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Summary. A double-bootstrap con®dence interval must usually be approximated by a Monte Carlo
simulation, consisting of two nested levels of bootstrap sampling. We provide an analysis of the
coverage accuracy of the interval which takes account of both the inherent bootstrap and Monte
Carlo errors. The analysis shows that, by a suitable choice of the number of resamples drawn at the
inner level of bootstrap sampling, we can reduce the order of coverage error. We consider also the
effects of performing a ®nite Monte Carlo simulation on the mean length and variability of length of
two-sided intervals. An adaptive procedure is presented for the choice of the number of inner level
resamples. The effectiveness of the procedure is illustrated through a small simulation study.

Keywords: Bootstrap; Coverage error; Double bootstrap; Monte Carlo approximation; Percentile
method; Resample; Sampling error; Simulation

1. Introduction

The double bootstrap (Hall, 1986; Beran, 1987) provides a satisfactory solution to the prob-
lem of reducing the coverage error of nonparametric bootstrap con®dence intervals. As it is
usually applied in this context, the double bootstrap accomplishes a calibration of the boot-
strap con®dence interval by making an additive adjustment to the nominal coverage of the
interval. The theoretical e�ect of the calibration has been studied by Martin (1990), who
showed that the magnitude of the coverage error is reduced by the adjustment. In practice,
the double-bootstrap con®dence interval must be approximated by a Monte Carlo simu-
lation, which consists of drawing C second-level bootstrap samples from each of a series
of B ®rst-level bootstrap samples drawn from the available sample data. Booth and Hall
(1994) considered the question of the optimal choice of B and C, in an analysis which
considered the distance between the bootstrap interval limit constructed using an in®nite
number of bootstrap simulations and its Monte Carlo version based on a ®nite simulation.
This analysis is not directly related to coverage accuracy. In the current paper, we provide an
analysis of the coverage accuracy of the double-bootstrap con®dence interval which takes
account of both sampling error, imposed by the sample data, and Monte Carlo error, due to
the ®niteness of the simulation.
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For simplicity of presentation, we restrict attention to the situation considered by Booth
and Hall (1994), where the double bootstrap is used, as described above, to make an additive
adjustment to the nominal coverage of the con®dence interval, and to the case of the per-
centile method con®dence interval. An analysis similar to that carried out by Booth and Hall
(1994) has been performed by Booth and Presnell (1998) for the situation where the double
bootstrap is used to make an additive adjustment directly to the end points of the con®dence
interval. The theoretical, in®nite simulation, e�ects of calibration of di�erent kinds of boot-
strap con®dence interval were considered by Martin (1990). The analysis presented here is
easily adapted to these other forms of interval.

In Section 2 we provide a detailed description of the usual Monte Carlo algorithm for
approximation to the double-bootstrap percentile method interval, for both one-sided and two-
sided cases. We provide, in equations (2.5) and (2.6), an asymptotic analysis of the coverage
properties of the double-bootstrap interval based on a ®nite Monte Carlo simulation. This
analysis shows that B and C must be of larger order in the sample size n, of order n4 and n2

respectively in the two-sided case and of order n2 and n respectively in the one-sided case, to
ensure that the coverage error of the Monte Carlo interval remains of the same order as that
of the theoretical, in®nite simulation, double-bootstrap interval. The analysis shows further
that, by a suitable choice of C, we may reduce the order of the coverage error, in e�ect using
the Monte Carlo error to eliminate the sampling error. We also consider the e�ects on mean
length and variability of length of two-sided intervals of performing a ®nite simulation.

In Section 3 we provide a practical interpretation and illustration of our asymptotic results.
We provide guidelines on the choice of B and C for practical application. Our recommenda-
tion amounts to the use of large B and to an adaptive choice of C to minimize the coverage
error for the chosen B. The asymptotic forms of double-bootstrap con®dence interval
described by Lee and Young (1995) are suggested as a means of an empirical choice of C.

A simulation study is presented in Section 4 for the problem of constructing two-sided
con®dence intervals for a population variance. It is seen that our empirical procedure for the
choice of Monte Carlo simulation size is e�ective in producing desirable coverage accuracy in
a computationally e�cient manner. It also strikes an e�ective balance between the, generally
competing, demands of coverage accuracy and stability.

2. The standard Monte Carlo approach

Let X � �X1, . . ., Xn� be a random sample of size n drawn from an underlying distribution
function F. We wish to construct a con®dence interval of coverage � � 1

2
< � < 1�, based on

X , for a scalar parameter �, expressible as a smooth function of the mean � of F: � � g���.
The con®dence interval is to be constructed from the sample estimate �̂ � g� �X �, where

�X � nÿ1
Pn
i�1

Xi:

Let �2 � h��� be the asymptotic variance of n1=2 ��̂ÿ �� and let �̂2 � h� �X � be its sample
version.

Let X* be a generic ®rst-level bootstrap sample drawn randomly, with replacement, from
X and similarly let X** denote a generic second-level bootstrap sample drawn from X*. Let
�̂* and �̂** be the versions of the statistic �̂ based on X* and X ** respectively.

De®ne ŷ� by P ��̂*4 ŷ�jX � � � and ŷ*� by P ��̂**4 ŷ*� jX , X* � � �. The theoretical,
in®nite simulation, one-sided percentile method bootstrap con®dence interval of nominal
coverage � for � is
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P1,� � �ÿ1, ŷ��:
The corresponding two-sided interval is

P2,� � � ŷ�1ÿ��=2, ŷ�1���=2�:
Then we de®ne the theoretical, in®nite simulation, one-sided double-bootstrap percentile
method con®dence interval for � to be

I1,� � �ÿ1, ŷ���̂ �: �2:1�
where �̂ satis®es

P ��̂4 ŷ*���̂ jX � � �:
Similarly, the two-sided double-bootstrap percentile method interval for � is de®ned to be

I2,� � � ŷ�1ÿ�ÿ�̂�=2, ŷ�1����̂�=2 �, �2:2�
where

P � ŷ*�1ÿ�ÿ�̂�=2 4 �̂4 ŷ*�1����̂�=2 jX � � �:
As noted, in practice the theoretical intervals I1,� and I2,� must be approximated by a

Monte Carlo simulation. We draw a collection of B independent bootstrap samples X*1,
X*2, . . ., X*B from X . From each X*b �b � 1, 2, . . ., B� we then draw C second-level bootstrap
samples X **b1 , X **b2 , . . ., X **bC . Denote by �̂*b and �̂**bc the realizations of �̂* and �̂** based on
X*b and X **bc respectively, b � 1, 2, . . ., B and c � 1, 2, . . ., C.

Let � . � denote the integer part function and de®ne

k � ��B� 1�� �,
U* � P ��̂**4 �̂ jX , X* �, U*b � P ��̂**4 �̂ jX , X*b �, U*�1�4 . . . 4U*�B�,

Û*b �
1

C

PC
c�1

1f �̂**bc 4 �̂g, Û*�1�4 Û*�2�4 . . . 4 Û*�B�,

l � ��B� 1�Û*�k� �, V*b � j2U*b ÿ 1j, V*�1�4 . . . 4V*�B�,

V̂*b � j2Û*b ÿ 1j, V̂*�1�4 V̂*�2�4 . . . 4 V̂*�B�,

m 0 � � 1
2
�B� 1��1� V̂*�k� � �, m@ � � 1

2
�B� 1��1ÿ V̂*�k� � �:

Here 1 denotes the indicator function, and subscripts in parentheses denote ordered values.
Then the Monte Carlo approximation to I1,� is

~I1,� � �ÿ1, �̂*�l � �, �2:3�
where �̂*�1�4 �̂*�2�4 . . . 4 �̂*�B� are the ordered values of �̂*1, �̂*2, . . ., �̂*B.

The Monte Carlo approximation to I2,� is

~I2,� � ��̂*�m@�, �̂*�m 0 � �: �2:4�
The corresponding Monte Carlo approximation to P1,� is ~P1,� � �ÿ1, �̂*�k� � and that to

P2,� is ~P2,� � ��̂*�k@�, �̂*�k 0 � �, where
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k 0 � ��B� 1� � 1
2
�1� �� �,

k@ � ��B� 1� � 1
2
�1ÿ �� �:

In Appendix A we prove the following results concerning the coverages of the intervals ~I1,�
and ~I2,� :

P �� 2 ~I1,�� � P �� 2 I1,�� � Cÿ1��ÿ 1
2
� � o �Bÿ1=2 � Cÿ1�, �2:5�

P �� 2 ~I2,� � � P �� 2 I2,�� � Cÿ1�� o�Bÿ1=2 � Cÿ1�: �2:6�
Martin (1990) showed that the coverage error of the theoretical one-sided interval I1,�,
P �� 2 I1,�� ÿ �, is of order O(nÿ1), compared with the coverage error O�nÿ1=2� of P1,�. It is
therefore seen from equation (2.5) that C must be of order n, or larger, and B of order n2, or
larger, to ensure that the use of a ®nite simulation does not result in the approximate interval
~I1,� having a coverage error of lower order in n than that of I1,�. Taking C of order n and B
of order n2 gives a coverage error of ~I1,� of order O(nÿ1). The coverage error of the theoretical
two-sided interval I2,� is of order O�nÿ2�: see Martin (1990). Formula (2.6) shows that in this
two-sided case taking C to be of order n2 and B to be of order n4 ensures that the coverage
error of ~I2,� remains of order O�nÿ2�.

Typically, as in the example considered in Section 4 later, the theoretical intervals I1,� and
I2,� undercover, so the coverage errors P �� 2 I1,�� ÿ � and P �� 2 I2,�� ÿ � are negative. In
these circumstances, it is clear from equations (2.5) and (2.6) that the coverage errors of ~I1,�
and ~I2,� can be reduced to orders o�nÿ1� and o�nÿ2� respectively by a suitable choice of C. In
the one-sided case, take

C � � 1
2
ÿ ���fP �� 2 I1,�� ÿ �g �2:7�

and in the two-sided case take

C � ÿ�=fP�� 2 I2,�� ÿ �g: �2:8�
We discuss a practical estimation of these optimal values of C in Section 3.

A more detailed analysis than that given in Appendix A shows that a similar reduction in
the order of the coverage error of the intervals ~I1,� and ~I2,� can be achieved also in the case
where the in®nite simulation interval has coverage which exceeds �. In the one-sided case the
Monte Carlo algorithm may be modi®ed by replacing Û*b by �CÛ*b � a�=�C� b� for a and b
with �bÿ 1��ÿ a > ÿ 1

2
and choosing

C � f1
2
� �bÿ 1��ÿ ag=fP �� 2 I1,�� ÿ �g:

In the two-sided case, replace V̂*b by �CV̂*b � a�=�C� b� for a and b with �bÿ 1��ÿ a > 0,
and choose

C � f�bÿ 1��ÿ ag=fP �� 2 I2,�� ÿ �g:
The analysis given in Appendix A examines the e�ect on the mean interval length and

the variance of the interval length of the use of a ®nite Monte Carlo simulation. De®ne
L � ŷ�1����̂�=2 ÿ ŷ�1ÿ�ÿ�̂�=2 to be the length of the, in®nite simulation, interval I2,� and ~L �
�̂*�m 0 � ÿ �̂*�m@� to be the length of its Monte Carlo approximation ~I2,�. Appendix A shows
that
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E � ~L� � E �L� � nÿ1=2Cÿ1� ��z�1���=2 �ÿ1�� ofnÿ1=2�Cÿ1 � Bÿ1=2� g, �2:9�
and

var� ~L� � var�L��nÿ1Bÿ1�2 ��z�1���=2 �ÿ2�4��1ÿ���ofnÿ3=2�Cÿ1�Bÿ1=2 ��nÿ1�Cÿ2�Bÿ1�g,
�2:10�

where z� � �ÿ1���. We may readily show that E �L� is of order O�nÿ1=2� and var�L� is of order
O�nÿ2�. We have argued above that, to ensure that the coverage of ~I2,� remains of the same
order, O�nÿ2�, as that of I2,�, we should take B of order n4 and C of order n2. We see from
equations (2.9) and (2.10) that such a choice of B and C has an asymptotically negligible
e�ect on the mean length and the variance of length: E � ~L� ÿ E �L� � O�nÿ5=2� and var� ~L� ÿ
var�L� � o�nÿ7=2�.

A somewhat crude interpretation of the expansions (2.9) and (2.10) is that E � ~L� is mainly
a�ected by C, whereas var� ~L� is a�ected by both B and C, for the sort of B and C advocated
on coverage considerations.

3. An illustration and recommendation

Figs 1 and 2 illustrate the e�ects of varying B andC on the coverage, mean length and variance
of length characteristics of the interval ~I2,� when � � 0:9 and the parent population F is
folded normal, jN�0, 1�j for two situations:

(a) where the parameter of interest � is the population mean and n � 15 (Fig. 1);
(b) where � is the population variance and n � 35 (Fig. 2).

The coverage, mean length and variance of length ®gures plotted are all based on a series of
1600 replications of the double-bootstrap procedure. The plots shown are typical of those
obtained for a range of estimation problems.

In both situations shown, and others that we have studied, the coverage probability of the
double-bootstrap interval increases with decreasing C, in accordance with our expectations
from the asymptotic analysis of Section 2. The coverage probability depends to a lesser extent
on B. For values of C other than those very small, the coverage error decreases with increasing
B, providing evidence that the use of large B is required. The price paid for improving the
coverage by reducing C is that the average length of the interval typically increases with
decreasing C, again as we expect from the asymptotic analysis. The picture as regards the
variance of the length of the interval is less clear, though the variance may actually decrease
as C is reduced. We note also that, typically, the average length increases with increasing B,
though this e�ect is only pronounced for very small values of C. We might expect from
equation (2.10) that the variance of the length of the interval would decrease with increasing B.
It is clear from Figs 1 and 2 that the practical e�ect of increasing B on the variance of length is
problem speci®c and dependent on the choice of C. We have evidence that increasing B
decreases the variance when C is su�ciently large, as has been expected from equation (2.10).

We summarize our theoretical and empirical ®ndings in a speci®c recommendation on the
choice of B and C. In doing so, recall that our primary objective in the paper has been to
analyse the e�ect of B and C on the coverage error, with a view to recommending a strategy
for the optimal choice of B and C speci®cally in those terms. The coverage error of the
double-bootstrap interval is generally smallest, and more stable to varying C, for large B. We
therefore interpret our ®ndings in terms of a recommendation for the choice of large B, in line
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with standard practice and previous recommendations, such as those provided by Booth and
Hall (1994) and Booth and Presnell (1998). Computational resource considerations would
lead to the use of, say, B � 1000. The novel aspect to our analysis is the discovery that, for a
given value of B, the coverage error may be reduced by an appropriate choice of C, typically
much smaller than values advocated in previous work, without necessarily producing any
signi®cant increase in either the interval length or the variability in interval length.

The optimal choice of C, asymptotically, unfortunately depends, as shown in equations
(2.7) and (2.8), on the coverage error of the theoretical, in®nite simulation, interval. An
estimation of this coverage error is therefore necessary as part of a practical strategy for the
choice of C.

Lee and Young (1995) presented methods for direct approximation, without a Monte
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Fig. 1. Effects of varying B and C on (a) the coverage, (b) the mean length and (c) the variance of the length for
n � 15, mean: - - - - - - -, B � 100; .........., B � 200; ± ± ±, B � 1000



Carlo simulation, to the double-bootstrap intervals I1,� and I2,�. Their methods amount to
direct substitution of quantities computed from the data into truncated asymptotic expan-
sions for the end points of the intervals. These approximate forms of double-bootstrap
interval may be used in the context of the current paper to obtain estimates of the coverage
errors Pf� 2 I1,� g ÿ � and Pf� 2 I2,� g ÿ �. These estimates may then be used to choose C
empirically via equations (2.7) and (2.8).

Such an adaptive choice of C requires a preliminary Monte Carlo simulation, which will
consist of the drawing of, say, D bootstrap samples from X . To estimate, say, Pf� 2 I2,� g the
analytic interval of Lee and Young (1995) is constructed for each of these D samples: the
coverage is estimated by the proportion of the intervals which contain �̂, the sample estimate
constructed from X . We advocate that moderate D, say of the order of a few hundreds, is

Coverage Error of Double Bootstrap 359

Fig. 2. Effects of varying B and C on (a) the coverage, (b) the mean length and (c) the variance of the length for
n � 35, variance: - - - - - - -, B � 100; .........., B � 200; ± ± ±, B � 1000



adequate for an estimation of the coverage error. Since the intervals of Lee and Young (1995)
require simple arithmetic calculations, the preliminary Monte Carlo simulation is negligible
in computational cost compared with the nested levels of bootstrap sampling required in the
construction of the double-bootstrap interval once B and C have been set. Of course, an
adaptive choice of C in this way will generally lead to the use of small C, and therefore
signi®cant computational gains over conventional choices of C, which would generally set C
large, say 500 or 1000, without regard to the possible bene®ts, in terms of a reduction in
coverage error, of the use of smaller C.

4. Simulation study and remarks

Tables 1 and 2 summarize the results of a simulation study involving the construction of
nominal 90% coverage con®dence intervals for the population variance, for four underlying
populations and three sample sizes n � 20, 35, 100. For each combination of distribution and
sample size, a series of 1600 random samples were drawn and from each of these various
con®dence intervals constructed, coverages being estimated by the proportion of the 1600
intervals containing the true population variance. The intervals considered were the percentile
interval ~P2,0:9 based on B � 1000 outer level bootstrap samples, iterated intervals ~I 12,0:9 and
~I 22,0:9 based on B � 1000 and respectively C � 500 and C � 100 inner level bootstrap samples,
and the interval ~IA2,0:9 based on B � 1000 and an adaptive choice of C. For ~IA2,0:9 a preliminary
simulation of D � 500 bootstrap samples were drawn from each of the 1600 parent samples
to estimate the coverage error Pf� 2 I2,0:9 g ÿ 0:9. Letting Î d2,0:9 denote the approximation to
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Table 1. Variance example Ð estimated coverage probabilities

Interval Coverage, n � 20 Coverage, n � 35 Coverage, n � 100

Normal data N(0, 1) (no skewness, no kurtosis)

~P2,0:9 0.727 0.793 0.857

~I 12,0:9 0.849 0.863 0.888

~I 22,0:9 0.866 0.868 0.896

~IA2,0:9 0.851 (56.54) 0.869 (80.34) 0.889 (102.33)

Folded normal data jN(0, 1)j (high skewness, low kurtosis)

~P2,0:9 0.686 0.753 0.843

~I 12,0:9 0.814 0.835 0.880

~I 22,0:9 0.825 0.846 0.887

~IA2,0:9 0.809 (36.36) 0.846 (51.23) 0.892 (83.41)

Double-exponential data 1
2
exp(ÿjxj) (no skewness, high kurtosis)

~P2,0:9 0.698 0.776 0.834

~I 12,0:9 0.827 0.854 0.878

~I 22,0:9 0.838 0.865 0.885

~IA2,0:9 0.832 (43.17) 0.867 (54.57) 0.884 (79.72)

Log-normal data exp{N(0, 1)} (high skewness, high kurtosis)

~P2,0:9 0.416 0.504 0.608

~I 12,0:9 0.544 0.631 0.722

~I 22,0:9 0.546 0.641 0.733

~IA2,0:9 0.544 (23.14) 0.636 (28.56) 0.754 (38.46)



the double-bootstrap interval for the dth such bootstrap sample �d � 1, . . ., D� constructed
as described by Lee and Young (1995), the coverage error of I2,0:9 is estimated by

�̂ � Dÿ1
PD
d�1

1f �̂ 2 Î d2,0:9 g ÿ 0:9:

Then the interval ~IA2,0:9 is based on C � ÿ0:9=�̂, if �̂ < 0, and C � 0:45=�̂, if �̂ > 0. In the
latter case, as described in Section 2, the Monte Carlo algorithm is modi®ed, once C has been
computed, by modifying V̂*b to CV*b=�C� 1:5�.

The coverages of the intervals are given in Table 1, together with ®gures showing the
average number of inner level bootstrap samples chosen by the adaptive method. The mean
interval length and the variance of interval length over the 1600 replications is shown for each
of the interval types in Table 2. Note that the simulation size used in the study, 1600 random
samples, ensures that the standard error of each simulated coverage is of the order of 0.01. A
detailed comparison between the various intervals is possible, however, since each is con-
structed from the same set of parent samples.

The coverage ®gures in Table 1 indicate that the adaptive procedure for the choice of C
works well, producing greater coverage accuracy than the interval ~I 12,0:9, yet typically drawing
far fewer second-level bootstrap samples, and coverage accuracy comparable with that of the
interval ~I 22,0:9, but with the automatic detection of the appropriate number of second-level
samples. Although there might be a slight tendency for the average length and, in particular,
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Table 2. Variance example Ð simulated mean interval length and variance of interval
length{

Interval n � 20 n � 35 n � 100

Normal data N(0, 1) (no skewness, no kurtosis)

~P2,0:9 0.848 0.111 0.701 4:648� 10ÿ2 0.447 6:933� 10ÿ3

~I 12,0:9 1.274 0.362 0.900 0.129 0.489 1:126� 10ÿ2

~I 22,0:9 1.344 0.400 0.945 0.164 0.501 1:204� 10ÿ2

~IA2,0:9 1.326 0.435 0.974 0.203 0.510 2:323� 10ÿ2

Folded normal data jN(0, 1)j (high skewness, low kurtosis)

~P2,0:9 0.342 3:628� 10ÿ2 0.289 1:668� 10ÿ2 0.189 2:937� 10ÿ3

~I 12,0:9 0.530 0.107 0.416 5:931� 10ÿ2 0.224 7:946� 10ÿ3

~I 22,0:9 0.545 0.107 0.435 6:285� 10ÿ2 0.232 9:718� 10ÿ3

~IA2,0:9 0.537 0.111 0.442 6:545� 10ÿ2 0.253 1:546� 10ÿ2

Double-exponential data 1
2
exp(ÿjxj) (no skewness, high kurtosis)

~P2,0:9 2.311 2.510 2.011 1.270 1.361 0.259

~I 12,0:9 3.735 7.628 2.983 4.283 1.705 0.868

~I 22,0:9 3.873 7.696 3.118 4.566 1.777 1.022

~IA2,0:9 3.799 7.726 3.156 4.678 1.748 0.754

Log-normal data exp{N(0, 1)} (high skewness, high kurtosis)

~P2,0:9 9.411 9408.940 8.777 3659.902 6.879 573.833

~I 12,0:9 13.864 15130.088 14.633 12019.490 11.404 1577.404

~I 22,0:9 13.908 15129.914 14.731 12018.776 11.584 1576.358

~IA2,0:9 13.838 15129.936 14.639 12019.287 11.732 1574.956

{The ®rst ®gure shown in each cell is the mean length; the second the variance of length.



the variability of length to increase over a ®xed choice of C, any such increase is insigni®cant
compared with increases attached to the use of the double-bootstrap interval rather than the
uncalibrated percentile interval.

Martin (1990) showed that calibration of the percentile interval P2,� to produce the double-
bootstrap interval I2,� is accompanied by a change in mean length which is proportional to
the coverage error of the original interval. In examples such as that being considered here, the
coverage error of the original interval is substantial, and the double-bootstrap interval is of
considerably greater mean length.

In other examples which we have studied, such as the mean, the coverage error of the
percentile interval is typically smaller than in the variance example considered here. In such a
case, the optimalC is generally larger than the values that are optimal when the coverage error
is large. In particular, the ®xed choice of C � 100, which Table 1 suggests is reasonable in the
variance example, may no longer be adequate. However, our adaptive procedure for the
choice of C is e�ective in identifying the need for larger C in such cases, though the average
number of second-level resamples C drawn remains generally lower than the large values that
are conventionally used. The larger the coverage error, the smaller C can be to obtain a satis-
factory result. In complex cases, where the coverage error might be substantial, very low values
of C may be reasonable. However, we see that in the variance example reducing C to very low
levels may lead to serious overcoverage. What sensible lower limit might be set onC depends on
the problem in question, and we recommend as a general strategy the adaptive procedure for the
choice of C, combined with the avoidance of very low values of C, say less than 20.

The computational cost of the use of the asymptotic interval constructions of Lee and
Young (1995) in an adaptive choice of C is negligible in comparison with the computational
cost of the Monte Carlo simulation once B and C have been set. The question arises whether
there is any advantage to the use of the Monte Carlo construction, rather than direct use of
the asymptotic intervals. A comparison of the coverage ®gures in Table 1 with the corres-
ponding ®gures for the asymptotic intervals themselves, as given by Lee and Young (1995),
shows that the Monte Carlo intervals implemented using the asymptotic intervals to choose C
have a signi®cantly lower coverage error than the asymptotic intervals have.

The motivation for the use of the double-bootstrap con®dence interval is as a means of
reducing the coverage error of the uncalibrated bootstrap interval. In this paper we have
provided an analysis of the consequences for coverage error of approximating the double-
bootstrap interval by a ®nite Monte Carlo simulation. The analysis shows that the number of
bootstrap samples drawn must be of higher order in the sample size n than is the case for the
raw uncalibrated interval. Adapting the analysis of Hall (1986) to the case of the percentile
method interval, we may show that taking B to be of order n1=2 in the one-sided case, or of
order n in the two-sided case, guarantees that the Monte Carlo approximation to the per-
centile interval has a coverage error of the same order as that of the in®nite simulation
interval. Nevertheless, we have demonstrated that in practice a realistic goal is to reduce the
coverage error by control of the number of second-level bootstrap samples C.
In the same way that the in®nite simulation double-bootstrap interval may be viewed as an

adjustment to the uncalibrated bootstrap interval, the Monte Carlo construction of the
interval may be viewed as providing an adjustment to the in®nite simulation interval. By a
suitable choice of C, the adjustment can be directed to improve the coverage accuracy. In
general, a reduction in the value of C provides the appropriate calibration of coverage error.
In e�ect, we may use the Monte Carlo approximation as an opportunity to eliminate the
coverage error of the theoretical double-bootstrap interval, without causing signi®cant
damage in terms of interval length or stability. A by-product is improved computational
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e�ciency compared with the conventional practice of setting both B and C large, especially
in problems where the coverage error of the theoretical double-bootstrap interval remains
large.

Appendix A

A.1. Coverage error of one-sided interval
De®ne Ŝn��� by

PfU*4 � � nÿ1=2 Ŝn���jX g � �
and R̂n��� by

P�U*4 �jX � � � � nÿ1=2 R̂n���:
Then �̂ � nÿ1=2 Ŝn��� by de®nition.

Consider

E �Û*�k�jX � � Cÿ1
PCÿ1
i�0

Pkÿ1
j�0

B

j

� �
p̂
j
i �1ÿ p̂i�Bÿj: �A:1�

Here

p̂i � P�CÛ*1 4 i jX �

� E
� Pi

j�0

C

j

� �
U*m�1ÿU*�CÿmjX

�

� i� 1

C� 1
� nÿ1=2

�1
0

R̂n f��v�g dv,

where

��v� � �i ÿ Cÿ1=2f�i�1ÿ �i�g1=2zv � 1
6
Cÿ1�1ÿ 2�i��1� 2z2v� � o�Cÿ1�,

and

�i � Cÿ1�i� 1
2
�:

The formula for ��v� follows from the de®nition of ��v, v� in Hall (1986).
Expanding the integral

� 1
0
R̂n f��v�g dv, we have

p̂i � �i � nÿ1=2 R̂n��i� � 1
2
Cÿ1�1ÿ 2�i� � o�Cÿ1�: �A:2�

Substituting equation (A.2) in equation (A.1), using the trapezoidal rule and Taylor expansion,

E �Û*�k�jX � �
�1
0

� gfu� nÿ1=2 R̂n�u�g � 1
2
Cÿ1�1ÿ 2u� g0 fu� nÿ1=2 R̂n�u�g � du� op�Cÿ1�, �A:3�

where

g��� :� Pkÿ1
j�0

B

j

� �
� j�1ÿ ��Bÿj:

Noting that g�0� � 1, g�1� � 0 and R̂n�0� � R̂n�1� � 0, we can show that�1
0

�1ÿ 2u� g0 fu� nÿ1=2 R̂n�u�g du � 2

�1
0

gfu� nÿ1=2 R̂n�u�g duÿ 1, �A:4�

and
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�1
0

gfu� nÿ1=2 R̂n�u�g du �
k

B� 1
� nÿ1=2 Ŝn

�
kÿ 1

2

B

�
�Op�nÿ1=2Bÿ1�: �A:5�

It follows from equations (A.3)±(A.5) that

E �Û*�k�jX � �
k

B� 1
� Cÿ1

�
k

B� 1
ÿ 1

2

�
� nÿ1=2 Ŝn

�
k

B� 1

�
�Op�nÿ1=2Bÿ1� � op�Cÿ1�: �A:6�

According to Hall (1992), ŷ� � �̂� nÿ1=2 �̂fz� � nÿ1=2 p̂11�z�� � . . . g. Thus, expanding about �� �̂,
using equation (A.2) in Booth and Hall (1994), and substituting equation (A.6),

ŷÛ *�k� ÿ ŷ���̂ � nÿ1=2 �̂ ��z��ÿ1 fU*�k� ÿ E �U*�k�jX � � Cÿ1��ÿ 1
2
� � op�Bÿ1=2 � Cÿ1�g: �A:7�

Using Bahadur's representation and Chebyshev's inequality,

�̂*�l � ÿ ŷÛ *�k� � �̂*�k� ÿ ŷ� � op�nÿ1=2Bÿ1=2�: �A:8�
De®ne S* � n1=2��̂*ÿ �̂ �=�̂ and û� by P �S*4 û�jX � � �. By repeated use of Edgeworth and Taylor
expansions,

Û*�k� ÿ E �U*�k�jX � � ÿ�S*�Bÿk�1� ÿ û1ÿ�� ��z�� � op�Bÿ1=2�, �A:9�
where S*�1�4 . . . 4 S*�B�, and S*b is the realization of S* on the bth bootstrap resample.
Combining equations (A.7)±(A.9), we then obtain

P��4 �̂*�l �jX � � PfS*�k� ÿ û� ÿ �S*�Bÿk�1� ÿ û1ÿ��5 !̂jX g, �A:10�
where

!̂ � ÿ n1=2��̂ÿ ��
�̂

ÿ û���̂ ÿ Cÿ1��ÿ 1
2
� ��z��ÿ1 � op�Bÿ1=2 � Cÿ1�:

By expansion of the joint distribution of order statistics,

P �B1=2 fS*�k� ÿ û� ÿ �S*�Bÿk�1� ÿ û1ÿ��g4 xjX � � ��x=�̂� � Bÿ1=2 H�x=�̂� � op�Bÿ1=2�, �A:11�
where �2 is the asymptotic variance of B1=2 fS*�k� ÿ û� ÿ �S*�Bÿk�1� ÿ û1ÿ��g and H satis®es H �u� ! 0 as
u!�1.
Using equation (A.11) and taking the expectation of equation (A.10),

P��4 �̂*�l � � � P�!̂4 0� � o�Bÿ1=2�

� P

�
n1=2��̂ÿ ��

�̂
� û���̂ 5 ÿCÿ1��ÿ 1

2
� ��z��ÿ1

�
� o�Bÿ1=2 � Cÿ1�

� P

�
n1=2��̂ÿ ��

�̂
� û���̂ 5 0

�
� Cÿ1��ÿ 1

2
� � o�Bÿ1=2 � Cÿ1�

� P��4 ŷ���̂ � � Cÿ1��ÿ 1
2
� � o�Bÿ1=2 � Cÿ1�, �A:12�

as required.

A.2. Coverage error of two-sided interval
Consider

E �V̂*�k�jX � � 1ÿ 2

C

P�C=2�ÿ1
i�0

PBÿk
j�0

B

j

� �
q̂

j
i �1ÿ q̂i�Bÿj,

where
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q̂i � P

�
C

2
�1ÿ V̂*1 �4 i jX

�

� 2

�
i� 1

C� 1

�
� nÿ1=2

�
R̂n

�
i� 1

2

C

�
ÿ R̂n

�
Cÿ iÿ 1

2

C

��
� o�Cÿ1�:

It then follows from the trapezoidal rule, Taylor expansion and term-by-term integration that

E �V̂*�k�jX � � �ÿ nÿ1=2Ân�1ÿ �� � Cÿ1�� op�Cÿ1 � Bÿ1=2�, �A:13�
where Ân��� satis®es

Ân��� � R̂n

�
� � nÿ1=2Ân���

2

�
ÿ R̂n

�
1ÿ � � nÿ1=2Ân���

2

�
� 0: �A:14�

Putting � � 1ÿ � in equation (A.14), we have

P � 1
2
f1ÿ �� nÿ1=2Ân�1ÿ ��g4U*4 1

2
f1� �ÿ nÿ1=2Ân�1ÿ ��gjX�

� �ÿ nÿ1=2Ân�1ÿ �� � nÿ1=2
�
R̂n

�
1� �ÿ nÿ1=2Ân�1ÿ ��

2

�
ÿ R̂n

�
1ÿ �� nÿ1=2Ân�1ÿ ��

2

��
� �:

Therefore �ÿ nÿ1=2Ân�1ÿ �� � �� �̂, or �̂ � ÿnÿ1=2Ân�1ÿ ��.
Inserting this result in equation (A.13), we obtain

E �V̂*�k�jX � � �� �̂ � Cÿ1�� op�Cÿ1 � Bÿ1=2�: �A:15�
By an argument that is very similar to that used in deriving equation (A.10),

P��4 �̂*�m 0 �jX � � P ���z�1���=2�ÿ1 fÿ�U*�B�1ÿk 0 � ÿ E �U*�B�1ÿk 0 �jX �� � 1
2
�V*�k� ÿ E �V*�k�jX ��g5 v̂jX �,

�A:16�
where

v̂ � ÿ n1=2��̂ÿ ��
�̂

ÿ û�1����̂ �=2 ÿ
1

2
Cÿ1� ��z�1���=2 �ÿ1 � op�Bÿ1=2 � Cÿ1�,

and

k 0 � � 1
2
�B� 1� �1� ���,

as before. Using the asymptotic normality of order statistics and properties of their concomitants, and
taking the expectation of equation (A.16),

P ��4 �̂*�m 0 � � � P

�
n1=2��̂ÿ ��

�̂
� û�1����̂ �=2 5 0

�
� 1

2
Cÿ1�� o�Bÿ1=2 � Cÿ1�

� P��4 ŷ�1����̂�=2 � � 1
2
Cÿ1�� o�Bÿ1=2 � Cÿ1�: �A:17�

Similarly for the lower tail

P��4 �̂*�m@� � � P��4 ŷ�1ÿ�ÿ�̂�=2 � ÿ 1
2
Cÿ1�� o�Bÿ1=2 � Cÿ1�: �A:18�

Subtracting equation (A.18) from equation (A.17), we obtain

P��̂*�m@�4 �4 �̂*�m 0 � � � P� ŷ�1ÿ�ÿ�̂�=2 4 �4 ŷ�1����̂�=2 � � Cÿ1�� o�Bÿ1=2 � Cÿ1�, �A:19�
which is equation (2.6).
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A.3. Length of two-sided interval
From expansions of �̂*�m 0 � and �̂*�m@�,

~L � �̂*�m 0 � ÿ �̂*�m@� � ŷ�1����̂�=2 ÿ ŷ�1ÿ�ÿ�̂�=2 � nÿ1=2�̂ ��z�1���=2 �ÿ1fÿ�U*�B�1ÿk 0 � ÿ E �U*�B�1ÿk 0 �jX ��

�U*�B�1ÿk @� ÿ E �U*�B�1ÿk @�jX � � V*�k� ÿ E �V*�k�jX � � Cÿ1�� op�Cÿ1 � Bÿ1=2�g, �A:20�
where k 0 � � 1

2
�B� 1��1� ��� and k@ � � 1

2
�B� 1��1ÿ ���.

Taking the expectation of equation (A.20),

E � ~L � � E � ŷ�1����̂ �=2 ÿ ŷ�1ÿ�ÿ�̂�=2 � � nÿ1=2Cÿ1� ��z�1���=2 �ÿ1�� ofnÿ1=2�Cÿ1 � Bÿ1=2�g: �A:21�
Expansion (A.21) con®rms equation (2.9). Using properties of concomitant statistics,

cov�V*�k�, U*�k 0 �jX � � 1
2
Bÿ1��1ÿ �� � o�Bÿ1�

and

cov�V*�k�, U*�k @�jX � � ÿ 1
2
Bÿ1��1ÿ �� � o�Bÿ1�: �A:22�

Using equation (A.22) and properties of order statistics,

var��̂*�m 0 � ÿ �̂*�m@�jX � � nÿ1�̂2 ��z�1���=2 �ÿ2 f4Bÿ1��1ÿ �� � op�Cÿ2 � Bÿ1�g: �A:23�
Clearly,

E � �̂*�m 0 � ÿ �̂*�m@�jX � � ŷ�1����̂ �=2 ÿ ŷ�1ÿ�ÿ�̂�=2 � nÿ1=2�̂ ��z�1���=2 �ÿ1 fCÿ1�� op�Cÿ1 � Bÿ1=2�g: �A:24�
It follows from equations (A.23) and (A.24) that

var� ~L� � var� ŷ�1����̂�=2 ÿ ŷ�1ÿ�ÿ�̂�=2 � � nÿ1Bÿ1�2 ��z�1���=2 �ÿ2 � 4��1ÿ ��
� ofnÿ3=2�Cÿ1 � Bÿ1=2� � nÿ1�Cÿ2 � Bÿ1�g:
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