe 

observed source positions, the random A-values and the resulting estimated regression in 
the same diagram. 

6.3 EFFECT OF OBSERVATIONAL ERRORS 

We are informed that the observed A-values may be in error by as much as 10-20°. This 
does not invalidate our analysis, though it may have diluted the true effect. To check this 
we made a repeat analysis (by the exact procedure) of the observed data when each A-value 
was perturbed by a random and randomly signed fraction of 20° as a point in the projective 
space RPl. The result of this analysis was: T-value = 6.49. Estimates: a = 0.666, ß = 0.852, 

pole: RA 12h 4Qm, Dec. 1 -48°.2. This result, and our study above the power of our 
test procedure, suggest some uncertainty in our estimates in Table 1, though the true pole 
of the topographic regression is unlikely to be more than 20—30° from the estimated pole. 
It is clear therefore that an acceptable explanation of the Birch effect must indicate a pole 
as close as this to our estimated pole at RA 13h 30m, Dec. 1 — 37°.4. 
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