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Summary

Consistency and optimality of block bootstrap schemes for distribution and variance es-
timation of smooth functionals of dependent data have been thoroughly investigated by
Hall, Horowitz & Jing (1995), among others. However, for nonsmooth functionals, such
as quantiles, much less is known. Existing results, due to Sun & Lahiri (2006), regarding
strong consistency for distribution and variance estimation via the moving block bootstrap
(MBB) require that b →∞, where b =�n=`� is the number of resampled blocks to be
pasted together to form the bootstrap data series, n is the available sample size, and ` is
the block length. Here we show that, in fact, weak consistency holds for any b such that
1�b=O(n=`). In other words we show that a hybrid between the subsampling bootstrap
(b=1) and MBB is consistent. Empirical results illustrate the performance of hybrid block
bootstrap estimators for varying numbers of blocks.
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1. Introduction

We consider a problem closely related to some of Peter’s greatest contributions in
bootstrap theory and methodology. Specifically we address the problem of choosing the
number of blocks when using block bootstrap methods to estimate the distribution and
variance of sample quantiles computed from weakly dependent sequences. Peter started
thinking about a version of this problem in the mid-1980s. In Hall (1985) he proposed
resampling spatial patterns, and introduced the core concepts that would eventually be im-
plemented in the moving block bootstrap (MBB). Peter called this a ‘tiled bootstrap’, as
it was based on the idea of partitioning an observation region into congruent, nonover-
lapping tiles. He considered both ‘fixed’ and ‘moving’ tiles resampling schemes. Carlstein
(1986) utilized similar ideas for the problem of variance estimation for a statistic com-
puted from time series data. The key insight came from Hall (1985) and the subsequent
papers on the MBB by Künsch (1989) and Liu & Singh (1992). Suppose that the ob-
servations are generated by a weakly dependent process. The dependence structure in the
observations is preserved within blocks. Thus if the block length increases with sample
size, then the dependence structure in the underlying process will be reproduced asymp-
totically by the MBB. Peter also played an important role in the ultimate resolution of
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this problem when dealing with smooth functionals of dependent data. Hall et al. (1995)
is part of a series of papers which rigorously established the theory of optimal block boot-
strap distribution and variance estimation for smooth functionals. Other work on this topic
includes Bühlmann (1994), Naik-Nimbalkar & Rajarshi (1994), Götze & Künsch (1996),
Lahiri (1992, 1996, 1999) and Bühlmann & Künsch (1999). Included among Peter’s con-
tributions to block bootstrap theory are Davison & Hall (1993), Hall & Horowitz (1996),
Carlstein et al. (1998), Hall, Jing & Lahiri (1998) and Choi & Hall (2000). We also mention
that, while Peter’s intellectual contributions to the foundations of the MBB are undeni-
able, he did not seek to be recognized as its creator. Peter wrote an entire paper (Hall
2003) giving credit for the inspiration of the block bootstrap to P.C. Mahalanobis for
his work on the analysis of jute production data in Bengal, India, during the 1930s and
1940s.

Sun (2004, 2007), Sun & Lahiri (2006) and Sharipov & Wendler (2013) investigated
different aspects of the less well-studied setting of block bootstrap methods for nonsmooth
functionals of dependent data. Of greatest relevance to our results, Sun & Lahiri (2006) showed
the consistency, under mild moment conditions and polynomial mixing weak dependence,
of MBB distribution and variance estimators for sample quantiles. On this topic, Hall & Jing
(1996, p.132) offered only the comment that ‘… estimation of quantile variance is really a
problem of curve estimation …’, another topic on which Peter was an expert. Surprisingly,
however, this particular setting of the block bootstrap is one in which Peter never published
a paper – as far as we know.

The main contributions of the current paper are as follows. In Theorem 3 of Section
3, we prove that a ‘hybrid’ between MBB (b =�n=`�) and the subsampling (b = 1) boot-
strap is consistent, under the assumption of a strongly mixing sequence with exponentially
decaying coefficients. The proof of weak consistency, for 1�b=O(n=`), covers both dis-
tribution estimation and variance estimation for sample quantiles. Our theoretical results
are also validated empirically with three commonly-encountered models which satisfy our
conditions.

2. Background

Let {Yi}i∈Z denote a strictly stationary process, where Z ={0, ± 1, ± 2,…} is the set
of all integers. The sequence (Y1,…, Yn) denotes a sample of size n from {Yi}i∈Z. Suppose
that the random variables {Yi}i∈Z are defined on a common probability space (�, F, P), with
common marginal distribution function F.

2.1. The MBB and subsampling bootstrap

The MBB (Künsch 1989) divides the sample (Y1,…, Yn) into overlapping blocks of size `,
Bi = (Yi,…, Yi+`−1), yielding a set {B1,…, Bn−`+1}. Let BÅ

1 ,…, BÅ
b be a random sample drawn

with replacement from the original blocks, where b=�n=`� is the number of blocks that will
be pasted together to form a pseudo-time series. The notation �h� means the largest integer
�h, and similarly �h� is the smallest integer �h. That BÅ

1 ,…, BÅ
b is a random sample from

{B1,…, Bn−`+1} means that the sampled blocks are independently and identically distributed
according to a discrete uniform distribution on {B1,…, Bn−`+1}. The observations in the ith
resampled block, BÅ

i , are Y Å
(i−1)`+1,…, Y Å

i` , for 1 � i � b. The resulting MBB sample is the
concatenation of the resampled blocks, written as
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Y Å
1 ,…, Y Å

`︸ ︷︷ ︸
BÅ

1

, Y Å
`+1,…, Y Å

2`︸ ︷︷ ︸
BÅ

2

, Y Å
2`+1,…, Y Å

(b−1)`︸ ︷︷ ︸
BÅ

3 ,…,BÅ
(b−1)

, Y Å
(b−1)`+1,…, Y Å

b`︸ ︷︷ ︸
BÅ

b

.

The overlapping blocks version of the subsampling bootstrap (Politis & Romano 1994)
also divides the sample into the same overlapping blocks as the MBB. However, the subsam-
pling bootstrap randomly draws only a single block, which is viewed as a partial observation
of the original series. The subsampling bootstrap thus exactly retains the dependence struc-
ture in the original sample. Hence, the subsampling bootstrap is a special case of the MBB
for which only a single block of length ` is resampled.

2.2. Some notation

The common marginal distribution function F is in particular the distribution function
of Y1, i.e. F(x) = Pr(Y1 � x), x ∈ R. The corresponding quantile function F−1(p) is defined
by

F−1(p)= inf{x : F(x)�p}, 0 < p < 1.

The empirical distribution function of the sample (Y1,…, Yn), for n � 1, is denoted by Fn,
and puts probability mass 1=n on each element,

Fn(x)=n−1
n∑

i=1

1(Yi � x), x ∈R,

where 1(Event)=1 or 0 according to whether the Event occurs or does not occur, respectively.
Define, for `∈{1, 2,…, n}, b∈{1, 2,…} and x ∈R, J1,…, Jb to be independent random indices
uniformly drawn from the set {1,…, n−`+1},

Ui(x)=`−1
i+`−1∑

t=i

1{Yt � x}, i =1,…, n−`+1,

and

UÅ
i (x)=`−1

Ji+`−1∑
t=Ji

1{Yt � x}, i =1,…, b.

The UÅ
i (x) just defined are the (conditionally i.i.d.) resampled block averages. Further define

F̃n(x)= (n−`+1)−1
n−`+1∑

i=1

Ui(x) and FÅ
n (x)=b−1

b∑
i=1

UÅ
i (x).

The latter quantity is the hybrid block bootstrap empirical distribution function. Define, for
p∈ (0, 1),

�p =F−1(p), �̂n =F−1
n (p), �̃n = F̃

−1
n (p) and �Å

n =FÅ−1
n (p).

Again, the last quantity, �Å
n , is the hybrid block bootstrap version of the sample quantile,

�̂n. Assume that f =F ′ is defined on a neighbourhood Np of �p, with

0 < inf
x∈Np

f (x)� sup
x∈Np

f (x) <∞.
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The hybrid block bootstrap version of the centered and scaled sample quantile,√
n(�̂n −�p), is given by

√
b`(�Å

n − �̃n).
The centering is about �̃n, which is the sample quantile analogue of the centering

constant used for statistics adhering to the smooth function model, such as the sample
mean. For this to be well-defined, we need F̃n to be a valid distribution function. This
follows from the fact that FÅ

n is a valid distribution function for each set of resampled
{Y Å

1 ,…, Y Å
bl }, and that F̃n is simply the conditional expectation of FÅ

n , given (Y1,…, Yn).
Define Gn(u)=Pr(

√
n(�̂n −�p)�u) and �n =var{√n(�̂n −�p)}. It is our purpose to establish

weak consistency of a hybrid block bootstrap for estimation of Gn(u) and �n.
We now explain the weak dependence condition on the Yi’s. Weak dependence among

the Yi’s means that the dependence between Yi and Yj decays in a specified way as
|i − j| increases. Conventionally, a strong mixing condition, which is defined with respect
to the �-algebras generated by sequences of the Yi’s, is used. Define Ft

k to be the �-
algebra generated by the random variables Yk , Yk+1,…, Yt , −∞ � k � t � ∞. For t � 1,
define

�(t)= sup
k∈Z

sup
A∈Fk

−∞,B∈F∞
k+t

|Pr(A∩B)−Pr(A)Pr(B)|.

The sequence {Yi}i∈Z is called strongly mixing or �-mixing under the condition that �(t)→0 as
t →∞. The mixing rate is called polynomial when �(t)=O(t−�), for some suitable �∈ (0, ∞).
In Theorem 1, we assume that the mixing coefficient �(t) decays at an exponential rate.
That is, for some C > 0,

�(t)=O(e−Ct), t →∞.

Though this assumption is slightly stronger than the polynomial rate assumption in Sun &
Lahiri (2006), it is sufficiently undemanding to include the practically important cases, such
as a broad class of linear processes, as we illustrate with examples in Section 4.

2.3. Connections to existing results

The novelty of our theoretical results is that we allow b to vary, and hence our consistency
result encompasses the subsampling bootstrap, the MBB, and everything in between. Earlier
authors have considered narrower consistency results, regarding particular block bootstrap
schemes. For example, Sun & Lahiri (2006, theorem 3.1) showed that, under a suitable
polynomial mixing rate, with `−1 = o(1) and `= O(n1=2−�) for some �∈ (5=(2 + 4�), 1=2),
the MBB is strongly consistent for estimating the distribution of the centered and scaled
sample quantile,

√
n(F−1

n (p)−F−1(p)) ≡ √
n(�̂n −�p). When the mixing coefficient satisfies

�(t)�Cn−� for some C > 0 and � > 9.5,

sup
x∈R

|Pr(
√

n(�Å
n − �̃n)� x

∣∣∣Y1,…, Yn)−Pr(
√

n(�̂n −�p)� x)|=o(1),

with probability 1. Under the same conditions, with the additional assumption that E(|Y1|�)<
∞ for some �> 0, theorem 3.2 of Sun & Lahiri (2006) established strong consistency of the
MBB estimator of the asymptotic variance of

√
n(�̂n −�p). Somewhat less relevant to our

results, the consistency properties of the circular block bootstrap and smoothed extended
tapered block bootstrap were proven by, respectively, Sharipov & Wendler (2013) and
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Gregory, Lahiri & Nordman (2015). Our main result is a consistency theorem allowing
the number of blocks b to be anything from 1 to �n=`�, and can be viewed as a quite
general result about consistency of block bootstrap procedures for sample quantiles under
a reasonably weak dependence assumption.

3. Main results

The following theorem establishes weak consistency of the block bootstrap for the
distribution and variance of sample quantiles, based on any b=O(n=`).

Theorem 1. Suppose that n−�` →∞, ` = O(n1=2−�) for any arbitrarily small �∈ (0, 1=2),
and 1�b=O(n=`). Assume that the mixing coefficient satisfies �(t)=O(e−Ct), t →∞, for
some C > 0.

(i) The equality

Pr
(√

b`
(
�Å

n − �̃n

)
� x

∣∣∣Y1,…, Yn

)
=Pr

(√
n
(
�̂n −�p

)
� x

)
+op(1)

holds for each fixed x ∈R.
(ii) If E(|Y1|�) <∞ for some � > 0, then

Var
(√

b`�Å
n

∣∣Y1,…, Yn
)=Var

(√
n�̂n

)+op(1).

The proof of Theorem 1 is given in the Appendix.

Remark 1. Optimal choice of (b, `) is established, under the weaker assumption of a
polynomial mixing rate, in Kuffner, Lee & Young (2017).

Remark 2. In the examples of Section 4, we examine coverages of two-sided bootstrap CIs
with nominal levels 95% and 90% for �p. The bootstrap confidence intervals are constructed
as follows. Define qs by Gn(qs)= s. Then

(�̂n −n−1=2q1−�, �̂n −n−1=2q�)

constitutes an exact 100(1 − 2�)% confidence interval for �p. Define GÅ
n (u) = Pr(

√
b`(�Å

n

− �̂n)�u
∣∣∣Y1,…, Yn), and qÅ

s by GÅ
n (qs)= s. Then the bootstrap confidence interval of nominal

coverage 100(1−2�)% is

(�̂n −n−1=2qÅ
1−�, �̂n −n−1=2qÅ

� ).

We do not assume, a priori, that we have available a suitable variance estimator with
which to studentize the sample quantile, which would permit the use of intervals based on
percentiles of the t-distribution. It is for this reason that we have elected to use the foregoing
simple percentile intervals instead.

We now present some empirical evidence supporting the theoretical results. Further
theoretical developments are contained in forthcoming, more technical work (Kuffner et al.
2017) concerning the optimal rates of convergence of the bootstrap distribution estimator in
this problem, for both polynomial and exponential mixing rates. Preliminary results indicate
that for the exponential mixing rate context, the optimal ` and b are both of order O(n1=3).
For this reason, we have chosen to focus on setting ` as n1=3 in the examples, but similar
results are obtained when ` is specified otherwise: Table 2 provides an illustration with
`≈n1=4.

© 2018 Australian Statistical Publishing Association Inc.
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4. Examples

For each example, we simulated the mean squared errors (MSEs) of the hybrid block
bootstrap estimators of �n, Gn(u), for two values of u, for the case p=1=2.

The true reference values of �n and Gn(·) in each example were approximated using
a massive simulation, with 5 × 106 replications. Recall that we use the term ‘hybrid’ to
indicate that we are considering values of b in the interval [1, �n=`�], where b = 1 is the
subsampling bootstrap, and b=�n=`� is the standard MBB.

All entries reported in the tables are based on 20,000 replications, with 20,000 bootstrap
samples drawn for each replication.

Example 1. First-order autoregressive model. Suppose that Yt is generated by an AR(1)
process

Yt =0.4Y(t−1) + �t ,

with the �t i.i.d. N(0, 1). In the validation study, to simulate from this model, Y0 was first
randomly sampled from the marginal N(0, 1.1905) distribution.

With a normal distribution for the innovations, and since |0.4|< 1, the AR(1) model is
strongly mixing, and the mixing coefficients decay exponentially (Bradley 1986, example
6.1). Table 1 gives results for n = 50, with block length ` = 4, the closest integer to n1=3,
and for 1 � b � 12. Since p = 1=2, we have �p = 0. The true values being estimated were
computed as �n = 3.39932, Gn(−0.5) = 0.43349, and Gn(1.5) = 0.82056. The MSE of the
variance and distribution estimators is smallest for a value of b which is small, but strictly
greater than 1. The last row, b = 12, corresponds to the MBB, which is seen to perform
considerably worse than hybrid block bootstrap estimators. The confidence intervals have
poor coverage accuracy; both the 95% and 90% bootstrap confidence intervals produce
substantial undercoverage, for all values of b.

Example 2. ARMA(1,1). We generated samples from an ARMA(1,1) model

Yt −0.4Y(t−1) = �t +0.3�(t−1),

with �t i.i.d. N(0, 1). This ARMA model satisfies the strong mixing condition with an
exponential rate of decay for the mixing coefficients; see, for example, Lahiri (2003, example
6.1). The value of Y0 was sampled randomly from the marginal distribution N(0, 1.5833),
and �0 is sampled from N(0, 1).

Again, since p=1=2, we have �p =0. The true values being estimated were computed as
�n =5.68256, Gn(−1.5)=0.28007, and Gn(1)=0.67978. Table 2 reports simulation results
for n=200, `=4, the closest integer to n1=4, and selected values of b in [1, 50], where b=50
corresponds to the MBB. Table 3 contains results for n=200, `=6, closest integer to n1=3, and
values of b in [1, 33], where b=33 indicates the MBB. In both tables, there is still substantial
undercoverage by the bootstrap confidence intervals, even with this increased sample size.
Notice that the results for distribution and variance estimation do depend strongly on (b, `).
For instance, the subsampling bootstrap performs much better for variance estimation when
`=n1=3 rather than `=n1=4, and this pattern holds for all b considered, though the difference
in MSE is small for values of b near the middle of the interval [1, �n=`�]. For distribution
estimation, when comparing the performance for `=n1=3 and `=n1=4, the differences are
slight. Once again, however, we note that there is a substantial performance improvement
over the standard MBB or subsampling bootstrap by choosing b > 1.

© 2018 Australian Statistical Publishing Association Inc.



T. A. KUFFNER, S. M. S. LEE AND G. A. YOUNG 109

Table 1 AR(1) model. Sample size n=50, block length `=4.

b MSE MSE MSE Coverages
estimation estimation estimation (95%, 90%)
�n Gn(−0.5) Gn(1.5) CIs

1 1.97071 0.00983 0.01220 (80.1, 75.9)
2 1.85262 0.00633 0.00955 (81.9, 75.9)
3 1.88072 0.00627 0.00877 (82.0, 75.6)
4 2.01892 0.00704 0.00874 (82.6, 76.0)
5 2.14152 0.00819 0.00886 (82.2, 75.7)
6 2.27492 0.00914 0.00909 (82.4, 76.2)
7 2.33889 0.01027 0.00928 (82.4, 76.1)
8 2.56672 0.01145 0.00970 (81.9, 75.2)
9 2.65207 0.01227 0.01003 (82.1, 75.7)

10 2.72855 0.01304 0.01026 (82.1, 75.3)
11 2.82212 0.01381 0.01052 (82.0, 75.4)
12 3.04957 0.01448 0.01097 (81.5, 75.0)

Table 2 ARMA(1,1) model. Sample size n=200, block length `=4.

b MSE MSE MSE Coverages
estimation estimation estimation (95%, 90%)
�n Gn(−1.5) Gn(1.0) CIs

1 3.67013 0.00391 0.01465 (85.7, 79.1)
2 3.12188 0.00335 0.01084 (86.6, 80.1)
3 2.95750 0.00276 0.00816 (87.4, 80.8)
4 2.87318 0.00280 0.00696 (87.6, 80.9)
5 2.89054 0.00301 0.00630 (88.2, 81.6)
6 2.91291 0.00328 0.00593 (87.8, 81.4)
7 2.88793 0.00346 0.00561 (87.6, 81.0)
8 2.99171 0.00369 0.00553 (88.0, 81.3)
9 2.98520 0.00394 0.00539 (87.5, 80.9)

10 2.99115 0.00414 0.00532 (87.6, 81.0)
15 3.22651 0.00502 0.00528 (87.5, 81.1)
20 3.40073 0.00583 0.00544 (87.2, 80.5)
30 3.74392 0.00693 0.00597 (87.0, 80.5)
40 3.99044 0.00775 0.00647 (86.7, 80.0)
50 4.26749 0.00865 0.00696 (86.4, 79.7)

Example 3. Nonlinear ARMA(2,3). Let {Xt}t∈Z be a sequence from the following specific
ARMA(2,3) process. This sequence is strongly mixing with an exponential rate of decay
for the mixing coefficients; see again Lahiri (2003, example 6.1),

Xt −0.1X(t−1) +0.3X(t−2) = �t +0.1�(t−1) +0.2�(t−2) −0.1�(t−3).

To simulate from this model, we initiate by generating X0, X−1 from the marginal N(0, v2)
distribution, which has v2 = 1.0776, with �0, �−1, �−2 independent N(0, 1). The nonlinear
model we consider is the square transformation of the above ARMA process,

Yt =X 2
t .

Any instantaneous Borel transformation, such as the square transformation above, pre-
serves the strong mixing property and the mixing rate. Hence, Yt is also strongly mixing
with the same exponential rate as Xt ; see Fan & Yao (2003, p. 69) or Davis & Mikosch
(2009, p. 258). As before, we set p=1=2, and so �p satisfies
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Table 3 ARMA(1,1) model. Sample size n=200, block length `=6.

MSE MSE MSE Coverages
estimation estimation estimation (95%, 90%)

b �n Gn(−1.5) Gn(1.0) CIs

1 2.70465 0.00412 0.01054 (87.2, 80.9)
2 2.43701 0.00308 0.00711 (88.2, 81.8)
3 2.48573 0.00305 0.00583 (88.5, 82.2)
4 2.50317 0.00322 0.00519 (88.6, 82.2)
5 2.60016 0.00353 0.00494 (89.1, 83.1)
6 2.71171 0.00383 0.00480 (88.7, 82.6)
7 2.72484 0.00400 0.00468 (88.7, 82.4)
8 2.87785 0.00432 0.00477 (89.0, 82.6)
9 2.91608 0.00457 0.00478 (88.4, 82.2)

10 2.96183 0.00478 0.00480 (88.5, 82.1)
15 3.38465 0.00571 0.00508 (88.2, 82.2)
20 3.67521 0.00660 0.00548 (88.2, 81.4)
33 4.30900 0.00806 0.00644 (88.1, 81.6)

Table 4 Squared ARMA(2,3) model. Sample size n = 500, block
length `=8.

b MSE MSE MSE Coverages
estimation estimation estimation (95%, 90%)
�n Gn(−1.5) Gn(1.5) CIs

1 0.13558 0.00900 0.00077 (81.4, 77.8)
2 0.10000 0.00471 0.00070 (86.0, 81.7)
3 0.10240 0.00322 0.00082 (87.8, 83.1)
4 0.10694 0.00265 0.00091 (88.5, 84.0)
5 0.11384 0.00245 0.00102 (88.8, 83.5)
6 0.11941 0.00232 0.00113 (89.5, 84.7)
7 0.12359 0.00230 0.00117 (89.5, 84.4)
8 0.12816 0.00228 0.00127 (89.5, 84.0)
9 0.13368 0.00232 0.00133 (89.7, 84.4)

10 0.13457 0.00232 0.00139 (90.3, 85.1)
15 0.15984 0.00247 0.00172 (90.2, 84.6)
20 0.17711 0.00262 0.00195 (90.2, 84.5)
62 0.27639 0.00379 0.00331 (90.2, 84.7)

Pr(Yt =X 2
t ��p)=1=2,

which yields �p = (0.675v)2. The computed true values were, respectively, �n = 1.38199,
Gn(−1.5)=0.09792, and Gn(1.5)=0.89751.

The results in Table 4 are for n = 500, `=8, the closest integer to n1=3, and b in [1, 62],
where b=62 agrees with the standard MBB. As expected, with n=500, the reported MSE’s
for variance estimation are considerably better than in the previous two examples, though
the bootstrap confidence intervals still suffer from undercoverage. The primary observation,
as before, is that the results depend on (b, `). Small values of b, which are strictly greater
than 1, offer improved MSE compared to the subsampling bootstrap and the MBB.

5. Concluding comments

We have given a proof that, for varying number of blocks 1 � b = O(n=`), the block
bootstrap distribution and variance estimators for sample quantiles are weakly consistent
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under a strong mixing assumption with exponentially decaying mixing coefficients. This
assumption holds in many models of practical importance, and we have illustrated, through
examples, the effects of different choices of b and ` on MSE for both variance and distribu-
tion estimation for sample quantiles. There is clear evidence across the examples considered
that there is substantial benefit from choosing a value of b somewhere between 1 and �n=`�.
Our results open interesting avenues for future research. For such hybrid block bootstrap
procedures, which are a compromise between the subsampling bootstrap and the standard
MBB, our theoretical and empirical findings suggest that the performance depends on the
choices of b and `. Procedures for adaptive choice of the pair (`, b) will be developed,
but are beyond the scope of the present paper. Kuffner et al. (2017) provide a more de-
tailed theoretical investigation of optimality in the choice of the number of blocks. More
broadly, the problem studied here acts as a template for other related problems, involv-
ing estimation of quantities depending on local properties of the underlying distribution,
where a hybrid block bootstrap of this kind might provide similar performance improve-
ments.

Peter Hall was a giant of a man, in many respects. He combined the highest lev-
els of scholarship with the deepest human warmth. Peter was an enormous influence in
the scientific development of all three of us, and we dedicate this modest piece to his
memory.

Appendix

Proof of Theorem 1. Denote by � and 	 the standard normal distribution and density
functions, respectively. Standard asymptotic properties (e.g. Lahiri & Sun 2009) of Fn for
dependent data can be invoked to show that, for any x ∈ R,

Pr
(√

n
(
�̂n −�p

)
� x

)
=�

(
xf (�p)�(�p)−1

)+o(1), (1)

where �(x)2 = lim
n→∞ nVar

(
Fn(x)

)=∑∞
t=−∞ Cov

(
1{Y0 � x}, 1{Yt � x}).

Denote by 
̂j(z) the jth conditional cumulant of
√

b`
(
FÅ

n (z)− F̃n(z)
)

given Y1,…, Yn,
for any z ∈ R. The fact that �(t) = O(e−Ct) enables us to establish that, for any arbitrarily
small �> 0,


̂2(z)=�(z)2 +Op
(
`−1 +`1=2n−1=2

)=�(z)2 +op(1),


̂j(z)=Op

(
(b`)−(j−2)=2`� +b−(j−2)=2`1=2n−1=2

)
=op(1), j �3.

These results hold uniformly over z ∈Np. It follows by standard Edgeworth expansion that,
for any compact K⊂ R,

Pr
(√

b`
(
FÅ

n (z)− F̃n(z)
)
� y

∣∣∣Y1,…, Yn

)
=�

(
y=�(z)

)+op(1), (2)

uniformly over (y, z)∈K×Np.
Note that, by lemmas 5.4 and 5.5 of Sun & Lahiri (2006), and Taylor expansion of

F about �p,
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{
p− F̃n

(
�̃n + (b`)−1=2x

)}
�
(
�̃n + (b`)−1=2x

)−1

=
{

Fn(�̃n)−Fn
(
�̃n + (b`)−1=2x

)}
�(�p)−1

{
1+Op

(
(b`)−1=2 +n−1=2+�

)}
+Op

(
n−1`+n−1=2(log n)−2

)
=− (b`)−1=2xf (�p)�(�p)−1

+Op
(
n−1`+ (b`)−1 +n−1=2+�(b`)−1=2 +n−1=2(log n)−2

)
=− (b`)−1=2

{
xf (�p)�(�p)−1 +op(1)

}
.

(3)

It follows from (2) and (3) that

Pr
(

FÅ
n

(
�̃n + (b`)−1=2x

)
�p

∣∣∣Y1,…, Yn

)

=Pr
(√

b`
{

FÅ
n

(
�̃n + (b`)−1=2x

)− F̃n
(
�̃n + (b`)−1=2x

)}
�

√
b`

{
p− F̃n

(
�̃n + (b`)−1=2x

)}∣∣∣Y1,…, Yn

)

=�
(√

b`
{

p− F̃n
(
�̃n + (b`)−1=2x

)}
�
(
�̃n + (b`)−1=2x

)−1
)

+op(1)

=�
(− xf (�p)�(�p)−1

)+op(1).

(4)

Theorem 1(i) then follows by (1) and (4) and noting that

Pr
(

FÅ
n

(
�̃n + (b`)−1=2x

)
> p

∣∣∣Y1,…, Yn

)
�Pr

(√
b`

(
�Å

n − �̃n

)
� x

∣∣∣Y1,…, Yn

)

�Pr
(

FÅ
n

(
�̃n + (b`)−1=2x

)
�p

∣∣∣Y1,…, Yn

)
.

For part (ii), it suffices, following the proof of theorem 3.2 in Sun & Lahiri (2006), to
show that for some � > 0,

∫ Ln

1
x1+�Pr

(√
b`

{
FÅ

n

(
�̃n + (b`)−1=2x

)− F̃n
(
�̃n + (b`)−1=2x

)}
�−Ax

∣∣∣Y1,…, Yn

)
dx

=Op(1)

(5)

and

{
(b`)1=2n1=�

}1+�
Pr

(
FÅ

n

(
�̃n + (b`)−1=2Ln

)
�p

∣∣∣Y1,…, Yn

)
=Op(1), (6)

where A = 2−1 inf
x∈Np

f (x) and Ln = A−1
(
�−1 + 2−1

)
(1 + �) log n. Using (2) and Markov’s

inequality, we have, for any y > 0, that

Pr
(√

b`
{

FÅ
n

(
�̃n + (b`)−1=2x

)− F̃n
(
�̃n + (b`)−1=2x

)}
�−y

∣∣∣Y1,…, Yn

)

� e−yE
(

exp
{−

√
b`(FÅ

n − F̃n)(�̃n + (b`)−1=2x)
}∣∣∣Y1,…, Yn

)
=Op(e−y),

(7)

with this result holding uniformly in x ∈ [1, Ln]. Thus, (5) follows immediately by setting
y=Ax in (7). On the other hand, setting x = Ln and y =√

b`
{

F̃n
(
�̃n + (b`)−1=2Ln

)− p
}

in
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(3) and (7), we have{
(b`)1=2n1=�

}1+�
Pr

(
FÅ

n

(
�̃n + (b`)−1=2Ln

)
�p

∣∣∣Y1,…, Yn

)

=Op

{
n(1=2+1=�)(1+�) exp

(√
b`

{
p− F̃n

(
�̃n + (b`)−1=2Ln

)})}
=Op

{
n(1=2+1=�)(1+�)e−ALn

}=Op(1),

which proves (6).
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