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 SUMMARY

 A version of the sequential probability ratio test for testing simultaneously a set of nested
 hypotheses is developed. This procedure is then applied to define a sequential procedure of
 sampling at the inner level of the two nested levels of resampling required by Monte Carlo
 construction of an iterated bootstrap percentile method confidence interval. The sequential
 resampling scheme reduces very significantly the computational demands of construction
 of the iterated bootstrap confidence interval. The scheme may be applied, simply and
 without any adaptation, to construct a confidence interval for any parameter of interest.
 The performance of the sequential iterated bootstrap confidence interval is illustrated on
 two examples involving the ratio of two population means and a population variance.

 Keywords: BOOTSTRAP; COVERAGE ACCURACY; ITERATED BOOTSTRAP; PERCENTILE METHOD;
 RESAMPLING; SEQUENTIAL PROBABILITY RATIO TEST

 1. INTRODUCTION

 The iterated bootstrap provides a satisfactory theoretical solution to the problem of
 producing nonparametric confidence intervals with high coverage accuracy, as well
 as stable lengths and end points: see Hall (1992), section 3.11. An iterated bootstrap
 confidence interval requires an additive correction to the nominal coverage level of
 an uncorrected interval. This correction must usually be made by using a double
 bootstrap resampling procedure involving two nested levels of Monte Carlo
 simulation, and it is therefore often computationally prohibitively expensive for
 routine use.

 Recently much attention has been paid to methods by which the computational
 demands of construction of the iterated bootstrap confidence interval may be
 reduced. DiCiccio et al. (1992a, b) developed procedures based on saddlepoint
 methods which replace the inner level of resampling by an analytical approximation.
 Their techniques significantly reduce the computational expense of iterated bootstrap
 calculations, but at the price of requiring substantial preliminary analytical
 calculation and the use of packaged numerical procedures in the construction of
 the confidence interval. Lee and Young (1993) developed asymptotic versions of an
 iterated bootstrap confidence interval which also greatly reduce computational
 demands. One of their methods provides an approximation to the iterated interval
 which eliminates the need for any Monte Carlo simulation. However, their
 procedures require substantial analytical calculation on each new problem of
 interest and, like the techniques developed by DiCiccio et al. (1992a, b), are limited in
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 use to a particular class of models, the 'smooth function model' described by Hall
 (1992), section 2.4.

 In this paper we describe how the computational demands of an iterated bootstrap
 confidence interval construction may be reduced by performing the inner level of
 resampling in a sequential manner. For reasons outlined by Hall (1992), section
 3.11.1, there is much practical interest in an iterated 'percentile method' confidence
 interval. This interval is described in Section 2. Section 3 reviews properties of the
 sequential probability ratio test and in Section 4 a version of the sequential
 probability ratio test which may be used to test simultaneously a nested series of
 hypotheses is developed. In Section 5 it is shown how this procedure may be applied
 to the problem of constructing an iterated percentile confidence interval. Precise
 forms of the test that are appropriate to the confidence interval problem are derived
 and detailed. The simulation study in Section 6 illustrates the sequential procedure in
 two problems concerning the construction of bootstrap confidence intervals for a
 ratio of means and for a variance. The study shows that substantial computational
 savings may be obtained from the use of sequential sampling at the inner level of the
 Monte Carlo construction. Though such savings are less than those obtainable in
 many settings from the procedures of DiCiccio et al. (1992a, b) and Lee and Young
 (1993), the sequential sampling construction has the advantages of simplicity and
 portability. The methods developed here may be used, directly and without any
 adaptation, on any iterated bootstrap confidence interval problem and require no
 problem-specific analytical calculation or special numerical procedures.

 Jennison (1992) suggested a use of sequential sampling procedures in the bootstrap
 context. Skovgaard (1992) used a sequential sampling scheme in a double-bootstrap
 hypothesis testing setting, where simpler stopping rules than those detailed here may
 be used.

 2. BACKGROUND

 We are interested in constructing an oa-level confidence interval for a real-valued
 parameter 0, based on data, X = (XI, . . ., X"), Xi E Rd, assumed to consist of n
 points drawn independently from an unknown underlying distribution.

 The use of the iterated bootstrap in the context of confidence interval construction
 was first considered by Hall (1986) and Beran (1987). The method can be applied in
 this context to give high coverage accuracy, as well as stable lengths and end points:
 see Martin (1990). Denote by X* a generic outer level bootstrap resample drawn with
 replacement from X. Similar,ly let X** represent an inner level bootstrap,resample
 from X*. Suppose that 0 = 0(X) is an estimate of 0 based on X. Denote O(X*) and
 O(X**) in an obvious manner by 9* and 0** respectively. If we define

 up = sup{u: P(9* < ulX) < A},

 then the two-sided percentile method confidence interval of nominal coverage ae is

 lp = [u,_, u2,

 where (= (1 + o)/2.
 A confidence interval of exact coverage ae is the percentile method interval of

 nominal coverage ae + t, where
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 19961 BOOTSTRAP CONFIDENCE INTERVALS 237

 I(U`4-l-t/2 < 0 < lk+:/2)= a.

 In practice, t is unknown and is replaced by its bootstrap version t^ which satisfies

 -C- i/2 <0 <? i2 IjX) = a,

 where u* = sup{u: IP(0** < ulX*, X) <,6}. The resulting iterated bootstrap confi-
 dence interval is

 U I-C-i1/2, UC+i/2I,

 which resembles 2,p with its nominal coverage level a recalibrated, using the
 bootstrap, to a + t.

 It is easily seen that

 2T.= [u(IS12, 1u(1+6)/2]

 where

 at sup{S: P(12U* - 1 1 < 6IX) < a}

 and

 u* =P(O** <.' 1X*,X).

 In practice, the theoretical interval 77 must usually be approximated by two levels of
 Monte Carlo simulations. We first draw a collection of B independent bootstrap
 resamples X*1, X2,..., X* from X. From each X*b we then draw C bootstrap
 resamples Xb**, . . ., Xb*c*. Write 0(X*) and 0(Xb*c*) as 0* and 0* respectively, for
 b 1, 2, . . ., Band c 1, 2, . . ., C.

 Let I denote the indicator function, so that I(A) = 1 if event A holds, and I(A) = 0
 otherwise. Define

 c c o
 c=l

 and

 elb 12 &b- 11.

 If we order the V- as V,1 * V*B,2 < .. .< Vl*B,B, then an approximation to Sa is

 6, = jB,Ba]+1

 where [ ] denotes the integer part function. Further, the outer level bootstrap
 resamples can be used to approximate i^ by

 UP = O*B,[BM+1

 where <9,i OB,2 <... < HB,Bare the ordered values of the ?b. Therefore a Monte
 Carlo approximation to the iterated bootstrap interval is given by
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 I [Uii-&)/2 U(l+6)/21

 The usefulness of the iterated bootstrap procedure is limited by the computational
 demands of this Monte Carlo construction. The total number of resampling
 operations is B(C + 1) which should be of the order of, say, 106 for a sufficiently
 accurate approximation to the theoretical interval. Booth and Hall (1994) discussed
 the accuracy of simulation of the Monte Carlo approximation.

 DiCiccio et al. (1992a, b) developed algorithms.which replace the inner level of
 bootstrapping that is necessary for approximating 6,S by an an,alytical approximation
 to the tail probability U* = ]P(O* 0 IX*, X). Noting that 6,a is the solution to

 *(6a)Y: P(I 2U* -11 I X) =a,

 they chose three levels, Y1, -y2 and -y3, close to the nominal level a and obtained an
 approximation to da! by interpolating between the approximate (-yi, ii(-yi)) pairs
 constructed using anal tically approximated values of the U*b.

 Since the value of can be approximated to a fairly accurate degree from a

 sensible interpolant fitting ('yj, X(-y1)), (-y2, k(-y2)), . . *, (-Yk, k(-Yk)) for some distinct
 levels FYi, . . *, -Yk, we can divert our inner level resampling effort, spent on
 approximating U*b in the construction above, to an approximation of *(-Yi), i-
 1, 2,.. ., k.

 If we write ii(-y,) = E[I{12U*-11 - I YjIX], it is easily seen that, given the outer
 level resamples X1, X ., XB, it is the indicator function I{ 12 U* -11 < -yi} rather
 than the explicit value of U* which needs to be approximated. We shall show
 how a sequential inner level resampling procedure can be used to approximate
 I{12U* -11 < -yj and the value 6a obtained by interpolating the ('Yi, i^(-Yi)) pairs. The
 confidence interval subsequently constructed is shown to resemble very closely the
 usual approximation I.

 3. SEQUENTIAL PROBABILITY RATIO TEST

 Before describing our sequential resampling algorithm in detail, we shall first
 present the definition of a simple sequential probability ratio test (SPRT) that is
 relevant to our problem. Suppose that we observe sequentially data Y1, Y2,...
 where the Yi are independent Bernoulli trials with probability of success p, so that

 IfD(Yi = 1) =p 1 -P(Y = 0).

 Assume that p is unknown. We want to test the hypothesis Ho: p < -y against
 HI: p > -y, for given -y, based on the sequence of observations Y1, Y2, .. An
 appropriate SPRT corresponding to critical values a < 0 < b can be formulated as
 follows.

 Sample Y1, Y2,... sequentially until we obtain YN where

 N = inf {n > 1: E Yi-n-n t(a b)}-
 i=1
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 Reject Ho if SIf l Yi - Ny > b and accept Ho if ViN- Yi - Ny < a.
 The required sample size or 'stopping time' N is random. There is a possibility of

 N = oo, in which case the test never terminates. In practice we would deliber-
 ately impose a large upper bound, T say, on the stopping time such that if

 En I Y -n-y E (a, b) for n = 1, 2, . . ., T then we stop at T anyway and accept Ho if
 Er1 Yi-T1y < 0 and reject Ho otherwise. To derive manageable theoretical
 properties of such an SPRT, we assume that P(N < oo) = 1 and ignore the need
 for an upper bound T for the time being.

 We now derive approximate formulae for the power function and expected sample
 size of the SPRT algorithm above.

 For any p E (0, 1), define p. to be the unique solution to the equation

 P,(, -pa),/,- I = p(l - P) 1/- I

 such that py 5 p unless p = -y. Note that if p < -y then py > -y and vice versa. Also
 (p4) =p.

 Define the function

 ln (r, s) : = nyl_ IY
 ,-I ry'(l - r'Y

 the likelihood ratio corresponding to parameters r and s based on sample Y1,

 Y2,..., Yn. Define also

 fmax(r, ry) al( -7y)
 A(r { min(r, r7) f

 and

 B() max(r, ry) bl(1 - -)

 { min(r, r7) f

 for any r E (0, 1).
 Standard results on the SPRT for simple null and alternative hypotheses, as given

 for example in chapter II of Siegmund (1985), may be generalized to the case of
 testing Ho: p <i -y against H1: p > -y to give

 pp( Yi-Ny > b) (N -Pp Yj- NY < a)
 i=l i=l

 I A(p) |B(P) A(p) for p <y, (1)
 {BA(p) - A p B(p)-lI

 I-A B(p) -A (p) forp> y
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 and

 (,t(p)-y[{B(p) - 1} log A(p) + {l - A(p)} log B(p)]/{B(p) - A(p)}

 Ep(N7h) =-for p <,7
 A . t(p)- [{B(p) - 1} A(p) log A(p) +11 - A(p)} B(p) log B(p)]/{B(p) - A(p)}

 forp > -y,
 (2)

 where

 ,ll(p):-Ep log 11 {min(p, p), max(p, p)}.

 From the power function approximation (1) we can then deduce the mean-squared
 error (MSE) of estimating I{p < ^y} by I{accept Ho},

 MSEp(I{accept Ho}) = Ep[{I(accept Ho) - I(p s< _y)}2]

 N I \ - A(p)
 K:p ( - Ny > b BCD)- A ) for p < Yb,

 I (Z iN #Y aAP B(p)-lI |Pp Yi - N-y <- a-A (p) B(p) -A(p) for p>-y.

 (3)

 4. SIMULTANEOUS SEQUENTIAL PROBABILITY RATIO TEST

 Suppose now that we want to estimate I{I (1- -yj) < p < (1 + -yj)} j 1, 2, ..., k,
 where 0 < ^Yi < Y2 < ... < yk < 1 are fixed. In other words, we want to test simul-
 taneously the nested hypotheses

 H C H2 C ... C Hk

 where Hj is the hypothesis that p E [(I - -yj), I (I + -y1)]. Let al, a2, ., ak, b1,
 b2,. .., bk be some fixed real constants satisfying the conditions

 I ajI <, bjy, j = I, 2, . . ., k, 4
 a, <-,a2 <, . . <. Sak < < bi <,b2 <, . *, bk-

 By considering (aj, bj) and (-bj, - aj) as critical value pairs for SPRTs ofp s 1 (1 + -y1)
 and p (I - -yj) respectively, we can generalize the SPRT algorithm in Section 3 to
 test {Hj} simultaneously.

 Define 4,=( 2(I-Yk-j+1), ?pk+j= (I+ yj) forj=I,2, . . .,k. Thus we have a
 sequence of fixed constants

 0 < w2 < h2 < . . . < cm < 1 (5)

 where m = 2k in this case.
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 Let Kj be the hypothesis p < Oj for j= 1, 2, . . ., m, so that

 K1cK2c... cKm

 are the one-sided counterparts of {H1, H2, . . ., Hk}. Testing {Kj} simultaneously is
 equivalent to determining an interval (4j, ,/j+1] for p, which in turn governs our
 decisions made on {Hj}. Thus, a simultaneous test of (Hj}, for j = 1, . . ., k, can be
 extended to a simultaneous test of {Kj}, for j= 1, 2, . . ., 2k.

 Let cj < 0 < dj be the critical value pair for the SPRT of Kj, i.e. we have

 C1 = -bk-j+l, dj = -ak-j+l

 and

 Ck+j= aj, dk+j= bj (6)

 for j= 1, 2, . . ., k. Note that {c;} and {dj} satisfy

 clI <- c2 <,.. A cm < O < di <- d2 **. dm (7)

 because of conditions (4).
 Now we shall present an algorithm for testing {Kj}, j 1,..., m, simultaneously

 in terms of {c;} and {dj}.

 Step 1: set t = 1, 1=1 and r = m.

 Step 2: sample Y,, Y,+l, . . . sequentially until we hit YT such that

 T

 EYi -TV), > di
 i=l

 or

 T

 S Yi-T'r < Cr
 i=l

 Step 3: if ET Yi- T4' > dl, then determine

 r ~ ~T
 I'=sup {lu < r: Y Y1- Tu >du}

 i=l

 and set r' = r + 1. If ,T 1 Yi- T4'r < Cr, then determine

 r'=inf {<u<r: Yi-T U c< CU}

 and set 1'= 1- 1.
 Step 4: if 1' = r then conclude p E (Pr, /-r+I] and stop. If r' = 1 then conclude
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 p E (4'-I, ]J and stop. Otherwise set t = T+ 1, 1= 1' + 1, r = r' - 1 and repeat
 steps 2-4.

 Note that we assume Vb0 = 0 and Pm+i = 1 by convention.
 The above procedure is in general applicable to any m one-sided hypotheses of the

 form (p < 1/41 for any fixed sequence {V)j} satisfying inequality (5) and any sequence
 of critical values {(cj, dj)} satisfying inequality (7). The particular set-up (6) of
 {(cj, d>)} in terms of ((aj, by)} satisfying inequalities (4) is assumed only because of the
 symmetric structure of the two-sided (Hj). This is not essential for implementing the
 above algorithm in general.

 This procedure preserves all the properties of an individual SPRT. In fact, it can be
 shown that it is equivalent to the implementation of its corresponding individual
 SPRTs separately.

 We give a few technical definitions before stating the important result given in
 proposition 1.

 Definition 1. Define a decision time to be any T encountered in step 2 of the above
 procedure.

 Definition 2. For each decision time T, define ST to be a subset of M=
 (1, 2, ... ., mn such that

 ST = (U E M: 1 < u < I' or r' < u < rl

 where 1, 1', r and r' take the values as assigned in step 3 of the above algorithm at the
 decision time T.

 Suppose that T1 < T2 < ... < Tf are all the decision times encountered during the
 implementation of the algorithm. Then, clearly,

 M =ST U ST2 U ... U STf

 is a disjoint union. Also, ST, :# 0 for i = 1, 2, . . ., f This enables us to make the
 following definition.

 Definition 3. Define Nj = Ti for j E ST, i =1, 2, . . ., f

 By the algorithm, we can see that a decision is being implicitly made about
 hypothesis Kj at the decision time Nj. For instance, if T is a decision time and

 T

 YE t- TV),>d,,
 i=l

 then ST = (1, 1 + 1, . . ., I'} and we reject Ku for all u E ST. This is consistent with our
 final conclusion reached at step 4. The overall stopping time of the whole procedure,
 N say, is thus given by

 N= Tf max (Nj). (8)
 jEP t 1 L pti.m

 Proposition 1. Let (cj, dj) be a pair of critical values used in the SPRT in Section 3
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 of the hypothesis Kj: p < 4'j, for j = 1, 2 . .., m, such that the sequences {fb} and
 {(cj, dj)} satisfy inequalities (5) and (7) respectively. Let M) be the stopping time of
 the SPRT corresponding to Kj, for j = 1, 2, . . ., m. Suppose that the same sequence
 {(cj, dj)} is used in the above procedure to test (Kj) simultaneously and Nj is the
 decision time corresponding to Kj, for] =1, .. ., m. Then, on the basis of sequential
 observations Y1, Y2, ..

 Nj N (J,

 forj 1, 2, .. .,m. l
 The proof of proposition 1 is straightforward and is given by Lee (1993).
 It follows from proposition 1 that the above procedure is equivalent to conducting

 the individual SPRTs in Section 3 separately on the sequential samples. The
 particular orderings (5) and (7) guarantee that their final conclusions are consistent
 with each other. From equation (8) it follows that

 N = max {Nf9)}.
 jE(l,. . . m}

 Viewing each hypothesis Kj individually as a problem of estimating I{p < L'O}, we
 arrive at the same estimate using either the simultaneous procedure above or the
 simple SPRT in Section 3. The MSE is thus given by the same approximate formula
 (3).

 Our original purpose of testing simultaneously the hypotheses (Hj} for j = 1,
 2, ..., k is now accomplished by taking the difference I{accept Kk+j}-I{accept
 Kk_j+1} as the estimate of I{2 (1 - -yj) < p < I (1 + yj)}. We shall call the overal
 procedure of testing {H;) as described in this section a simultaneous sequential
 probability ratio test (SSPRT). It basically consists of predetermining a set of critical
 value pairs satisfying inequalities (4) and implementing the above procedure on
 hypotheses (K1} using transformations (6) and

 (I ^(l-k-j+1) if j- III...,Ik,p

 2(I +Yj-k) if j =k + 1, ... ., 2k,

 for j = 1, 2, ... ., 2k. The determination of critical pairs (aj, bj) can be done via a
 Bayesian argument. A pnror distribution for p is assumed and (aj, b,)s found by
 minimizing the posterior expected sample size subject to conditions (4) and some
 desirable bound on the posterior expected error. We shall elaborate this point in the
 next section.

 Recall that for a fixed sample size C we have a natural estimator (1/C) Ec I Yc for
 p, based on the sample Y1, Y2,..., Yc. This in turn suggests a natural test of
 Hj I (I - yj) < p < 1 (1 + 1j). We simply reject Hj if and only if

 e sl cYC ts an the i a ( + fAunt

 We shall call this a fixed sample test and the indicator function
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 '1c

 [tC Yc E [1 (I - ^j), 2 (I + ^j)]}

 its corresponding fixed sample estimate of I{(l - -yj) < p < 2 (1 + -yj)}. Using the fact
 that Ec I Yc has a binomial(C, p) distribution, we may easily obtain the MSE of the
 fixed sample estimate.

 5. SEQUENTIAL ITERATED BOOTSTRAP CONFIDENCE INTERVAL

 In the algorithm for constructing the iterated bootstrap confidence interval,

 (yj)= E[I{I(1 -7j) < U* < I(1 +j)}IM]

 is approximated by

 B

 B III (I - -j) <- UJb 2(I + -Yj)}- (9)

 Since the value of U*b is generally not observable, we generate resamples
 Xb*l*, Xb*2*,. ... from X* to test the hypothesis I (1 - -y1) < (4 < I (1 + -yj). Noting
 that

 U=b =jP(O** < Oj Xt, X),

 and identifying Yi with I{b*i <, 09} and p with 4, the set-up is seen to be identical
 with that prescribed for the SSPRT in Section 4. Thus, for each outer level resample

 b, we can conduct an SSPRT to estimate I{I(I- y1) <, U* (I + y1)} for
 j = 1, 2, . . ., k, and fr(yj) is subsequently approximated via the estimate (9).

 Typically the bootstrap distribution of U* is asymptotically uniform over [0, 1].
 This suggests the choice of a uniform distribution as a prior distribution for p in the
 SSPRT: see also the related problem considered by Skovgaard (1992). This choice in
 turn sheds light on methods by which we may determine the critical values of the
 SSPRT.

 For simplicity we continue to use the notation Yi and p used in Section 3. Consider
 the error made about the hypothesis Hj: (- -yj) < p < l(l + j) using the SSPRT
 with critical value pairs (aj, bj). Define j 21= (1 + y).

 Assume that p has a prior uniform distribution over [0, 1], U[O, 1]. Then, using

 equations (3), we may obtain an approximation M((j, aj, bj) to the posterior MSE of
 the SSPRT about Hj.

 Similarly, by proposition 1 and the approximate formula (2) for Ep(Nj), we obtain
 an approximation N(Cj, aj, bj) to the posterior expected stopping time corresponding
 to Kk+j: p < (j, for j = 1, 2, . ., k. The hypotheses Kk-j+: p < 1 - j may be treated
 similarly.

 For a given number of levels -yl, -y2, . . ., yk used as interpolation points, a
 reasonable choice for the critical value pairs {(aj, bj)} can be obtained by minimizing
 jkl {N((j,aj, bj) + N(l - j, - bj, - aj)} subject to conditions (4) and error bounds
 on M(pj, aj, bj). The objective function is chosen as such because it provides an
 approximate upper bound for the posterior expected stopping time,
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 |Ep [ max {NjI] dp S E ( JEpNk+j dp + EpNk-j+l dp)
 Jo L I1Q1<2kJ 0r \J J

 k

 , N((j, aj, bj) + N(I1- (j - bj, -aj>)}.
 1=1

 In fact, we only need to minimize E' I N(%j, aj, bj) because

 N($-, aj, bj) = N(1 - j, - bj,- aj) for j =1, 23, . . ., k.

 The SSPRT is proposed as an alternative to full-blown inner level bootstrap

 resampling of simulation size C. A reasonable approach is to constrain M((j, aj, bj)
 to be the same error as that, Mf(Cj, C) say, incurred when testing Hj by a fixed sample
 test with sample size C.

 We can now formulate the problem of determining (aj, bj) as a proper optimization
 problem P:

 k

 minimize E N((j, aj, bj)
 j=1

 I laj I< Sbj j =1, 2,. . ., k,
 subjecttot a 1Sa2 S .... .Sak<O<b1 ,b2 S... bk,

 M(6, , aj , bj) = Mf (4, C),5 j= 1, 2, ... ., k,

 where ! = ( + 7j) for j= 1, . . ., k. The fixed sample size C can in turn be used as
 the terminating upper bound to the sequential stopping time of SSPRT, so that we
 are guaranteed to take fewer samples in our SSPRT than in a full-blown method.

 In practice, it is observed that we may safely assume that b = b2 =. .. = bk if the
 values of Mf(ti, C) are not too extreme. This assumption together with the facts
 that, for fixed ( and b, as a decreases N((, a, b) increases and M(t, a, b) decreases
 respectively, enable us to solve problem P efficiently by a simple, easily programmed,
 computer algorithm, which is available from the authors on request. Table I lists the

 optimal critical values (aj, bj) obtained by this means for several combinations of {Jy}
 and C. Also shown are simulated expected stopping times when these critical values
 are used and the distribution of p is uniform. These values are to be compared with
 the average number of inner level bootstrap samples drawn in the examples discussed
 in Section 6.

 We can now set down the full algorithm for constructing a sequential two-sided iter-
 ated bootstrap confidence interval of nominal level a for the parameter 0 of interest.

 Initialization step: choose a number of distinct levels 7y1 < 7y2 < . . . < yk close to a.
 Choose a terminating inner level simulation size C. Solve problem P for (aj, bj),
 j = 1,2,2 ..., k. A
 Step 1: compute 9 from X.
 Step 2: draw bootstrap resamples X1, X2, . . ., 4 from X. Compute 9K for each
 Ab, b= 1, 25. . ., B.
 Step 3: for each X*, draw bootstrap resamples X*, X,* . . . and compute cor-
 responding Y Y2,... sequentially, where Yi = j{0b*i* < 0}. Conduct an SSPRT
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 TABLE 1

 Critical values (aj, bj) and the corresponding optimal Nj = N((, aj, bj), where C- =(1 + -y1)/2, for various
 sets of ^yj and various full sample sizes C, obtained by solving the optimization problem P under further

 constraints that bj = bfor allit

 y2 Results for C= 150 Results for C=SOO Results for C =SOOO

 aj bj Nj N aj bj Nj N aj bj Nj N

 0.90 -1.746 2.807 12.76 -3.777 4.667 30.61 -13.36 13.42 132.1
 0.94 -1.068 2.807 9.003 29.67 -2.435 4.667 22.89 76.72 -8.666 13.42 100.8 380.1
 0.98 -0.308 2.807 3.389 -1.071 4.667 13.19 -4.263 13.42 66.67

 0.90 -1.715 2.867 12.71 -3.674 4.804 30.38 -13.35 13.43 132.1
 0.95 -0.891 2.867 7.973 29.32 -2.061 4.804 20.76 71.82 -7.608 13.43 93.30 347.0
 0.995 -0.000 2.867 0.000 -0.176 4.804 3.085 -1.840 13.43 40.20

 0.75 -3.083 3.870 21.28 -6.241 6.563 48.13 -20.32 20.32 200.6
 0.90 -1.467 3.870 13.20 49.36 -3.092 6.563 31.40 116.7 -10.46 20.32 137.9 557.3
 0.99 -0.026 3.870 0.412 -0.545 6.563 9.905 -2.790 20.32 68.72

 0.90 -1.773 2.760 12.82 -3.827 4.607 30.75 -13.34 13.44 132.1
 0.92 -1.482 2.760 11.35 -3.111 4.607 26.76 -10.86 13.44 115.8
 0.94 -1.077 2.760 8.983 31.08 -2.451 4.607 22.85 84.02 -8.661 13.44 100.8 459.5
 0.96 -0.786 2.760 7.186 -1.798 4.607 18.63 -6.548 13.44 85.48
 0.98 -0.308 2.760 3.365 -1.073 4.607 13.12 -4.262 13.44 66.54

 tSimulated stopping times N subject to critical values (aj, bj) and terminating times C are also given, based on 50 000
 simulations from U[0, 1].

 on Y1, Y2, . . . using the levels -yj and critical value pairs (aj, bj). While the number
 of resamples Xb** is smaller than C, terminate according to step 4 of the algo-
 rithm in Section 4 and obtain an interval (?L'(b), 'Ps(b)+1I for U*, some s(b) E
 {O, 1, . . ., 2k}. If the number of resamples Xb** reaches C, stop immediately and
 find s(b) such that (1/C) Si I Yi E (4)s(b), 'lIs(b)+1]. Set IbU(J) = 1 if

 (4'ss(b), 4's(b)+1] C [-(1 -yi) 2(1 + y)]

 and 0 otherwise, for j= 1, 2, . . ., k.
 Step 4: approximnate r(-yj) by (1/B) Ib
 Step 5: solve 7ri(6a) = a for 6Sa approximately by interpolating between (-y1, r(-y1))
 pairs constructed in step 4.
 Step 6: obtain the iterated interval as

 -ES 0 B, [B(1 -6')/2]+l B, [B(I -Fb)/2] +1]',

 where 0*B,1 - 9 - ... O 2B,B iS the ordered sequence of the 0* obtained in step 2,
 and 6Sa is approximated from step 5.

 For the implementation of step 5 above, we recommend the use of a monotone

 piecewise cubic interpolant to preserve monotonicity of the (-yj, {r(-yj))s. The solution
 Sa to ai(Sa) = can then be obtained easily by binary search.

 The initialization step depends only on our chosen error and simulation size
 constraints. The algorithm is ready for general use once initialized. The particular
 statistic 0 does not play a role in the structuring of the algorithm. The computational
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 imp,rovement made by the sequential procedure is thus unaffected by the complexity
 of 0, quite unlike many other modified iterated bootstrap procedures.

 Initialization requires us to choose a set of coverage levels -yj. Their number and
 actual values affect the expected number of sequential resamples. Overall, it is found
 that the algorithm works very efficiently, without losing much accuracy, with three
 suitably chosen levels close to 6a. Usually the percentile method interval gives a
 coverage probability that is below its nominal level a, so that we would expect
 7r(a) < a and 6,a > a in most cases. Therefore it is appropriate to take a=
 -yi < 72 < 73 < 1. For a = 0.90, we suggest 'y1 = 0.90, '72 = 0.94, and -y3 = 0.98.

 As for the optimal critical values (aj, bj) obtained by solving problem P, their
 effectiveness is governed largely by the assumption of a uniform distribution for UV.
 Numerical investigations using different underlying distributions for p suggest that
 the actual number of sequential resamples required is usually somewhat more than
 the theoretical approximations to the optimal size as revealed by problem P.
 However, the overall savings in computational cost are still very significant
 compared with the standard Monte Carlo method.

 6. SIMULATION STUDY

 6.1. Example 1: Ratio of Means
 We consider first the problem of constructing iterated bootstrap confidence

 intervals for the ratio of two means. This example has been studied by DiCiccio et al.
 (1992a, b).

 A random sample X = ((X1, Y1), (X2, Y2),. . ., (X", Y")) is drawn from a bivariate
 distribution F. Denote by (X, Y) a generic random variable distributed under F. The
 parameter of interest is 0 = EY/EX and the estimate is its sample version 0 = Y/X
 where X = n- Si l IXi and Y= n-El i Yi.

 The nominal level a of the confidence interval was taken to be 0.9. The sequential
 iterated bootstrap confidence interval was constructed using B = 1000 outer level
 bootstrap resamples from X and a terminating size C = 500 for the number of inner
 level sequential resamples. Three levels, ^YI = 0.90, '72 = 0.94 and -y3 = 0.98, were
 chosen for interpolation.

 Six different underlying distributions were considered, consisting of two types of
 data: normal and folded normal. For the normal data, we considered three cases:

 (a) mutually independent X, YI N(1, 1) so that 0 = 1;
 (b) mutually independent X - N(1, 1) and Y- N(10, 1) so that 0 = 10;
 (c) mutually independent X- N(10, 1) and Y- N(1, 1) so that 0 = 0.1.

 For the folded normal data, we considered transformations of a pair of mutually
 independent N(0, 1) random variables Z and W as follows:

 (a) X= IZI and Y= IW1 so that 0= 1;
 (b) X = IZI and Y = 1 + 9V(2/7r) so that 0 = 10;
 (c) X= IZI +9/(2/ir) and Y= 1W] so that 0= 0.1.

 For each of the six distributions we studied the two sample sizes n = 10 and n = 20.
 For each combination of sample size and underlying distribution, we approx-

 imated the coverage probability of the sequential iterated confidence interval by
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 averaging over 2000 simulations of data sets X from F, so that the estimated
 coverage has standard error 0.007. The whole exercise was repeated for percentile
 method confidence intervals for comparison, using the same simulated data from F
 and the same outer level bootstrap resamples.

 Table 2 reports the estimated coverage probabilities of both percentile and
 sequential iterated intervals obtained in this study. The average number of inner level
 sequential resamples actually drawn for the sequential intervals is given in
 parentheses following the estimated coverage.

 We observe that the sequential iterated confidence intervals significantly improve
 coverage accuracy over the percentile method. The coverage probabilities of the
 sequential intervals are so close to the nominal level 0.9 that they are believed to
 display little difference from the coverage probabilities of the standard full-blown
 iterated bootstrap confidence intervals. Moreover, the sequential procedure reduces
 the number of inner level resamples that are necessary for a full-blown procedure
 with similar coverage accuracy by about four-fifths and hence is much more efficient
 to implement.

 We observe that increasing the sample size n has the effect of reducing the number
 of sequential resamples that are necessary for each interval. This is consistent with
 the fact that our assumption of a uniform UV is only true in an asymptotic sense.

 The coverage probabilities given by our sequential procedure are comparable with
 the corresponding figures reported in DiCiccio et al. (1992a, b) for their analytical
 approximation procedure.

 6.2. Example 2: Variance
 The second example is the construction of confidence intervals for the variance of

 a univariate distribution. DiCiccio et al. (1992a) found their analytical approxi-
 mation method to be both accurate and efficient for this problem. Lee and Young

 TABLE 2

 Comparison of estimated coverage probabilities of bootstrap and sequential iterated
 bootstrap confidence intervals for the ratio of meanst

 True ratio Type of interval Coverage, n = 10 Coverage, n = 20

 Normal data
 1.0 Percentile 0.862 0.882

 Sequential iterated 0.890 (89.6) 0.893 (82.6)
 10.0 Percentile 0.878 0.884

 Sequential iterated 0.902 (87.7) 0.885 (81.8)
 0.1 Percentile 0.845 0.888

 Sequential iterated 0.902 (100.2) 0.905 (86.7)

 Folded normal data
 1.0 Percentile 0.855 0.880

 Sequential iterated 0.912 (102.0) 0.899 (87.6)
 10.0 Percentile 0.831 0.858

 Sequential iterated 0.879 (102.0) 0.884 (88.2)
 0.1 Percentile 0.828 0.869

 Sequential iterated 0.882 (101.9) 0.897 (88.1)

 tFor the sequential iterated bootstrap intervals, the average number of inner level resamples
 required for an interval is given in parentheses following the estimated coverage. This is subject
 to a terminating size of 500 inner level resamples.
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 (1993) provided a fast and accurate asymptotic solution free of any bootstrap
 resampling.

 A random sample X = (X1, X2, ., X") is drawn from a univariate distribution F.

 The parameter of interest 0 is taken to be the variance of F. Put X= n-' El I Xi and
 = n-1 Ei= (Xi- SO that i_ is the biased estimate of 9. Instead of using &0 for

 our estimate 0 as in Lee and Young (1993), we follow the example of DiCiccio et al.
 (1992a) and take 0 to be the unbiased estimate n6o/(n - 1).

 The nominal coverage level a was again taken to be 0.9. Three sample sizes n = 20,
 35 and 100 were considered. All coverage probabilities were approximated by
 averaging over 1600 data sets drawn from the underlying distribution F, so that the
 standard error of the estimated coverage was 0.01.

 Sequential iterated bootstrap confidence intervals were constructed using B = 1000
 outer level bootstrap resamples. They were subject to three different terminating
 numbers of inner level sequential resamples: C 150, 500 and 5000, in the cases
 n =20 and n = 35. For n = 100, only C = 150 was used as the terminating number
 for efficiency. The levels -yj used for interpolation were the same as those used in
 example 1. Their corresponding critical values (aj, bj) were drawn from Table 1.

 For comparison, the percentile method and the standard full-blown iterated
 bootstrap confidence intervals, based on the same outer level resamples, were also
 constructed. Percentile method intervals were constructed for all three sample sizes.
 For the far more computationally intensive full-blown intervals, only the sample size
 n = 20 was considered. These were based on three different numbers of inner level
 bootstrap resamples: C = 150, 500 and 5000.

 Four different underlying distributions were studied. These were the standard
 normal distribution N(0, 1), the folded standard normal distribution IN(0, 1)1, the
 double-exponential distribution with density exp(-Ixl)/2 and the log-normal
 distribution exp N(0, 1).

 The coverage results of the whole study are detailed in Table 3. As before, the
 average number of sequential resamples drawn at the inner level for the sequential
 iterated intervals is given in parentheses following the estimated coverage.

 We observe that in all cases the sequential iterated intervals give a substantial
 improvement in coverage accuracy compared with the percentile method and that
 their coverage probabilities remain very stable with the different values of C.

 However, the reduction in the number of inner level resamples drawn by the
 sequential procedure compared with the full size C required by the standard iterated
 method of similar error is more remarkable as C increases: compare the figures in
 parentheses with their corresponding terminating numbers C in Table 3. The figures
 show that the reduction ratio increases from about two-thirds for C = 150 to almost
 nine-tenths for C = 5000.

 Somewhat fewer inner level sequential resamples are required as the sample size n
 increases. Also, the number of sequential resamples depends to a slight degree on the
 underlying distribution.

 The coverage probabilities of the full-blown intervals are consistently closer to the
 nominal level than those of the sequential intervals, though by a very small margin.
 In contrast with the stability of coverage probabilities of sequential intervals, the full-
 blown procedure displays some small decrease in coverage probability as the number
 C of inner level resamples increases. This observation is consistent with the general
 theory about simulation error considered by Booth and Hall (1994).
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 TABLE 3

 Comparison of estimated coverage probabilities of bootstrap and iterated bootstrap confidence intervalsfor
 the variancet

 Type of interval Coverage, n = 20 Coverage, n = 35 Coverage, n = 100

 Normal data N(0, 1) (no skewness, no kurtosis)
 Percentile 0.763 0.810 0.869
 Sequential iterated, C= 5000 0.861 (532.0) 0.868 (482.8)
 Full blown, C =5000 0.871
 Sequential iterated, C= 500 0.858 (119.6) 0.869 (102.9)
 Full blown, C= 500 0.878
 Sequential iterated, C= 150 0.858 (42.92) 0.869 (37.89) 0.895 (33.09)
 Full blown, C = 150 0.881

 Folded normal data IN (0, 1) I (high skewness, low kurtosis)
 Percentile 0.733 0.774 0.845
 Sequential iterated, C= 5000 0.825 (525.6) 0.841 (494.2)
 Full blown, C= 5000 0.834
 Sequential iterated, C= 500 0.823 (125.8) 0.840 (111.0)
 Full blown, C=500 0.836
 Sequential iterated, C= 150 0.824 (44.61) 0.839 (40.23) 0.884 (34.82)
 Full blown, C= 150 0.843

 Double-exponential data (exp (-IxI)/2) (no skewness, high kurtosis)
 Percentile 0.723 0.793 0.837
 Sequential iterated, C= 5000 0.823 (543.8) 0.863 (508.4)
 Full blown, C= 5000 0.846
 Sequential iterated, C= 500 0.822 (130.4) 0.861 (115.0)
 Full blown, C= 500 0.849
 Sequential iterated, C= 150 0.822 (46.08) 0.859 (41.46) 0.883 (35.97)
 Full blown, C= 150 0.855

 Log-normal data expN(0, 1) (high skewness, high kurtosis)
 Percentile 0.434 0.514 0.617
 Sequential iterated, C= 5000 0.532 (537.7) 0.602 (525.5)
 Full blown, C= 5000 0.563
 Sequential iterated, C= 500 0.532 (148.4) 0.603 (138.4)
 Full blown, C= 500 0.563
 Sequential iterated, C= 150 0.532 (51.25) 0.602 (48.31) 0.708 (43.92)
 Full blown, C= 150 0.563

 tFor the sequential iterated bootstrap intervals, the average number of inner level resamples required for an interval
 is given in parentheses following the estimated coverage. This is subject to terminating size C= 5000, 500 and 150
 respectively.

 Overall, we observe that the computational savings due to our sequential drawing of
 inner level resamples are relatively unaffected by the parameter of interest or the
 underlying distribution: note the rather small variation in the number of sequential
 resamples among the various problem settings of both example 1 and example 2.
 Savings become slightly greater as the sample size increases.
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