
Biometrika (1999), 86, 1, pp. 107–118

© 1999 Biometrika Trust

Printed in Great Britain

Nonparametric likelihood ratio confidence intervals

B STEPHEN M. S. LEE

Department of Statistics, T he University of Hong Kong, Pokfulam Road, Hong Kong

smslee@hkusua.hku.hk

 G. ALASTAIR YOUNG

Statistical L aboratory, University of Cambridge, 16 Mill L ane, Cambridge CB2 1SB, U.K.

g.a.young@statslab.cam.ac.uk

S

We consider construction of two-sided nonparametric confidence intervals in a smooth
function model setting. A nonparametric likelihood approach based on Stein’s least favour-
able family is proposed as an alternative to empirical likelihood. The approach enjoys the
same asymptotic properties as empirical likelihood, but is analytically and computationally
less cumbersome. The simplicity of the method allows us to propose and analyse asymp-
totic and bootstrapping techniques as a means of reducing coverage error to levels compar-
able with those obtained by more computationally-intensive techniques such as the iterated
bootstrap. A simulation study confirms that coverage error may be substantially reduced
by simple analytic adjustment of the nonparametric likelihood interval and that boot-
strapping the distribution of the nonparametric likelihood ratio results in very desirable
coverage accuracy.

Some key words: Bootstrap; Coverage; Empirical likelihood; Least favourable family; Nonparametric
likelihood.

1. I

Let X1 , . . . , Xn
be independent, identically distributed from an unknown d-variate distri-

bution function F. Let m
F
=E

F
(X). Suppose we wish to construct a two-sided a-level

confidence interval for h
F
=g(m

F
), where g is some real-valued smooth function defined

on Rd. This smooth function model, introduced by Bhattacharya & Ghosh (1978), provides
a general framework in which analytical calculations on the behaviour of confidence
interval procedures are feasible; see, for example, Hall (1992).

Empirical likelihood, proposed by Owen (1988, 1990), provides a likelihood-based
alternative to bootstrap procedures for construction of nonparametric confidence intervals.
The empirical likelihood approach dispenses with the need for extensive Monte Carlo
simulation, as typically required by bootstrap approaches, requiring instead a numerical
optimisation. A two-sided interval constructed using empirical likelihood has an O(n−1)
coverage error (Hall & La Scala, 1990). DiCiccio & Romano (1989) show that error can
be reduced to O(n−2 ) by adjusting the mean and variance of the signed root of the empirical
loglikelihood ratio, while DiCiccio, Hall & Romano (1991) show that the empirical likeli-
hood confidence interval can be Bartlett-corrected to achieve similar coverage accuracy.
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A description of empirical likelihood and its theoretical properties is provided by Hall &
La Scala (1990), who show that bootstrapping the distribution of the empirical likelihood
ratio produces effects on coverage accuracy in the case of a two-sided interval resembling
those from Bartlett correction.

DiCiccio & Romano (1990) consider several approaches, including empirical likelihood,
to construction of nonparametric confidence intervals. Essentially, each approach consists
of formulating a least favourable family and considering the associated parametric prob-
lem. Different least favourable families yield alternative formulations of nonparametric
likelihood, all with similar coverage accuracy. The present paper considers a compu-
tationally attractive formulation of nonparametric likelihood based on the least favourable
family of Stein (1956).

We show that higher-order correction to the confidence interval can be achieved by
various techniques, including asymptotic adjustment to the chi-squared percentiles, boot-
strapping the nonparametric likelihood ratio and direct substitution of truncated asymp-
totic expansions for the confidence interval endpoints. Two-sided confidence intervals
constructed using the above techniques have coverage errors of order O(n−2 ). They inherit
the advantages of empirical likelihood, such as having a data-driven shape, which are
lacking in many refined bootstrap confidence intervals of the same order of coverage error,
such as the percentile-t2 technique described in Hall (1992, p. 110). Moreover, since they
do not require nested levels of bootstrap sampling, the procedures we described are compu-
tationally much less intensive than iterated bootstrap methods, which offer coverage accu-
racy of the same order in the two-sided case. Simulation results reported in § 4 show that
bootstrapping the nonparametric likelihood ratio results in a very accurate interval which
compares favourably with the iterated bootstrap method.

Our focus is on construction of two-sided confidence intervals. The proposed correction
techniques will generally not be effective in reducing error of one-sided confidence limits
formed from the signed root of the nonparametric loglikelihood ratio.

Section 2 reviews the empirical likelihood approach. Our proposed methods are detailed
in § 3. A simulation study is reported in § 4, where empirical comparisons with the boot-
strap percentile and iterated bootstrap percentile method intervals are also given. Section 5
provides discussion. Technical details are given in the Appendix.

2. E 

We observe a random sample X= (X1 , . . . , Xn
) from an unknown distribution F.

Assume a multinomial model which places a mass p
i
on X

i
such that Wn

i=1 p
i
=1. Then

we may define a likelihood of X to be Xn
i=1 pi . It is easily shown that this likelihood is

maximised at p
i
=n−1 for all i. Define, for any hµR,

P
n,h
=qp= ( p1 , . . . , pn) : pi�0, ∑

i
p
i
=1, g A∑

i
p
i
X
iB=hr .

Then the empirical likelihood L (h ) is defined to be the profile likelihood, given by

L (h )= max
pµP

n,h

a
n

i=1
p
i
.

Owen (1998) shows that the empirical loglikelihood ratio, namely

−2 log max
pµP

n,hF

a
n

i=1
np
i
,



109Nonparametric likelihood ratio confidence intervals

has a limiting chi-squared distribution and thus obeys Wilks’ theorem. Empirical likeli-
hood may therefore be used to construct nonparametric confidence limits which are
asymptotically correct.

Construction of an empirical likelihood confidence interval typically involves compli-
cated numerical computation, necessary to solve a constrained optimisation problem.
Algorithms for solving different versions of the optimisation problem have been proposed.
Owen (1990) suggests a nested procedure to profile out nuisance parameters in the case
d>1, and Hall & La Scala (1990) transformed the problem into one of finding turning
points of h subject to constraints on the p

i
. Both approaches require nontrivial and

problem-specific formulation of a system of equations. Solution of this system involves
numerical computations that become considerably more sophisticated with more compli-
cated parameters.

3. N     S’ 
 

Denote by x(i) the ith component of the vector xµRd. Assume g is continuously differen-
tiable up to some sufficiently high order for the purpose of our analytical calcula-
tions. Denote by g

r
1
...r

k

the partial derivative ∂kg/∂x(r
1
) . . . ∂x(r

k
). Let also h@=g(X9 ) and

g@
r
1
...r

k

=g
r
1
...r

k

(X9 ), where X9 =n−1Wn
i=1Xi

denotes the sample mean.
The least favourable family is chosen to pass through (n−1, . . . , n−1 ) in the n-dimensional

simplex {( p1 , . . . , pn ) : pi�0, W

i
p
i
=1} in a direction fixed by (U1 , . . . , Un

), where
U
i
=Wd

r=1 g@
r
(X

i
−X9 )(r). It is least favourable in the sense that the construction yields the

same Fisher information for h
F

as does the original multiparameter formulation. The
inferential problem is therefore not made artificially easier by reduction to a single-param-
eter problem.

The multinomial model used in defining empirical likelihood is reduced via Stein’s
construction to a single-parameter model in which

p
i
=p

i
(h )=et

h
U
iN ∑

n

j=1
et
h
U
j
,

where t
h

is chosen to satisfy

g q∑
i

p
i
(h )X

ir=h. (1)

The corresponding nonparametric loglikelihood ratio function is then

R(h)=−2 log a
n

i=1
np
i
(h).

DiCiccio & Romano (1990) find that R(h
F
) has also a limiting chi-squared distribution

with one degree of freedom. An approximate a-level two-sided confidence interval, asymp-
totically correct with O(n−1 ) coverage error, can then be constructed as

I
UL

={h : R(h )∏c@UL
a

},

where c@UL
a

denotes the ath quantile of x2
1
.

In contrast with the empirical loglikelihood ratio, computation of R(h ) can be handled
in a straightforward manner. The explicit formulae for the p

i
enjoy a basic structure,
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irrespective of the complexity of g. Further, (U1 , . . . , Un
) do not depend on h. Calculation

of p
i
requires only solution of one equation in one unknown variable: this can be done

by simple numerical algorithms such as the Newton method.
Our main contribution in this paper is to propose three methods of correcting I

UL
in

order to reduce the coverage error to O(n−2 ). We denote by w and W the standard normal
density and distribution functions respectively. The first method adjusts c@UL

a
to

c@CL
a
={z

j
+n−1g@2(zj )}2, (2)

where j=1
2
(1+a), z

j
=W−1(j) and g@2 is an odd polynomial to be specified, resulting in

a corrected nonparametric likelihood confidence interval I
CL

. The detailed definition of
g@2 is given by equation (A5) in the Appendix. The second method expands the true quantile
of R(h

F
) in an asymptotic series and derives explicit asymptotic expansions for the interval

endpoints up to order O
p
(n−2); see equations (A2) and (A3). An asymptotic nonparametric

likelihood confidence interval I
AL

is then formed by substituting sample quantities into
the asymptotic expansions of the endpoints. Its detailed derivation is given in the
Appendix.

We stress again the very straightforward computations necessary for construction of
I
CL

and I
AL

. The analytical calculations required for evaluation of the asymptotic
expressions involve only partial differentiation of the smooth function g. These calculations
can be handled conveniently by exact derivative evaluation routines which require no
symbolic computation. The key idea is that within the smooth function model derivatives
are required only of functions which are compositions of certain basic functions. They
may therefore be computed by repeated use of the chain rule of differentiation and numeri-
cal evaluation of the values and derivatives of a suite of such basic functions. Lee & Young
(1995) provide details of the way in which such calculations may be packed for automatic
and general use.

The third method of correcting I
UL

estimates the true quantile of R(h
F
) from its boot-

strap distribution. One level of bootstrap resampling is required by this method. We
denote by I

BL
the resulting bootstrap nonparametric likelihood confidence interval and

by c@BL
a

the ath bootstrap quantile of R(h
F
).

Note that the endpoints of I
CL

, I
AL

and I
BL

are equivalent up to and including the
O
p
(n−2 ) term in their asymptotic expansions, and therefore have coverages typically

differing at order O(n−2 ).
The following propositions state the order of coverage error for the four nonparametric

likelihood confidence intervals, I
UL

, I
CL

, I
AL

and I
BL

. The basic assumptions here are
those made in Hall (1988) for the smooth function model. Briefly, we require that F have
moments of sufficiently high order, that g be continuously differentiable up to a sufficiently
high order, and that Cramér’s condition hold for F.

P 1 (DiCiccio & Romano, 1990). Under Hall ’s smooth function model,

pr
F
(h
F
µI

UL
)=a+O(n−1).

P 2. Under Hall ’s smooth function model,

pr
F
(h
F
µI)=a+O(n−2 ),

for I=I
CL

, I
AL

or I
BL

.
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To prove Proposition 2 it suffices to consider only I
AL

, for the reasons given earlier.
The coverage error of I

AL
follows immediately from the derivation given in the Appendix.

We can easily see from the proof in the Appendix that the one-sided counterparts of I
UL

,
I
CL

, I
BL

and I
AL

constructed using the signed root of R(h) all have coverage errors of
order O(n−D). Thus our proposed correction techniques are not effective in reducing
coverage error in the one-sided case.

Numerical procedures will usually be necessary for computation of either R(h ) or the
explicit endpoints in construction of I

UL
, I

CL
and I

BL
. One level of bootstrap resampling

is further required by I
BL

to approximate bootstrap quantiles. A little algebra shows that
explicit endpoints I

L
and I

U
for these intervals are given by

I
L

(or I
U
)=g Ae−c@a/2n ∑

i
X
i
etU

iNnB , (3)

where c@
a
stands for c@UL

a
, c@CL

a
or c@BL

a
, and t satisfies

∑
i

etU
i
=nec@

a
/2n. (4)

Note that (4) typically admits two distinct solutions for t, which may be obtained using
a Newton method and setting the initial values for t to be n−Dz

j
/s@ and −n−Dz

j
/s@ , where

s@=(W
i
U2
i
/n)D. Substitution of the two distinct solutions for t into (3) yields I

L
and I

U
.

Note that the p
i
(h) in (1) are parameterised in terms of t

h
, so an alternative to root-

finding to calculate the explicit interval endpoints would be the numerically simpler pro-
cedure of calculating these p

i
for a range of values of t

h
and using spline methods to read

off approximate interval end-points. Davison & Hinkley (1997, p. 504) suggest how
Poisson regression models might also be used to perform the root-finding.

Construction of I
AL

is extremely straightforward, requiring only substitution of sample
moments into known formulae.

The arguments of Hall & Martin (1988) show that a two-sided iterated bootstrap
confidence interval based on a pivotal statistic has a coverage error of order O(n−2 ).
Construction of the iterated interval does, however, require two computationally expensive
nested levels of resampling. Proposition 2 shows that I

BL
achieves the same order of

coverage error as the iterated interval, while requiring only one level of bootstrap re-
sampling. The small price paid for avoiding a level of bootstrap sampling is the more
sophisticated numerical calculations needed for computation of R(h ).

4. S 

4·1. General framework

We conducted a simulation study to examine coverage accuracy of the various nonpara-
metric likelihood confidence intervals discussed in this paper. The percentile method inter-
val I

P
(Efron, 1982, § 10.4) and the iterated bootstrap percentile method interval I

F
were

included in the study for comparison. The latter, which enjoys theoretical O(n−2 ) coverage
error and is seen from previous empirical studies to be exceptionally accurate in practice,
provides an appropriate standard.

Two cases were considered, with the parameter of interest h
F
the variance and correlation

coefficient respectively. Results were obtained for four different nominal coverage levels,
0·80, 0·90, 0·95 and 0·99. For a=0·80, 0·90 and 0·95, the coverage probability was estimated
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using 1600 Monte Carlo random samples, whereas 5000 were used for a=0·99. From
each random sample 1000 bootstrap resamples were drawn to construct I

BL
and I

P
, and

1000 inner level resamples were further drawn from each bootstrap resample to construct
I
F
. In some cases the numbers of Monte Carlo and bootstrap samples taken to study the

coverage of I
F

were reduced to lessen the computational burden.
To estimate the coverages of I

UL
, I

CL
and I

BL
, we computed directly R(h

F
) and its

approximate ath quantile c@
a
, whose formulation depends on the particular interval in

question. The coverage probability pr
F
{R(h

F
)∏c@

a
} was then approximated by averaging

over the random samples. To compute R(h
F
) we used the Newton method to solve the

equation g(W
i
X
i
etU

i
/W

j
etU

j
)=h

F
for t.

The percentile-t2 method of constructing two-sided confidence intervals is known to
have O(n−2 ) coverage error and its construction is computationally simpler than both
I
BL

and I
F

(Hall, 1992, p. 110). In this simulation study, we also investigated how the
percentile-t2 intervals, constructed using the same bootstrap resamples that produced I

BL
and I

P
, compare with the other methods for the case a=0·90.

4·2. Variance example

In this example we considered four different underlying distributions, the standard
normal, the folded standard normal, the double exponential and the log-normal distri-
butions. Three sample sizes, n=20, 35, 100, were examined. Construction of I

F
for

n=100 is especially computationally demanding. In this case therefore the coverage prob-
ability of I

F
was estimated from 1600 Monte Carlo random samples for all four nominal

levels, and each interval was constructed using 1000 outer and 100 inner level resamples.
The simulation results for n=20 are summarised in Fig. 1, where coverage error is

plotted against the four nominal coverage levels. The results are qualitatively very similar
for the other two sample sizes. It is clear that I

BL
and I

F
are considerably more accurate

than the other intervals, and that I
BL

compares very favourably with the computationally
much more intensive I

F
, especially for higher nominal levels. The percentile interval I

P
,

which like I
BL

requires one level of resampling, generally has the greatest coverage error.
The intervals I

CL
and I

AL
have very similar coverages and both correct I

UL
to a certain

extent, but not as dramatically as does I
BL

.
Table 1 compares the coverage probabilities of I

BL
, I

F
and the percentile-t2 interval

Table 1: Variance example. Estimated coverage probabilities
(in %) of I

BL
, I

F
and the percentile-t2 interval, for

a=0·90. (a) Normal data N(0, 1), (b) folded normal
data |N(0, 1) |, (c) double exponential data 1

2
exp(−|x | ),

(d) log-normal data exp{N(0, 1)}

Interval n=20 n=35 n=100 n=20 n=35 n=100

(a) Normal (b) Folded normal
I
BL

88·6 87·3 89·2 82·7 84·8 87·0
I
F

89·2 88·6 89·6 84·9 85·9 87·5

Percentile-t2 86·4 86·8 88·7 83·5 84·6 87·4

(c) Double exponential (d) Log-normal
I
BL

82·6 87·1 88·7 67·9 69·9 75·3
I
F

83·9 86·7 89·3 58·0 67·4 74·8

Percentile-t2 82·5 86·1 88·5 66·5 69·5 72·8
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Fig. 1: Variance example. Estimated coverage errors of: % I
UL

, (I
CL

, 6I
AL

, +I
BL

, ×I
P

and
1I

F
, for n=20 and a=0·80, 0·90, 0·95, 0·99. (a) Normal data, (b) folded normal data, (c) double

exponential data, (d) log-normal data.

for a=0·90. We observe that the percentile-t2 method is generally slightly inferior to I
BL

and I
F
.

4·3. Correlation coeYcient example

We consider in this example six bivariate distributions, detailed specifications of which
can be found in Lee & Young (1995, § 5). Sample sizes considered were n=15, 20, 30, 50.
The iterated interval I

F
was constructed using 1000 outer and 100 inner level bootstrap

resamples and its coverage probability was estimated from 1600 Monte Carlo random
samples.

Figure 2 displays the coverage errors of the various intervals, for the case n=15.
Conclusions are quite similar to those in the variance example, except that I

P
now displays

a much better performance, even in comparison with the theoretically more accurate I
CL

and I
AL

. Such discrepancies do, however, narrow as sample size increases. The intervals
I
CL

and I
AL

still make consistent corrections to I
UL

, but have an overall performance
inferior to that of the resampling-based intervals I

BL
, I

F
and I

P
.

As in the variance example, we also constructed percentile-t2 intervals for a=0·90 and
the coverage probabilities are tabulated in Table 2 together with those of I

BL
and I

F
. All

three intervals have very similar performance with the percentile-t2 method being mar-
ginally inferior in the log-normal cases.

We note that the likelihood-based intervals are not in general transformation-respecting.
That the percentile method interval I

P
is transformation-respecting and therefore benefits
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Fig. 2: Correlation coefficient example. Estimated coverage errors of: %I
UL

, (I
CL

, 6I
AL

, +I
BL

, ×I
P

and 1I
F
, for n=15 and a=0·80, 0·90, 0·95, 0·99. (a) Normal data, h=0·0; (b) folded normal data, h=0·0;

(c) log-normal data, h=0·0; (d) normal data, h=0·5; (e) folded normal data, h=0·5; (f ) log-normal data,
h=0·378.

Table 2: Correlation coeYcient (h ) example. Estimated coverage probabilit-
ies (in %) of I

BL
, I

F
and the percentile-t2 interval, for a=0·90. (a) Folded

normal data, h=0; (b) folded normal data, h=0·5; (c) normal data, h=0;
(d) normal data, h=0·5; (e) log-normal data, h=0; (f ) log-normal data,

h=0·378

Interval n=15 n=20 n=30 n=50 n=15 n=20 n=30 n=50

(a) Folded normal, h=0 (b) Folded normal, h=0·5
I
BL

89·4 88·6 88·6 86·6 89·4 88·8 89·1 87·6
I
F

90·9 90·6 89·9 88·8 90·8 90·7 90·8 90·3

Percentile-t2 88·4 88·1 88·4 86·9 89·2 88·6 89·3 88·6

(c) Normal, h=0 (d) Normal, h=0·5
I
BL

90·7 90·3 89·9 90·6 89·3 90·5 89·7 89·5
I
F

91·4 91·3 91·3 91·9 90·1 91·1 90·9 90·6

Percentile-t2 89·7 89·9 89·1 89·9 88·3 90·1 89·0 89·9

(e) Log-normal, h=0 (f ) Log-normal, h=0·378
I
BL

83·5 83·9 82·8 85·7 87·3 86·3 86·3 85·5
I
F

90·8 90·0 88·6 88·4 93·8 92·2 92·6 91·7

Percentile-t2 82·7 82·6 82·0 83·8 85·5 84·6 85·4 84·1
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automatically from variance stabilisation may account for its high accuracy. We repeated
the simulation exercise for a=0·90 to study the effects of Fisher’s transformation on the
likelihood-based intervals, but found very little change in their estimated coverages.

5. D

As is evident from its theoretical properties and empirical performance, the bootstrap
nonparametric likelihood interval I

BL
stands as a strong candidate among bootstrap

intervals which have accurate coverage. A similar or even marginally better coverage
accuracy compared to the iterated bootstrap interval can be achieved using only one level
of resampling.

The nonparametric likelihood method requires numerical computation of R(h ) and the
endpoints of the interval, which typically involves numerical algorithms such as the
Newton method. To investigate how nonconvergence of the Newton method might affect
the proper functioning of the nonparametric likelihood procedures, we recorded the fre-
quencies of non-convergence suffered by the likelihood-based intervals in the simulation
study discussed above. We found that the nonconvergence frequencies did not exceed
4·7% and 0·72% in the variance and correlation coefficient examples respectively, and
that iteration failures arose much less frequently for larger sample sizes. This suggests that
failures were mainly caused by nonexistence of feasible solutions to the equation (1), as
might occur if no weighting of sample data could result in the desired h. The restriction
from a multinomial model to a single-parameter family limits the scope of the feasible
p
i
’s, and may therefore result in more frequent iteration failures. It would be of interest

to compare I
BL

with the empirical likelihood interval in this respect.
The intervals I

CL
and I

AL
are found to correct the naive nonparametric likelihood

interval I
UL

significantly. However, they do not appear to approximate I
BL

particularly
accurately, although they have the same order of coverage error. This is in contrast to
the findings of Lee & Young (1995), who observe that asymptotic approximations to the
iterated bootstrap interval I

F
, constructed by the same techniques as are the intervals

I
CL

and I
AL

, and requiring less or even no resampling, so yielding very significant compu-
tational gain, provide coverage errors which are not significantly greater than those of
I
F
. In the context of the current paper, we judge that the arguments for use of I

AL
and

I
CL

are not compelling: the interval I
BL

requires just one level of bootstrap sampling, but
yields noticeable improvements in terms of coverage accuracy.

It is evident that information on the orders of coverage error alone is inadequate to
discriminate effectively between alternative procedures. Lee & Young (1997) observe that
explicit evaluation of the leading term in expansion of coverage error may be useful in
discriminating qualitatively between different methods of confidence interval construction,
although it may not be as effective in predicting the actual coverage error. We illustrate
this point by evaluating explicitly the leading terms in expansions of theoretical coverage
errors in the variance example of § 4. The explicit formulae are obtained by expanding
the calculations shown in the Appendix to include the next higher-order terms in all
expansions, and then using the techniques of Lee & Young (1997). Table 3 lists the figures
for intervals which have O(n−2 ) coverage errors, based on a nominal level of 0·90. It is
found, contrary to our empirical findings, that the percentile-t2 interval has the smallest
leading term in asymptotic coverage error expansion, and that I

BL
is asymptotically less

accurate than I
F
. The two approximate likelihood intervals I

AL
and I

CL
are the least
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Table 3: Variance example. L eading terms in asymptotic expansions of
coverage errors of I

BL
, I

AL
, I

CL
, I

F
and the percentile-t2 interval, for

a=0·90

Standard normal Folded normal Double exponential Log-normal
Interval (×n−2 ) (×103n−2 ) (×104n−2 ) (×1020n−2 )
I
BL

−177·6 −1·88 −2·15 −7·09

I
AL

−347·3 −2·85 −2·22 −5·49
I
CL

−340·7 −2·77 −2·14 −5·28
I
F

−149·9 −1·37 −1·24 −2·49

Percentile-t2 −36·6 −0·19 0·08 2·07

accurate, except for the double exponential and log-normal cases where they are compar-
able to I

BL
.
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A

Derivations

This appendix serves two purposes. First, it provides explicit definitions of the intervals I
AL

and
I
CL

. It also derives asymptotic expansions for the endpoints of the nonparametric likelihood
intervals. The proof of Proposition 2 then follows by a straightforward application of Proposition
3.1 of Hall (1992).

The definition of I
CL

is obtained from an asymptotic expansion of an exact a-level confidence
interval obtained from the nonparametric likelihood ratio R, which we now derive; see equations
(A2), (A3) and (A5).

First define m
i
1
...i

r

=E
F
{(X−m)(i

1
) . . . (X−m)(i

r
)} and let m@ i

1
...i

r

be its sample version. Denote by
c
a

the exact ath quantile of R(h
F
). The confidence limits of an exact a-level interval can then be

obtained by solving R(h )=c
a

for h. Under the smooth function model the confidence limits are
typically within O

p
(n−D) of the estimate h@ . It thus suffices to assume h=h@+O

p
(n−D).

Define

s@2= ∑
n

i=1
U2
i
/n, c@= ∑

n

i=1
U3
i
/n, d@= ∑

n

i=1
U4
i
/n, e@= ∑

n

i=1
U5
i
/n,

GC 1= ∑
d

r
1
...r

4
=1

g@
r
1

g@
r
2

g@
r
3
r
4

m@ r
1
r
3

m@ r
2
r
4

, GC 2= ∑
d

r
1
...r

5
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4
r
5

m@ r
1
r
4

m@ r
2
r
3
r
5

,

GC 3= ∑
d

r
1
...r

6
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4

g@
r
5
r
6

m@
r
1
r
5

m@
r
2
r
3
r
4
r
6

, GC 4= ∑
d

r
1
...r

6
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4

g@
r
5
r
6

m@
r
1
r
2
r
5

m@
r
3
r
4
r
6

,

GC 5= ∑
d

r
1
...r

6
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4
r
5
r
6

m@
r
1
r
4

m@
r
2
r
5

m@
r
3
r
6

, GC 6= ∑
d

r
1
...r

7
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4

g@
r
5
r
6
r
7

m@
r
1
r
5

m@
r
2
r
6

m@
r
3
r
4
r
7

,

GC 7= ∑
d

r
1
...r

8
=1

g@
r
1

g@
r
2

g@
r
3

g@
r
4

g@
r
5
r
6
r
7
r
8

m@
r
1
r
5

m@
r
2
r
6

m@
r
3
r
7

m@
r
4
r
8

,

CC 3=−(2
3
c@+GC 1 ), CC 4=1

4
s@−2 (c@+GC 1 )(3c@+5GC 1 )+3

4
s@ 4−1

4
d@−GC 2−1

3
GC 5 ,

CC 5=1
6
s@−2{(5c@+6GC 1 )(3GC 2+GC 5 )+d@ (4c@+5GC 1 )}−1

4
s@−4 (c@+GC 1 )2 (4c@+7GC 1)

−1
6
s@ 2 (8c@+9GC 1 )− 1

15
e@−1

3
GC 3−1

4
GC 4−1

2
GC 6− 1

12
GC 7 .
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By expanding t
h
in a power series in n−DT

h
= (h@−h)/s@ , we obtain

R(h )=T 2
h
−n−1/2CC 3T 3

h
/s@ 3+n−1CC 4T 4

h
/s@4−n−3/2CC 5T 5

h
/s@5+O

p
(n−2 ). (A1)

Note that R(h
F
) is asymptotically chi-squared distributed and so the equation R(h )=c

a
typically

admits two distinct solutions for sufficiently large n. Denote the two solutions by hA
L

and hA
U

such
that hA

L
∏hA

U
. Then an exact a-level confidence interval for h is [hA

L
, hA
U
].

Recall that j= (1+a)/2 and z
j
=W−1(j). Substituting (A1) and writing

c
a
=G ∑

j�0
n−j/2g

j
(z
j
)H2

for some polynomials g
j
, even for odd j and odd for even j, we obtain

hA
U
=h@+n−1/2s@{ f@0 (zj )+n−1/2 f@1 (zj)+n−1 f@2 (zj )+n−3/2 f@3 (zj)+O

p
(n−2 )}. (A2)

By symmetry we can put g1=g3¬0 and get

hA
L
=h@+n−1/2s@{ f@0 (z1−j )+n−1/2 f@1 (z1−j )+n−1 f@2 (z1−j )+n−3/2 f@3 (z1−j )+O

p
(n−2 )}. (A3)

Here the f@
j
are polynomials, even for odd j and odd for even j, given by

f@0=g0 , f@1=−1
2
CC 3g2

0
/s@ 3, f@2=g2+1

8
(5CC 2

3
−4CC 4s@ 2 )g30/s@6,

f@3=−CC 3g0g2/s@ 3−1
2
(2CC 3

3
−3CC 3CC 4s@2+CC 5s@ 4 )g4

0
/s@ 9.

(A4)

If we apply Proposition 3.1 in Hall (1992) and take g0 (zj )=z
j
, an asymptotic expansion for the

coverage of [hA
L
, hA
U
] is obtained to be a+n−1w(z

j
) fA (z

j
)+O(n−2 ), for some polynomial fA. Exactness

of the interval implies that fA¬0 and so

g2 (zj )=−q2 (zj )+1
8
C2
3
z5
j
/s6+1

2
C3z2j{zjq1 (zj)−q∞

1
(z
j
)}/s3−1

8
(5C2

3
−4C4s2 )z3

j
/s6+tz3

j
,

(A5)

where q1 and q2 are polynomials defined by

pr
F
(T
h
F

∏x)=W(x)+n−Dq1 (x)w(x)+n−1q2 (x)w(x)+o(n−1 ),
t=E

F
{nDT

h
F

(C3/s3−CC 3/s@3 )}/2+O(n−1 ), and C
j
, s denote the population versions of CC

j
, s@

respectively. The sample version of g2 , denoted by g@2 , gives the adjustment (2) for constructing
I
CL

. Similarly, asymptotic expansions for the confidence limits of I
BL

are given by expansions
(A2) and (A3), with the g

j
replaced by their sample versions g@

j
in (A4). The resulting expansions,

when truncated at the O
p
(n−2 ) terms, define the endpoints of I

AL
.

An application of Proposition 3.1 in Hall (1992) shows that I
AL

, I
CL

and I
BL

all have coverage
error of order O

p
(n−2 ).
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