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SUMMARY

For estimating the distribution of a standardized statistic, the bootstrap estimate is known
to be local asymptotic minimax. Various computational techniques have been developed to
improve on the simulation ef®ciency of uniform resampling, the standard Monte Carlo
approach to approximating the bootstrap estimate. Two new approaches are proposed
which give accurate yet simple approximations to the bootstrap estimate. The second of the
approaches even improves the convergence rate of the simulation error. A simulation study
examines the performance of these two approaches in comparison with other modi®ed
bootstrap estimates.
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1. INTRODUCTION

The problem of estimating the distribution function of a standardized statistic arises
frequently in a nonparametric setting. Two nonparametric estimators, the bootstrap
estimate and the second-order empirical Edgeworth expansion, are known to be
local asymptotic minimax in this context: see, for example, Beran (1982), Singh and
Babu (1990) and Lee (1993). Beran (1982) and Bhattacharya and Qumsiyeh (1989)
studied the relative performance of the bootstrap and the empirical Edgeworth
estimates of a distribution function: see also Hall (1990).

The evaluation of a second- or higher order empirical Edgeworth expansion
typically involves formidable analytic and algebraic calculation. The bootstrap
estimate, though analytically simpler, must usually be approximated by Monte Carlo
simulation. The simplest such simulation procedure is by means of uniform resam-
pling, which requires no analytic calculation, but may entail enormous computation
for an accurate approximation.

Much research has considered modifying the uniform resampling scheme to
enhance the e�ciency of bootstrap simulation. Hall (1992), appendix II, gave a
survey of modi®ed resampling methods. Efron and Tibshirani (1993), chapter 23,
classi®ed these methods as being of one of two types. The ®rst type combines pre-
and post-sampling adjustments. In an integration analogy, the approach amounts to
®nding an alternative measure with respect to which numerical integration can be
carried out more e�ciently. All existing methods of the ®rst type, when applied to
bootstrap estimation of distribution functions, sacri®ce the simplicity of the uniform
resampling mechanism. Further, the improvement is con®ned to a reduction in the
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magnitude of the leading simulation error term, not to the order of the convergence
rate.
A second type of computational technique, which requires purely post-sampling

adjustment, has been developed for approximating bootstrap estimates of expecta-
tions of smooth statistical functionals. See Oldford (1985), Davison et al. (1986),
Efron (1990) and Hall (1992), appendix II. It is analogous to the control function
method of numerical integration, as described by Hammersley and Handscomb
(1964). The integrand is approximated by a control function, usually the linear part
of the integrand, which has an analytically computable integral, and the remainder is
numerically integrated using straightforward Monte Carlo sampling.
Linear approximation cannot be applied as easily to distribution estimation prob-

lems. In that context the expectation is taken of an indicator function, 1{Tn4 x}
say, which has no obvious linear approximation with an analytically computable
expectation. Methods of the second type therefore receive much less attention in the
literature for distribution estimation. One such method, di�ering considerably from
the control function method, is described by Do and Hall (1992). The estimate is
taken to be the proportion of bootstrap resamples that give eTn 4 x, where eTn is the
sum of a quantile and a concomitant statistic. The quantile is obtained numerically
and is free of any resample quantities, whereas the concomitant statistic is calculated
from bootstrap resamples. Linear approximation therefore takes place, in some
sense, inside the indicator function 1{Tn4 x}. This approach, which, following Do
and Hall (1992), we shall term `Efron's method', reduces the simulation squared
error by a factor of order O(nÿ1=2), a signi®cant improvement over methods of the
®rst type.
In Section 3 alternative linear approximation techniques are used to combine the

uniform resampling and empirical Edgeworth approaches, to construct two di�erent
but related computationally e�cient methods of the second type. The simulation that
is necessary for these methods can, like Efron's method but unlike methods of the
®rst type, be done by uniform resampling. The second approach improves the
convergence rate of the simulation part of the mean-squared error (MSE) from the
common O(Bÿ1� to O�Bÿ1nÿ1��� for any � > 0, where B is the number of bootstrap
resamples taken and n is the sample size. This convergence rate improves on Efron's
method, which has a convergence rate of order O(Bÿ1nÿ1=2). Section 4 compares our
two approaches with other modi®ed bootstrap schemes. A simulation study is
reported in Section 5, followed by a discussion concerning the computational
requirements of our approaches. Proofs of two propositions concerning convergence
rates of our methods are given in Appendix A. Appendix B considers the issue of
bandwidth selection in our second linear approximation approach.

2. PROBLEM SPECIFICATION

Let X be a generic random variable distributed under an arbitrary d-variate
distribution G. For any � 2 Rd, the ith component of � is written ��i�. Denote by �G

the mean of G and de®ne

�i1 i2 : : : is�G� � EGf�Xÿ �G��i1��Xÿ �G��i2� : : : �Xÿ �G��is�g,
where ij � 1, 2, . . ., d, s � 1, 2, . . ., provided that the expectation exists under G.
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Let F be a ®xed distribution. Assume that A(x, �) is a smooth real-valued function
de®ned on Rd � Rd such that, for some open neighbourhood N(�F) of �F, we have

(a) A(�, �� � 0 for all � 2 N��F� and
(b) A(x, �) has continuous partial derivatives up to a certain order with respect to

x and � on N(�F)�N(�F).

De®ne, provided that the partial derivatives exist there,

ai1 i2 : : : ir��� �
@rA�x, ��

@xi1@xi2 : : : @xir

����
x��

for all � 2 N��F�,

where ij � 1, 2, : : :, d, r � 1, 2, : : : and xij denotes x
�ij� for convenience.

For any distribution G and a random sample X � �X1, : : :, Xn� drawn from G, we
de®ne a statistic

Tn�G� � n1=2 A� �X, �G�
where �X � nÿ1 �n

i�1 Xi. Assume further that Tn(G) is standardized in the sense thatXd
i�1

Xd
j�1

ai��G� aj��G� �ij�G� � 1 �1�

for all G with �G 2 N��F�. Condition (1) is equivalent to requiring a unit asymptotic
variance for Tn(G) under G as n!1. The de®nition of Tn(G) extends Bhattacharya
and Ghosh's (1978) notion of a `smooth function model', which has been used
extensively to help to elucidate the asymptotics of bootstrap procedures.

Denote the distribution function of Tn(G) under G, PGfTn�G�4 xg, by HG�x�, and
Tn(F ) by Tn. We are concerned with estimation of HF(x) at an arbitrary ®xed x 2 R.
Under regularity conditions on A and moment conditions on F, HF(x) admits an
Edgeworth expansion,

HF�x� � ��x� � nÿ1=2 p1�x� ��x� � nÿ1 p2�x� ��x� �O�nÿ3=2�, �2�
where the pj are polynomials with coe�cients depending on moments of F, and �
and � denote the standard normal distribution and density functions respectively.
See Hall (1992), section 2.4. In particular, we have

p1�x� � ÿA1 ÿ 1
6
A2�x2 ÿ 1�,

where

A1 � 1
2

Xd
i;j

aij��F� �ij �F � �3�

and

A2 �
Xd
i;j;k�1

ai ��F� aj��F� ak��F� �ijk�F � � 3
Xd

i;j;k;l�1
ai��F� aj��F� akl��F� �ik�F � �jl�F �: �4�

Section 3 details the procedures and asymptotic behaviour of our two new linear
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approximation methods of estimating HF(x). Results are given without explicit
concern for technical details of the su�cient conditions under which the asymptotics
hold. Full technical details are given by Lee (1993). Relevant sections are available
from the author on request.

3. TWO LINEAR APPROXIMATION APPROACHES

Let F̂n denote the empirical distribution function of a random sample X �
�X1, : : : , Xn� drawn from F. The bootstrap estimate HF̂n�x� of HF�x� admits an
empirical Edgeworth expansion similar to expression (2),

HF̂n�x� � ��x� � nÿ1=2 p̂1�x� ��x� � nÿ1 p̂2�x� ��x� �Op�nÿ3=2�, �5�
where p̂j is the sample version of pj, obtained by replacing population moments with
sample moments in its de®nition: see theorem 5.1 of Hall (1992). It is found, using
lemma 1, part (c), in Appendix A, that the MSE of HF̂n�x� is

MSEfHF̂n�x�g � EF�fHF̂n�x� ÿHF�x�g2� � nÿ2 v1�x� ��x�2 �O�nÿ5=2�,
where v1�x� � limn!1�n EF�fp̂1�x� ÿ p1�x�g2��. An optimality theorem proved by Lee
(1993) shows that the quantity nÿ2 v1�x� ��x�2 is in fact the leading term of the local
asymptotic minimax MSE of any estimator based on X . The bootstrap estimate
HF̂n�x�, or any empirical estimate admitting the same Edgeworth expansion (5) up to
O�nÿ1�, is therefore optimal in that sense. One such estimate is the second-order
empirical Edgeworth expansion

Ĵ2�x� � ��x� � nÿ1=2 p̂1�x� ��x� � nÿ1 p̂2�x� ��x�:
The ®rst of our approaches approximates HF̂n�x� by its ®rst-order empirical

Edgeworth expansion and simulates the remainder by uniform bootstrap resampling.
Linear approximation is to the post-expectation quantity, the distribution function
itself, rather than to the pre-expectation indicator function.
The second approach smooths the indicator function 1fTn 4 xg by a kernel-type

integral

hÿ1
�x
ÿ1

Kf�yÿ Tn�=hg dy:

The usual linear approximation method is then applied to the expected value of this
smooth integral function.
Both approaches enjoy the advantages of simple uniform resampling. They do

require, however, some simple preliminary analytic calculation. The necessary
computations, of sample moments and partial derivatives of A(x, �) up to the second
order, may be handled automatically by an exact derivative evaluation package
tailored to smooth function models, as described by Lee and Young (1995). The
numerical computations required in any application are performed easily by simply
specifying the particular form of standardized statistic for that application. No
symbolic computation is required. By contrast, Efron's method requires some form
of analytic distribution approximation procedure, such as saddlepoint methods
or methods of equating cumulants. This is then followed by inversion of the
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approximate distribution and the ordering of B bootstrap quantities to obtain the
concomitant order statistics.

3.1. First Approach: Simple Bootstrap Estimate Modi®ed by Edgeworth Expansion
The bootstrap estimate HF̂n�x� admits an empirical Edgeworth expansion

HF̂n�x� � ��x� � nÿ1=2 p̂1�x� ��x� � op�nÿ1=2�: �6�
Assuming that p̂1�x� can be evaluated exactly from the sample moments of X , it is
then the remainder term op�nÿ1=2� which requires approximation by Monte Carlo
simulation. Using theorem 2.1 of Hall (1992) and making standard conversions
between cumulants and moments, we can show that the ®rst three moments of Tn

satisfy

EFTn � nÿ1=2A1 �O�nÿ3=2�, �7�
EFT

2
n � 1�O�nÿ1�, �8�

and

EFT
3
n � nÿ1=2�A2 � 3A1� �O�nÿ3=2�, �9�

where A1 and A2 are given by equations (3) and (4) respectively. Thus we can write

nÿ1=2 p1�x� � ÿ 1
2
�3ÿ x2�EFTn ÿ 1

6
�x2 ÿ 1�EFT

3
n �O�nÿ3=2�,

suggesting that the op�nÿ1=2�-term in equation (6) equals EF̂nSn* up to order Op�nÿ1�,
where

Sn* � 1fTn*4 xg ÿ��x� � f1
2
�3ÿ x2�Tn*� 1

6
�x2 ÿ 1�Tn*

3g ��x�
and Tn* is the bootstrap version of Tn under F̂n. A trivial Monte Carlo approximation
to EF̂nSn*, based on uniform resamples X 1*, : : :, XB*, is

1

B

XB
b�1

1fT*n;b 4 xg ÿ��x� �
�
1

2
�3ÿ x2�T*n;:� 1

6
�x2 ÿ 1�Tn;:*

3

�
��x� �10�

where T*n;b � n1=2 A� �Xb*, �X�, �Xb* denotes the sample mean of X b*,

T*n;: � Bÿ1
XB
b�1

T*n;b

and

Tn;:*
3 � Bÿ1

XB
b�1

T*3n;b:

Combining expression (10) with the (directly computable) ®rst-order empirical
Edgeworth expansion of HF̂n�x�, we obtain a modi®ed estimate
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H*M � nÿ1=2 p̂1�x� ��x� � 1

B

XB
b�1

1fT*n;b 4 xg �
�
1

2
�3ÿ x2�T*n;:� 1

6
�x2 ÿ 1�Tn;:*

3

�
��x�:

The following proposition establishes the MSE of H*M. The proof is given in
Appendix A.

Proposition 1.

MSE�H*M� � nÿ2 v1�x� ��x�2 � Bÿ1���x�f1ÿ��x�g ÿ f1� 1
6
�x2 ÿ 1�2g ��x�2�

�O�nÿ5=2 � Bÿ1nÿ1=2�:

3.2. Second Approach: Smoothed Bootstrap Estimate
Let K be an rth-order kernel function for an even integer r5 2 such that

(a) �
K�y� dy � 1,�

yj K�y� dy � 0, 14 j4 rÿ 1,�
yrK�y� dy � � 6� 0,

(b) K is symmetric
(c) �

jyr�2 K�y�j dy <1,

(d) jKj, jK0j and jK00j are bounded and
(e) jK�x�j4C�1� jxj�ÿ� for some C, � > 0.

Let h be a smoothing bandwidth such that h?0 as n??.
By integrating the kernel density estimator of the conditional density of Tn* given
X , we obtain a kernel estimator of HF̂n�x�, given by

1

hB

XB
b�1

�x
ÿ1

K

�
yÿ T*n;b

h

�
dy:

The idea of linear approximation can be applied to this estimator to improve
simulation accuracy.
First de®ne

Ln � n1=2
Xd
i�1
� �Xÿ �F��i� ai��F�

and
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Ln* � n1=2
Xd
i�1
� �X*ÿ �X��i� ai� �X�,

where �X* denotes the sample mean of a generic uniform bootstrap resample X*
drawn from X . De®ne

Q*n;h�x� � 1

hB

XB
b�1

��x
ÿ1

K

�
yÿ T*n;b

h

�
dyÿ

�x
ÿ1

K

�
yÿ L*n;b

h

�
dy

�
where L*n;b denotes the realization of Ln* based on X b*. De®ne also

Q̂n�x� ���x� ÿ 1

6
nÿ1=2 �x2 ÿ 1� 
̂ ��x� ÿ nÿ1x

�
1

24
�̂�x2 ÿ 3�

� 1

72

̂2�x4 ÿ 10x2 � 15�

�
��x�

where


̂ �
Xd
i; j;k�1

ai� �X� aj� �X� ak� �X� �ijk�F̂n�,

�̂ �
Xd

i; j; k; l�1
ai� �X� aj� �X� ak� �X� al� �X� �ijkl�F̂n� ÿ 3:

A modi®ed estimate of HF(x) can now be de®ned as

H*K � Q̂n�x� �Q*n;h�x�:
Q̂n�x� depends only on ®rst partial derivatives of A�x, �� and can therefore be
computed directly. It resembles the linear part of the usual linear approximation
method. Only the quantity Q*n;h�x� requires simulation, using uniform resampling.
The MSE of H*K is given in the following proposition.

Proposition 2. Assume that h / nÿ1=�r�2�ÿ� for some small � > 0. Then

MSE�H*K� � nÿ2 v1�x� ��x�2 �O�Bÿ1nÿ��r; �; ��� � o�nÿ2�,
where

��r, �, �� � 1ÿ 1

2�r� 2�
�
3� 1

1� 4�

�
ÿ 2�:

In particular, for any � > 0, we may either

(a) choose � to be su�ciently large and � to be su�ciently small such that

MSE�H*K� � nÿ2 v1�x� ��x�2 �O�Bÿ1nÿ�2r�1�=�2r�4���� � o�nÿ2�
or

(b) choose r to be su�ciently large and � to be su�ciently small such that
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MSE�H*K� � nÿ2 v1�x� ��x�2 �O�Bÿ1nÿ1��� � o�nÿ2�:
The proof is given in Appendix A. In the proof we occasionally replace the exact
order terms by rough bounds. The actual convergence rate of the simulation part of
the MSE might therefore be far faster than the proposition suggests. Conservative as
it might be, the result is already encouraging in that we have de®ned a simulation-
based method which improves the convergence rate of simulation squared error to
O�Bÿ1nÿ1���, for any � > 0. This convergence rate is a substantial improvement
even on that of Efron's method. The requirement that r be su�ciently large and � be
su�ciently small can easily be met by choosing K to be a polynomial of su�ciently
high degree and h to be slightly smaller than a ®xed multiple of nÿ1=�r�2�. In contrast,
the requirement that � be su�ciently large can be met by choosing K, for example, to
have an exponential tail or bounded support.
The condition h / nÿ1=�r�2�ÿ� serves only to yield a high convergence rate for the

MSE. The precise issue of optimal bandwidth selection is more delicate. One
possibility is to approximate the bandwidth that minimizes the asymptotic MSE. An
outline of this approach is given in Appendix B, under the condition that B increases
with the sample size.
One possible drawback to the use of a kernel of higher than second order is the

possibility of negativity or lack of monotonicity of the smoothed bootstrap distri-
bution function estimate. In the empirical study reported in Section 5, these problems
were not apparent, at least for the range of values over which the estimates were
obtained. Trivial numerical methods, such as ®tting a monotone curve to the estim-
ates, might be applied in practice to prevent such problems.
The assumption of a smooth function model is not essential for construction of

H*K. For example, we might alternatively de®ne L*n � �n
j�1 �̂jMj*, where Mj* is the

number of appearances of Xj in the bootstrap resample X* and the �̂j are found by
minimizing EF̂nf�Tn*ÿ Ln*�2g: see Do and Hall (1992). Such a method does not rely on
a smooth function model and can therefore be applied more generally, distinguishing
H*K from the second-order empirical Edgeworth estimate Ĵ2�x�. However, evaluation
of the conditional expectation given X would generally involve some kind of
computationally demanding Monte Carlo approximation.

4. COMPARISON WITH OTHER BOOTSTRAP ESTIMATES

From the propositions, we see that the MSEs of both H*M and H*K contain a
sampling error term of size nÿ2 v1�x� ��x�2, which is the local asymptotic minimax
error. This means that we can in theory make the estimates asymptotically optimal
by letting B!1.
Table 1 summarizes the sampling and simulation parts of the MSEs of our two

linear approximation approaches. Listed also are corresponding results for other
estimates which are optimal in the above sense. These include approximate bootstrap
estimates based on uniform resampling (denoted by H*U), balanced resampling
(denoted by H*B), importance resampling (denoted by H*I ), antithetic resampling
(denoted by H*A) and Efron's method (denoted by H*E). See Hall (1992), appendix II,
for an overview of the resampling procedures and Do and Hall (1992) for details of
Efron's method. An outline derivation of the MSEs is given in Lee (1993), appendix
D. Results corresponding to two simulation-free estimates, the standard bootstrap
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estimate HF̂n�x� and the second-order empirical Edgeworth expansion Ĵ2�x�, are also
given for reference.

We see that H*K achieves the best convergence rate of simulation error. The esti-
mator H*M compares favourably with H*B and H*U uniformly in x but is inferior to
the other second-type methods in terms of the convergence rate of the simulation
error.

A point should be made about monotonicity of the various bootstrap estimates.
All estimates of the ®rst type and H*E are monotonic in x, as they are de®ned via
proportions of bootstrap resamples. Our estimatorsH*M andH*K, as well as Ĵ2�x�, are
not monotonic in general, as they all depend on some ®nite Edgeworth expansion,
which is generally not a monotone function: see the discussion in section 3.8 of Hall
(1992). The lack of monotonicity for our two approaches does not, however, seem to
cause much problem in practice.

5. SIMULATION STUDY

A simulation study was carried out to examine the performance of our two
approaches. Both H*M and H*K were compared against H*U , H*E and Ĵ2�x�. The
performance of H*E relative to other modi®ed resampling methods was studied in Do
and Hall (1992) and is omitted in this paper.

Our examples and simulation scheme follow Do and Hall (1992). The statistics of
interest are the standardized mean n1=2� �Xÿ �F�=�̂ and the standardized variance
n1=2��̂2 ÿ �2F�=�̂ . Here

�X � nÿ1
Xn
i�1

Xi,

�̂2 � nÿ1
Xn
i�1
�Xi ÿ �X�2,

�̂2 � nÿ1
Xn
i�1
�Xi ÿ �X�4 ÿ �̂4,
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TABLE 1

Leading terms of asymptotic MSEs of various bootstrap distribution function estimators

Leading terms of asymptotic MSE

Due to sampling Due to simulation

First type H*U
H*B

nÿ2 v1�x� ��x�2
nÿ2 v1�x� ��x�2

Bÿ1 ��x�f1ÿ��x�g
Bÿ1 ���x�f1ÿ��x�g ÿ ��x�2� (provided that n4B4 n�, some �5 1�

H*I nÿ2 v1�x� ��x�2 Bÿ1f��xÿ A� exp�A2� ÿ��x�2g�A > 0 chosen to minimize
��xÿ A� exp�A2�

H*A nÿ2 v1�x� ��x�2 Bÿ1 q�x���x�f1ÿ��x�g some q�x� 2 �0, 1)
Second type H*M nÿ2 v1�x� ��x�2 Bÿ1���x�f1ÿ��x�g ÿ f1� 1

6
�x2 ÿ 1�2g ��x�2�

H*K nÿ2 v1�x� ��x�2 O�Bÿ1nÿ1��� any � > 0 (provided that kernel and bandwidth
chosen suitably)

H*E nÿ2 v1�x� ��x�2 Bÿ1 nÿ1=2 ��x�ÿ1 ��x� ��x� (some ��x�; nc1 4B4 nc2 , some
c2 > c1 > 1�

Non-simulation HF̂n �x� nÿ2 v1�x� ��x�2 0
based Ĵ2�x� nÿ2 v1�x� ��x�2 0



�F � EF�X�, �2F � varF�X�, X � �X1, : : :, Xn� is a random sample and X a generic
random variable from the distribution F. Two distributions, the standard normal,
N(0, 1), and the negative exponential of unit rate, exp(1), were considered in the
standardized mean example. In the standardized variance example, only N(0, 1) was
considered. Two sample sizes, one small (n � 10) and one medium (n � 50), were
used in each case.
A set of 50 random samples was drawn from F. From each random sample the

corresponding bootstrap estimate was approximated by averaging over 100 000
uniform bootstrap resamples. Ignoring the negligible simulation error, we denote this
estimate by HF̂n�x�. The simulation-free estimate Ĵ2�x� was also computed for each
random sample. Another independent set of B � 200 uniform bootstrap resamples
was drawn from each random sample for construction of the modi®ed bootstrap
estimates.
For H*K, two kernels were considered:

K2�x� �
35

32
�1ÿ x2�3, jxj4 1,

0, otherwise,

8<:
and

K6�x� �
3465

4096
�1ÿ x2�3�3ÿ 26x2 � 39x4�, jxj4 1,

0, otherwise:

8<:
Then K2 and K6 are of second and sixth orders respectively, and both have two
continuous derivatives. The bandwidth h was chosen to be nÿ1=4 for K2 and nÿ1=8 for
K6 for convenience: proposition 2 asserts that h / nÿ1=�r�2�ÿ�, for any small � > 0, is a
reasonably good choice for an rth-order kernel.
For H*E , the �th quantile of the distribution function, Ĵn, of

Ln* � n1=2
Xd
i�1
� �X*ÿ �X��i� âi� �X�

was obtained approximately by a saddlepoint method, as described by Davison and
Hinkley (1988). The remaining steps for constructing H*E then followed Do and Hall
(1992).
For each random sample from F, the procedures for constructing H*U , H*K, H*M

andH*E were carried out 50 times from 50 independent runs of uniform resampling of
200 bootstrap resamples. We computed separately the average DI of fH*ÿHF̂n�x�g2
and the average DT of fH*ÿHF�x�g2 over these 50 independent runs, for each
random sample. Here H* denotes the estimate in question. The quantities DI and DT

were then averaged over the 50 random samples to give, say dI and dT respectively.
Then dI and dT are approximate MSEs of H* about the bootstrap estimate HF̂n�x�
and the true parameter HF(x) respectively. The measures dI and dT were also
calculated for Ĵ2�x� by averaging over the 50 random samples. Do and Hall (1992)
considered only dI. Denoting by dUI and dUT the values of dI and dT respectively for
H* � H*U , the ratios d

U
I =dI and dUT =dT were then computed for Ĵ2�x� and for each H*.

These ratios are measures of e�ciency relative to uniform resampling.
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Our simulation results are reported in Figs 1±3. The curves were obtained by linear
interpolation of points calculated at values of x set to the 5th, 10th, 25th, 50th,
75th, 90th and 95th percentiles of the true distribution. The reference line marks the
unit level, so that any estimate with its ratio curve above this line has a smaller
approximate MSE than H*U .

We see thatH*K andH*E are generally more e�cient in approximating eitherHF̂n�x�
or HF(x), especially towards the centre of the distribution or when n has a medium
size like 50. The estimate H*M performs rather poorly relative to the other estimates.
Not until n is su�ciently large does it even compare favourably with H*U . It is far less
e�cient than H*K and H*E in all cases, in accordance with its slower simulation MSE
convergence rate. The estimate H*K compares favourably with the other bootstrap
estimates. It is especially e�cient in the standardized mean example under N(0, 1)
where it has a relative e�ciency reaching as much as 120 for n � 50 (Fig. 1).

Between the two kernels, K2 and K6, chosen for H*K, there is little noticeable
di�erence in e�ciency. The sixth-order kernel K6 seems to perform slightly better
than K2 in most cases, except in the variance example.

In general, modi®ed estimates of the second type are more e�cient when
estimating HF(x) than when estimating HF̂n�x�: compare the ratio ®gures in parts (a)
and (c) with parts (b) and (d) of Figs 1±3. Also, the e�ciency improvement of H*K
over other bootstrap estimates is more pronounced when the MSE is measured about
HF(x). See, for example, Fig. 2.

The second-order empirical Edgeworth estimate Ĵ2�x� displays a more erratic
performance. Whereas it compares favourably with the bootstrap estimates in the
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Fig. 1. Standardized mean example under N(0, 1): ratios dUI =dI ((a), n � 10; (c), n � 50) and dUT =dT
((b), n � 10; (d), n � 50) interpolated from simulation results obtained at seven values of x, for
estimates H*U (Ð, reference), H*K (.........., kernel (order 2); - - - -, kernel (order 6)), H*M (± ± ±,
modi®ed), H*E (Ð Ð, Efron) and Ĵ2�x� (Ð . Ð, Edgeworth) based on B � 200



mean example, its performance is as bad as H*M in the variance case, suggesting the
inadequacy of methods based on Edgeworth expansion for this case.

In summary, it is found that the closer to normality the distribution, the better is
the performance of each of the modi®ed bootstrap estimates. The accuracy depends
to a great extent on the accuracy of truncated Edgeworth expansions. The relative
empirical performance of the bootstrap estimates generally agrees with the
asymptotics. The estimates H*E and H*K yield signi®cant improvement over H*U
and H*M.
A ®nal point is made about the computational requirements of the various

estimates. The estimates H*M, H*K and H*E all require a preliminary round of analytic
computation on top of the usual uniform resampling simulation. For H*M and H*K,
this involves the evaluation of sample moments and derivatives of A�x, ��. The
additional computation is negligible compared with the bootstrapping step. In the
case of H*E , a numerical algorithm for saddlepoint approximation will generally be
required. We observe in practice that H*U and H*M are almost identical in com-
putational demand. Slightly greater computation is required for construction of H*K
and H*E , but the increase is insigni®cant compared with the overall computational
demands of the bootstrap resampling.
In terms of analytic calculation, H*K should, strictly, be simpler to calculate than

H*M or H*E , since second derivatives of A�x, �� are required for H*M and numerical
procedures are required in the construction of H*E . A small computational price to
pay for H*K and H*E lies in the need to calculate Ln* for each bootstrap resample, but
this is typically much easier than calculating Tn* because of the linear nature of Ln*.
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Fig. 2. Standardized mean example under exp(1): ratios dUI =dI ((a), n � 10; (c), n � 50) and dUT =dT ((b),
n � 10; (d), n � 50) interpolated from simulation results obtained at seven values of x, for estimates H*U
(Ð, reference),H*K (.........., kernel (order 2); - - - -, kernel (order 6)),H*M (± ± ±, modi®ed),H*E (ÐÐ,
Efron) and Ĵ2�x� (Ð . Ð, Edgeworth) based on B � 200



We have provided in this paper methods for e�cient Monte Carlo approximation
to bootstrap distribution functions. It is apparent from the simulation that e�ciency
gains over alternative methods, in particular uniform resampling, are greater in the
centre of the distribution than in the tails. Many applications, such as the
construction of con®dence intervals, require a good estimation in the tails of the
distribution and here e�ciency gains appear slight, in small samples. The methods,
which are speci®cally designed to require only uniform resampling, provide sub-
stantial gains over uniform resampling in moderate sample sizes, which are in any
case necessary for the construction of accurate con®dence intervals.

APPENDIX A

We begin with a lemma describing the expectation, variance and MSE of the bootstrap
estimate HF̂n �x�. The proof follows by subtracting the Edgeworth expansions (5) and (2) and
noting that coe�cients of polynomials pj depend smoothly on moments of F.

Lemma 1. The expectation, variance and MSE of the bootstrap estimate HF̂n�x� satisfy
(a) EF�HF̂n�x�� � HF�x� �O�nÿ3=2�,
(b) varFfHF̂n�x�g � nÿ2v1�x� ��x�2 �O�nÿ5=2� and
(c) MSEfHF̂n�x�g � nÿ2 v1�x� ��x�2 �O�nÿ5=2�,

where v1�x� � limn!1�n EF�fp̂1�x� ÿ p1�x�g2��:
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Fig. 3. Standardized variance example under N(0, 1): ratios dUI =dI ((a), n � 10; (c), n � 50) and dUT =dT
((b), n � 10; (d), n � 50) interpolated from simulation results obtained at seven values of x, for
estimates H*U (Ð, reference), H*K (.........., kernel (order 2); - - - -, kernel (order 6)), H*M (± ± ±,
modi®ed), H*E (Ð Ð, Efron) and Ĵ2�x� (Ð . Ð, Edgeworth) based on B � 200



Proof of proposition 1. Noting that

EF̂nTn* � nÿ1=2Â1 �Op�nÿ3=2�,
EF̂nTn*

2 � 1�Op�nÿ1�
and

EF̂nTn*
3 � nÿ1=2�Â2 � 3Â1� �Op�nÿ3=2�

are the sample versions of equations (7), (8) and (9) respectively, and that

p̂1�x� � ÿÂ1 ÿ 1
6
Â2�x2 ÿ 1�,

we have

EF̂n �H*M� � HF̂n �x� �Op�nÿ3=2�:
Then by lemma 1, part (a),

biasF�H*M� � EF EF̂n �H*M� ÿHF�x� � O�nÿ3=2�:
Also, noting that

EF̂n �H*M� ÿ EF�H*M� � nÿ1=2fp̂1�x� ÿ p1�x�g ��x� �Op�nÿ3=2�
we have

varF�EF̂n �H*M�� � nÿ2 v1�x� ��x�2 �O�nÿ5=2�:
Next we consider the simulation error of H*M, namely EF varF̂n �H*M�. In general, it can be
shown that

EF̂n �Tn*
j� � nÿ�jfB̂j �Op�nÿ1�g �11�

where

�j �
1
2
, for j odd,
0, for j even.

�
In particular, we have

B̂1 � Â1, B̂2 � 1, B̂3 � Â2 � 3Â1, B̂4 � 3, B̂6 � 15:

De®ne

M̂j � EF̂n �Tn*
j�

and

Îj � EF̂n �Tn*
j; Tn*4 x�:

Then we have
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varF̂n �H*M� � 1

B
HF̂n �x�f1ÿHF̂n�x�g �

1

4
�3ÿ x2�2 ��x�2 Bÿ1�M̂2 ÿ M̂2

1�

� 1

36
�x2 ÿ 1�2 ��x�2 Bÿ1�M̂6 ÿ M̂2

3� � �3ÿ x2� ��x� Bÿ1fÎ1 ÿHF̂n �x�M̂1g

� 1

3
�x2 ÿ 1� ��x�Bÿ1fÎ3 ÿHF̂n�x�M̂3g

� 1

6
�3ÿ x2��x2 ÿ 1� ��x�2 Bÿ1�M̂4 ÿ M̂1M̂3�: �12�

We may show

Î1 � ÿ��x� �Op�nÿ1=2�, �13�
and

Î3 � ÿ�x2 � 2� ��x� �Op�nÿ1=2�: �14�
Therefore, substituting equations (11), (13) and (14) into equation (12) and taking the
expectation, we obtain

EF varF̂n�H*M� � Bÿ1���x�f1ÿ��x�g ÿ f1� 1
6
�x2 ÿ 1�2g ��x�2� �O�Bÿ1nÿ1=2�:

The result of the proposition thus follows by noting that

MSE�H*M� � EF varF̂n�H*M� � varF�EF̂n �H*M�� � biasF�H*M�2: &

Proof of proposition 2. Approximating HF̂n�x� by its second-order empirical Edgeworth
expansion Ĵ2�x� and Taylor expanding Ĵ2�xÿ hu� in powers of h, we deduce

EF̂n

�
1

h

�x
ÿ1

K

�
yÿ Tn*

h

�
dy

�
�
�
K�u�HF̂n �xÿ hu� du

� Ĵ2�x� � r!ÿ1hr� Ĵ�r�2 �x� �Op�hr�2 � nÿ3=2�: �15�
Similarly, it can be shown that

EF̂n

�
1

h

�x
ÿ1

K

�
yÿ Ln*

h

�
dy

�
� Q̂n�x� � r!ÿ1hr� Q̂�r�n �x� �Op�hr�2 � nÿ3=2�: �16�

Subtracting equations (15) and (16), and using the fact that

Ĵ
�r�
2 �x� � Q̂

�r�
n �x� �Op�nÿ1=2�,

we have

EF̂n �H*K� � Q̂n�x� � EF̂n �Q*n;h�x��
� Ĵ2�x� � r!ÿ1hr�fĴ�r�2 �x� ÿ Q̂

�r�
n �x�g �Op�hr�2 � nÿ3=2�

� HF̂n �x� �Op�hrnÿ1=2 � hr�2 � nÿ3=2�:
Thus, by lemma 1, part (c), the MSE of EF̂n �H*K� as an estimator of HF(x) is given by
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MSE�EF̂n �H*K�� � nÿ2 v1�x� ��x�2 �O�nÿ5=2 � hrnÿ3=2 � hr�2nÿ1 � h2r�4�: �17�
Next we consider the simulation error of H*K. Note that

varF̂n �H*K� � varF̂nfQ*n;h�x�g � Bÿ1 varF̂n �D*n;h� �18�
say, where

D*n; h � 1

h

�L�n
T�n

K

�
xÿ y

h

�
dy:

Now take any M!1 such that Mh! 0 as n!1. Then using Taylor expansion,
condition (e) on K and the fact that Ln*ÿ Tn* � Op�nÿ1=2�, we may show that

EF̂n �D*2n; h� � Op�Mÿ2�nÿ1hÿ2 �M1=2nÿ1hÿ3=2 � nÿ7=4hÿ2 � nÿ3=2hÿ3�: �19�
Also,

EF̂n �D*n;h� � EF̂n �Q*n; h�x�� � Op�nÿ1=2 � hr�2�: �20�
It follows from equations (19) and (20) that

varF̂n�D*n; h� � Op�Mÿ2�nÿ1hÿ2 �M1=2nÿ1hÿ3=2 � nÿ7=4hÿ2 � nÿ3=2hÿ3 � nÿ1 � h2r�4�: �21�
The MSE of H*K can now be obtained by combining equations (17), (18) and (21), giving

MSE�H*K� �MSE�EF̂n �H*K�� � EF�varF̂n �H*K��
� nÿ2 v1�x� ��x�2 �O�nÿ5=2 � hrnÿ3=2 � hr�2nÿ1 � h2r�4�
�OfBÿ1�Mÿ2�nÿ1hÿ2 �M1=2nÿ1hÿ3=2 � nÿ7=4hÿ2 � nÿ3=2hÿ3 � nÿ1�g, �22�

where h! 0, M!1 and Mh! 0 as n!1.
The proof of the proposition is completed by adjusting h and M so that the OfBÿ1���g term

in equation (22) is minimized. &

APPENDIX B

We describe a heuristic approach to determining an optimal formula for the smoothing
bandwidth h in our second linear approximation method.

First, we write Tn � Ln � nÿ1=2Rn, and let gn and fLn be the joint density of (Ln, Rn) and the
marginal density of Ln respectively.

Assuming validity of Taylor expansions up to an in®nite order, we have

HF�x� �
�x
ÿ1

dt

�
gn�tÿ nÿ1=2v, v� dv

�
X
s5 0

s!ÿ1�ÿ1�snÿs=2
�x
ÿ1

@s

@ts
fLn �t� E�Rs

njLn � t� dt

�
�x
ÿ1

fLn�t� dtÿ
X
j5 0

� j� 1�!ÿ1�ÿ1� jnÿ� j�1�=2 @ j

@xj
fLn �x�E�Rj�1

n jLn � t�: �23�
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Assume that the bootstrap versions of densities gn and fLn admit Edgeworth expansions
denoted respectively by ĝn and f̂L�n . Set

Î �
�x
ÿ1
� f̂L�n ÿ fLn�,

�̂j � j!ÿ1�ÿ1� j @
jÿ1

@xjÿ1 f f̂L�n �x� EF̂n �Rn*
jjLn* � x� ÿ fLn�x� E�Rj

njLn � x�g,

Ĉj; s � f�s� 1�!� jÿ s�!gÿ1�ÿ1�s
�
yjÿs K�y� dy @ j

@xj
f̂L�n �x� EF̂n �Rn*

s�1jLn* � x�:

Using expansion techniques similar to those giving equation (23), we obtain

EF̂n �H*K� ÿHF�x� � Î�
X
j5 1

nÿj=2�̂j ÿ
X
j5r

Xjÿr
s�0

h jÿsnÿ�s�1�=2Ĉj; s: �24�

Note that
�
yj K�y� dy � 0 for odd j by symmetry of K and that typically

Î � Op�nÿ1�, �̂j � Op�nÿ1=2�, Ĉj; s � Op�1�,
EÎ � O�nÿ3=2�, E�̂j � O�nÿ1�, EĈj; s � Cj; s �O�nÿ1�,

�25�

where Cj,s denotes the population version of Ĉj; s. Squaring and taking the expectation of
expression (24), and using equations (25), we arrive at an asymptotic expansion for the MSE
of EF̂n �H*K� as an estimator of HF(x),

MSE�EF̂n �H*K�� � E�Î� nÿ1=2�̂1�2 � h2rnÿ1C2
r; 0 ÿ 2hrnÿ1=2 EĈr;0�Î� nÿ1=2�̂1�

� O�nÿ5=2 � h2r�2nÿ1 � h2rnÿ3=2 � hr�2nÿ2�: �26�
Similarly an asymptotic expansion can be found for the expected conditional variance of H*K:

E varF̂n�H*K� � Bÿ1nÿ1hÿ1
��

K 2

�
fLn �x�E�R2

njLn � x� �O�Bÿ1nÿ1 � Bÿ1nÿ2hÿ3�: �27�

Summing equations (26) and (27) gives an expansion for the overall MSE of H*K.
For simplicity we consider a special case where B � B0n

� with B0 > 0 and 0 < � <
�2r� 1�=r. In this case we have

MSE�H*K� � E�Î� nÿ1=2�̂1�2 � h2rnÿ1C2
r; 0 � nÿ�ÿ1hÿ1 Bÿ10

��
K 2

�
fLn �x� E�R2

njLn � x�

� O�nÿ5=2 � h2r�2nÿ1 � h2rnÿ3=2 � hrnÿ2 � nÿ�ÿ1 � nÿ�ÿ2hÿ3�: �28�
Minimizing expression (28) results in a formula for the optimal bandwidth:

h �
fLn �x�E�R2

njLn � x�r!2
�
K 2

2rB0�2f@r=@xr fLn �x�E�RnjLn � x�g2

264
375

1=�2r�1�

nÿ�=�2r�1�: �29�

Formula (29) depends on the unknown underlying distribution F and hence must be
estimated before being put to practical use. One possibility is to use a bootstrap estimate of
expression (29).
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