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SUMMARY
We consider inference on a scalar parameter of interest in the presence of a nuisance parame-

ter, using a likelihood-based statistic which is asymptotically normally distributed under the null
hypothesis. Higher-order expansions are used to compare the repeated sampling distribution,
under a general contiguous alternative hypothesis, of p-values calculated from the asymptotic
normal approximation to the null sampling distribution of the statistic with the distribution of
p-values calculated by bootstrap approximations. The results of comparisons in terms of power
of different testing procedures under an alternative hypothesis are closely related to differences
under the null hypothesis, specifically the extent to which testing procedures are conservative or
liberal under the null. Empirical examples are given which demonstrate that higher-order asymp-
totic effects may be seen clearly in small-sample contexts.

Some key words: Alternative hypothesis; Asymptotic normality; Bootstrap; Constrained bootstrap; Likelihood;
Null hypothesis; p-value; Power; Size.

1. INTRODUCTION
Testing of a null hypothesis against a specified alternative by calculation of a p-value is an

intrinsic part of statistical inference. Yet it is rare that the sampling distribution of the statistic used
for a hypothesis test is known exactly under the null hypothesis in question, typically because
of the presence of nuisance parameters that remain unspecified under the hypothesis. Usually,
therefore, the test is conducted by calculation of an approximate p-value, either by analytical
means or by bootstrap estimation of the null sampling distribution. The sampling distribution of
p-values calculated from the exact null sampling distribution of the test statistic in question is,
under the null hypothesis, exactly uniform on (0, 1); but in general the null sampling distribution
of an approximate p-value is only asymptotically uniform.

A highly useful approach to testing a hypothesis on a parameter of interest in the presence of a
nuisance parameter is furnished by procedures based on the likelihood function, including tests
based on the likelihood ratio statistic. Although no explicit optimality criteria are invoked, a quite
general asymptotic distribution theory allows straightforward implementation of such methods
in a wide class of problems.
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In this paper we are concerned with inference on a scalar parameter of interest, in the presence
of a nuisance parameter, using a likelihood-based statistic which is asymptotically distributed as
standard normal, N (0, 1), under a certain null hypothesis. We will focus in particular on com-
parison of the repeated sampling distribution of p-values calculated from the asymptotic normal
approximation to the null sampling distribution of the statistic with the distribution of p-values
calculated by bootstrap approximations to the sampling distribution of the statistic (DiCiccio
et al., 2001; Lee & Young, 2005; Stern, 2006). In some generality (Lee & Young, 2005), p-values
approximated analytically or by bootstrapping are known to be asymptotically uniform under the
null hypothesis, with the sampling distribution of p-values obtained by bootstrap approxima-
tion being more uniformly distributed under the null hypothesis than those calculated from a
normal approximation. However, to discriminate more fully between different p-value approxi-
mations, it is necessary to consider also the sampling distribution of p-values when the alterna-
tive hypothesis is true. In this paper a higher-order comparison, which generalizes that of Lee &
Young (2005) to consider distributions under an alternative hypothesis, is made between p-values
obtained by normal approximation and by bootstrap approximation. A key methodological con-
clusion drawn in this paper is that the results of comparisons of different testing procedures in
terms of power under an alternative hypothesis are closely related to differences under the null
hypothesis, specifically the extent to which testing procedures are conservative or liberal under
the null. This finding provides some validation for the principle of choosing a testing procedure
that yields size as close as possible to a nominal desired level, without reference to power under
any specified alternative.

2. INFERENCE PROBLEM
Suppose that Y = (Y1, . . . , Yn) is a random sample from an unknown underlying distribu-

tion Fη indexed by η = (η1, . . . , ηd) ∈ Rd . Let θ = g(η) be a scalar parameter of interest, for
some smooth function g : Rd → R. Denote by l(η) the loglikelihood function based on Y . Let
η̂ = arg maxηl(η) be the global maximum likelihood estimator, and let η̂ϑ = arg maxη{l(η) :
g(η) = ϑ} be the constrained maximum likelihood estimator of η for any ϑ ∈ R. Typically, we
will have η = (θ, ξ), with inference required for the parameter of interest θ in the presence of the
nuisance parameter ξ .

Let θ0 = g(η0) be a hypothesized value of θ , and suppose that we wish to test the null hypoth-
esis H0 : θ = θ0 against a one-sided alternative, specified as Ha : θ < θ0 or Ha : θ > θ0. The test
is performed using a statistic T (θ0) = T (Y, θ0), and we will assume that large positive values of
T (θ0) constitute evidence against H0 in favour of the specified alternative Ha. A key choice for
the test statistic T (θ0) is based on the signed root likelihood ratio statistic

R(θ0) = sgn(θ̂ − θ0)
[
2{l(η̂) − l(η̂θ0)}

]1/2
,

where θ̂ = g(η̂). We have that R(θ0) is distributed under H0 as standard normal, with an error of
order n−1/2. Large positive values of T (θ0) = R(θ0) are evidence against H0 : θ = θ0 in favour of
Ha : θ > θ0, while evidence against H0 in favour of the alternative Ha : θ < θ0 would be provided
by large positive values of T (θ0) = −R(θ0). In our empirical studies in § 4 we will concentrate
on using such a statistic T (θ0), which is known (DiCiccio et al., 2015) to have desirable prop-
erties compared to other likelihood-based statistics for the inference problem being considered,
although other choices of statistic T (θ0) are covered by the theory presented in § 3. Examples
include the studentized maximum likelihood estimator, or Wald statistic, standardized versions
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of the profile score, and the signed root of various adjusted forms of the likelihood ratio statistic.
For further discussion and references, see Lee & Young (2005, Remark 3).

Assuming an N (0, 1) null distribution for T (θ0), the p-value for testing H0 is approximated by

P̂N = 1 − %{T (θ0)}.

Lee & Young (2005) considered two bootstrap p-values. The constrained bootstrap estimate
of the p-value is

P̂cB = 1 − G
{

T (θ0); η̂θ0, θ0
}
.

Here G(· ; η̂θ0, θ0) denotes the distribution function of T (Y ∗
θ0

, θ0), where Y ∗
θ0

is a random boot-
strap sample of n observations drawn from Fη̂θ0

. This procedure imposes the null hypothesis
constraint in the generation of bootstrap samples.

As before, let θ̂ = g(η̂) be the global maximum likelihood estimator of θ . Denote by Y ∗ a
random bootstrap sample of n observations drawn from Fη̂. The unconstrained parametric boot-
strap estimates the null distribution of T (θ0) by the bootstrap distribution of T (Y ∗, θ̂), and the
unconstrained bootstrap estimate of the p-value is therefore defined as

P̂B = 1 − G
{

T (θ0); η̂, θ̂
}
.

This procedure does not impose the null hypothesis constraint in the bootstrapping.
Lee & Young (2005) considered the distribution of the p-values P̂N, P̂cB and P̂B under the

null hypothesis. They showed that when the statistic T (θ0) is distributed as N (0, 1) with an error
of O(n−β/2), the p-values P̂N, P̂cB and P̂B are distributed as Un(0, 1), with errors of O(n−β/2),
O(n−(β+2)/2) and O(n−(β+1)/2), respectively. Therefore, the discrepancies between the actual
and nominal sizes of tests based on the three procedures are of these orders. Considering for illus-
tration the case where the statistic is the signed root likelihood ratio statistic, we have β = 1, and
the normal, constrained bootstrap and unconstrained bootstrap p-values are distributed, when the
null hypothesis is true, as uniform with corresponding orders O(n−1/2), O(n−3/2) and O(n−1).
Our primary interest here is in examining the distribution of the p-values under an alternative
hypothesis. Theoretical results derived in Supplementary Material are summarized in § 3.

3. MAIN RESULTS

Let θ0 = g(η0) be a contiguous hypothesized value of θ such that δ ≡ η − η0 = O(n−1/2). The
usual local alternative formulation has δ = O(n−1/2) but δ |= o(n−1/2).

Denote derivatives of g and l by gi (η) = ∂g(η)/∂ηi , li (η) = ∂l(η)/∂ηi , li j (η) =
∂2l(η)/(∂ηi∂η j ), and so on. Write s(η) = n−1l(η), si (η) = n−1li (η), si j (η) = n−1li j (η), and
so on. Define Ji j (η, η0) = −Eη{si j (η0)} and Li jk(η) = Eη{si jk(η)}. Denote by J i j (η, η0) the
(i, j)th element of the inverse of the matrix {Ji j (η, η0)}. Define σ 2(η) = gi (η)g j (η)J i j (η, η),
where summation over the range 1, . . . , d is understood for any index appearing once as a
subscript and once as a superscript. For brevity we write f̌ = f (η0) for any function f (η)
evaluated at η = η0. Thus we have ši = si (η0), ǧi = gi (η0), J̌i j = Ji j (η0, η0), σ̌ = σ (η0), and
so on.

Consider a test statistic T (θ0) = T (Y, θ0) which admits an expansion of the form

T (θ0) = ± n1/2σ̌−1ǧa šb J̌ ab + *n(η, η0), (1)
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where *n(η, η0) = Op(n−1/2) can be expanded as a sum of nonrandom multiples, possibly
depending on n, of products of quantities ši − Eη(ši ), ši j − Eη(ši j ), ši jk − Eη(ši jk), . . . . All
commonly used likelihood-based asymptotically normal statistics admit an expansion of this
form; see Lee & Young (2005). The sign in (1) is determined by the direction of the one-sided
alternative hypothesis Ha against which T (θ0) serves as a test statistic. Consider testing H0 in
a test of nominal size α, so that the normal approximation, constrained bootstrap and uncon-
strained bootstrap procedures respectively reject H0 if P̂N < α, P̂cB < α and P̂B < α. The dis-
crepancy between the actual and nominal sizes of the test based on the normal approximation
is prη0

(P̂N ! α) − α, and similarly for the constrained and unconstrained bootstrap procedures.
When the statistic T (θ0) is distributed under H0 as N (0, 1) with an error of O(n−1/2), as is the
case for the signed root likelihood ratio statistic, the discrepancies are, respectively, O(n−1/2),
O(n−3/2) and O(n−1) for the normal approximation, constrained bootstrap and unconstrained
bootstrap tests (Lee & Young, 2005).

In the Supplementary Material, higher-order expansions are derived for the distribution func-
tions of the p-values P̂N, P̂cB and P̂B. These expansions allow us to draw the following key
conclusions. Here we write zx = %−1(x).

THEOREM 1. Suppose that δ = O(n−1/2) but δ |= o(n−1/2). Then for the approximate
p-values P̂ = P̂cB and P̂ = P̂B,

prη
(

P̂ ! x
)

− prη
(

P̂N ! x
)

=
{

prη0

(
P̂N ! x

)
− x

} {
− φ(zx + n1/2σ̌−1|θ − θ0|)

φ(zx )
+ O

(
n−1/2)

}
. (2)

THEOREM 2. Suppose that δ = o(n−1/2). Then

prη
(

P̂cB ! x
)

− prη
(

P̂N ! x
)

=
{

prη0

(
P̂N ! x

)
− x

} {
−1 + n1/2σ̌−1|θ − θ0|zx + O

(
n−1 + n∥δ∥2)

}
(3)

and

prη
(

P̂B ! x
)

− prη
(

P̂N ! x
)

=
{

prη0

(
P̂N ! x

)
− x

}

×
{

−1 + n1/2σ̌−1|θ − θ0|zx +
prη0

(P̂B ! x) − x

prη0
(P̂N ! x) − x

+ O
(
n−1 + n∥δ∥2)

}
, (4)

where the ratio {prη0
(P̂B ! x) − x}/{prη0

(P̂N ! x) − x} in (4) is O(n−1/2).

For an approximate p-value P̂ , define Q(P̂, α; η, η0) = prη(P̂ ! α) − prη0
(P̂ ! α).

THEOREM 3. Suppose that δ = o(n−1/2). Then for the approximate p-values P̂ = P̂cB and
P̂ = P̂B,

Q
(

P̂, α; η, η0
)
= Q

(
P̂N, α; η, η0

)
+

{
prη0

(
P̂N ! α

)
− α

}
n1/2σ̌−1|θ − θ0|zα

+ O
(
n−(β+2)/2 + n−1/2∥δ∥ + n∥δ∥2 + n(1−β)/2∥δ∥

)
.
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In the asymptotic regime where δ = O(n−1/2), asymptotically the power functions of the con-
strained and unconstrained bootstraps, prη(P̂cB ! α) and prη(P̂B ! α), are equal.

In the asymptotic regime where δ = o(n−1/2), we deduce from expansions (3) and (4) that
asymptotically the power functions of the two bootstrap tests differ. However, the changes in
power, Q(P̂cB, α; η, η0) and Q(P̂B, α; η, η0), are the same. So, asymptotically speaking, the
difference in power of the two methods is essentially defined by the difference in their sizes.
More specifically, from (3) and (4) we see that the leading term in an asymptotic expansion of
prη(P̂cB ! α) − prη(P̂B ! α) is given by α − prη0

(P̂B ! α). For the typical situation where the
test is based on a statistic distributed under H0 as N (0, 1) with an error of O(n−1/2), this dis-
crepancy between the powers of the two bootstrap procedures is of O(n−1) under this asymptotic
regime. If the unconstrained bootstrap yields a test which is conservative, so that its actual size is
smaller than the nominal size α, then the constrained bootstrap test has an asymptotically higher
power than the unconstrained bootstrap under such local alternatives; on the other hand, when the
unconstrained bootstrap test is liberal, the asymptotic power of the constrained bootstrap test will
be lower than for the unconstrained bootstrap. We demonstrate in § 4 that this asymptotic compar-
ison predicts well the behaviours of the two bootstrap tests in terms of power as the hypothesized
θ0 moves away from the true value of θ in finite-sample contexts.

Further, while we have argued from Theorem 3 that the power functions of the two bootstrap
tests grow at the same rate as θ0 moves away from the true θ , we see that the power of the test
based on normal approximation grows more slowly if its actual size is below the nominal size
α, but more quickly if its actual size is above the nominal α. We are again able to provide in § 4
vivid illustration of this asymptotic behaviour for a small sample size n.

We can also consider bootstrap p-values based on simulation using estimates of the nui-
sance parameter other than the global and constrained maximum likelihood estimators; see, for
instance, Severini (1998) and Yang et al. (2014). Let η̃ϑ be a n1/2-consistent estimator of η, con-
strained to satisfy the condition g(η̃ϑ ) = ϑ . Assume differentiability of the map ϑ )→ η̃ϑ around
ϑ = θ0 and that covη{T (θ0), η̃θ0} = O(n−1/2) for δ = O(n−1/2), which holds under mild regu-
larity conditions. Arguments analogous to those presented in the Supplementary Material can
be used to deduce that (2) and (4) hold with η̂ replaced by η̃θ0 . For the special case of η̃ϑ = η̂ϑ ,
covη{T (θ0), η̂θ0} has a smaller order, O(n−1), which leads to a different expansion (3) under
δ = o(n−1/2).

Consider the particular case where T (θ0) = R(θ0), the signed root likelihood ratio statistic, for
which prη0

(P̂N ! x) = x + O(n−1/2). If δ = O(n−1/2) but δ |= o(n−1/2), by Theorem 1 we have

that prη(P̂N ! x), prη(P̂cB ! x) and prη(P̂B ! x) are asymptotically equivalent up to O(n−1/2).
For the case of δ = o(n−1/2), by Theorem 2 we have that

prη
(

P̂cB ! x
)

− prη
(

P̂N ! x
)
=

{
x − prη0

(
P̂N ! x

)}{
1 + O

(
n−1 + n1/2∥δ∥

)}

and

prη
(

P̂B ! x
)

− prη
(

P̂N ! x
)
=

{
x − prη0

(
P̂N ! x

)}{
1 + O

(
n−1/2 + n1/2∥δ∥

)}
.

It is of interest to compare the two bootstrap approximations to R(θ0) with normal approxi-
mation to the adjusted signed root statistic R∗(θ0) (Barndorff-Nielsen, 1986). The p-value based
on the analytic normal approximation to R∗(θ0) is

P̂A = 1 − %{R∗(θ0)}.
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Setting β = 3 in the technical derivations, we deduce that if δ = O(n−1/2) but δ |= o(n−1/2),

prη
(

P̂A ! x
)
= prη

(
P̂N ! x

)
+ O(n−1/2),

and that if δ = o(n−1/2) we have

prη
(

P̂A ! x
)

− prη
(

P̂N ! x
)
=

{
x − prη0

(
P̂N ! x

)}{
1 + O

(
n−1 + n1/2∥δ∥ + n3/2∥δ∥2)}.

We see that the p-value based on normal approximation to R∗(θ0) has a distribution which is
asymptotically closer to that of the p-value based on constrained bootstrap approximation to
R(θ0) than the one based on the unconstrained bootstrap if the alternative is sufficiently local,
with δ = o(n−1). For δ = o(n−1/2), the discrepancy between the power and size of the normal
approximation to R∗(θ0) has the expansion

prη
{

R∗(θ0) " z1−α

}
− prη0

{
R∗(θ0) " z1−α

}

= prη
(

P̂N ! α
)

− prη0

(
P̂N ! α

)
+ O

(
∥δ∥ + n∥δ∥2).

The corresponding discrepancies for the two bootstrap approximations have the same expansion
as above except for an additional O(n−3/2) term, as can be deduced from Theorem 3.

4. EXAMPLES
4·1. Inverse Gaussian mean

Suppose that Y = (Y1, . . . , Yn) where Y1, . . . , Yn are independent, identically distributed
inverse Gaussian random variables with mean θ and shape parameter λ, so that the common
density is

f (y; θ, λ) =
(

λ

2πy3

)1/2

exp
{

−λ(y − θ)2

2θ2y

}
(y > 0; θ, λ > 0).

Inference is required for the mean θ , with λ a nuisance parameter. In this example, global and con-
strained maximum likelihood estimators have explicit, closed-form expressions, so no numerical
optimization is needed in constructing the signed root statistic R(θ0), which is used throughout
our analysis, or its adjusted form R∗(θ0). The power of tests based on normal approximation and
the two bootstrap procedures are compared for nominal sizes α = 1%, 5% and 10% in Tables 1
and 2, for a range of sample sizes n. In all cases, the true parameter values are θ = λ = 2·0.
Table 1 displays the results of testing H0 : θ = θ0 against Ha : θ > θ0, and Table 2 the results of
testing against Ha : θ < θ0. All figures are based on 50 000 replications, with 20 000 samples
being drawn in the calculation of each bootstrap p-value. The results are broadly as predicted by
the theory. In particular, there is little discernible difference between the powers of the two boot-
strap tests and the test based on normal approximation to the distribution of the adjusted signed
root statistic, with the discrepancies reflecting slight differences in size for the small sample sizes
n considered. Of particular interest, however, is the small-sample case n = 5 in Table 2. Here, the
unconstrained bootstrap has actual size noticeably above the nominal size, and the constrained
bootstrap is more accurate in terms of size, with the power functions reflecting this difference.
The normal approximation to the distribution of R(θ0) yields size substantially above the nomi-
nal level. Figure 1(a) shows a more complete picture of the power functions for the α = 5% case
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Table 1. Comparison of p-values for the inverse Gaussian mean example with nominal sizes
α = 1%, 5%, 10%; P̂N and P̂A are p-values obtained by normal approximation to the signed root
statistic R(θ0) and its adjusted form R∗(θ0), respectively; P̂B and P̂cB are p-values obtained by
unconstrained and constrained bootstrap approximation of the distribution of R(θ0), respectively.
All figures are based on 50 000 replications, with 20 000 samples being drawn in the calculation
of each bootstrap p-value; the figures give percentages of the 50 000 p-values that are less than

α, in testing against Ha : θ > θ0

θ0 = θ θ − 2/n θ − 2/n1/2

n α P̂N P̂B P̂cB P̂A P̂N P̂B P̂cB P̂A P̂N P̂B P̂cB P̂A

5 1% 1·5 0·8 0·9 1·0 5·5 3·4 3·7 4·0 25·8 19·6 20·5 21·5
5% 5·5 5·0 4·9 5·2 15·5 14·3 14·1 14·6 48·4 45·9 45·7 46·7

10% 9·7 10·2 9·8 10·2 23·7 24·1 23·5 24·1 59·8 59·5 59·1 59·7
10 1% 1·1 1·0 1·0 1·0 2·8 2·7 2·7 2·7 19·0 18·4 18·2 18·4

5% 4·6 5·1 4·9 5·0 9·9 10·7 10·4 10·6 39·2 40·3 39·7 40·0
10% 9·0 10·4 10·0 10·2 16·7 18·5 18·1 18·2 51·1 53·2 52·6 52·9

15 1% 1·0 1·1 1·0 1·1 2·2 2·3 2·3 2·3 16·8 17·2 16·9 17·1
5% 4·5 5·1 4·9 5·0 8·3 9·3 9·0 9·1 36·1 37·9 37·4 37·5

10% 8·9 10·2 10·0 10·0 14·9 16·7 16·3 16·4 48·2 50·4 50·0 50·2
20 1% 0·9 1·0 1·0 1·0 1·8 2·0 1·9 1·9 15·5 16·2 16·0 16·1

5% 4·4 5·0 4·9 4·9 7·5 8·5 8·3 8·3 34·6 36·4 36·0 36·2
10% 8·9 10·3 10·1 10·1 14·0 15·6 15·4 15·4 46·8 49·1 48·8 48·9

25 1% 0·9 1·0 0·9 0·9 1·7 1·9 1·8 1·9 14·5 15·3 15·1 15·2
5% 4·5 5·1 5·0 5·0 7·3 8·1 8·0 8·0 33·0 34·9 34·5 34·6

10% 9·0 10·2 10·0 10·1 13·2 14·7 14·5 14·6 45·6 47·8 47·5 47·6
50 1% 0·9 1·0 1·0 1·0 1·4 1·5 1·5 1·5 12·7 13·5 13·4 13·4

5% 4·6 5·1 5·0 5·0 6·3 7·0 6·9 7·0 34·1 32·1 31·9 31·9
10% 9·3 10·3 10·2 10·2 11·9 13·1 13·0 13·0 43·1 45·1 44·9 45·0

in this context: for each of the approximate p-values P̂ = P̂B, P̂cB and P̂A, the discrepancy

D =
{

prη
(

P̂ ! α
)

− prη
(

P̂N ! α
)}/∣∣α − prη0

(
P̂N ! α

)∣∣,

which the theory of § 3 indicates is most relevant, is plotted against θ0 − θ . The plot was con-
structed by interpolation of power values obtained from simulating, as before, at 11 values of θ0,
including those considered in Table 2. As the theory predicts, for each method the transformed
power D lies close to a straight line with negative intercept and negative slope. The normal
approximation is liberal, and the theory implies that the power for each method is both smaller
and grows more slowly than that of the normal approximation. The unconstrained bootstrap is
also liberal, and yields power greater than that of the constrained bootstrap, but which increases
at the same rate, at least for very local departures from the null hypothesis. The power figures
for the test based on R∗(θ0) are closer to those of the constrained bootstrap than those of the
unconstrained bootstrap, again giving empirical support to the theory presented above. Further
numerical results are reported in the Supplementary Material.

A key observation is that in this model the signed root statistic is highly pivotal: since its
distribution depends very little on the value of the nuisance parameter λ, there is relatively lit-
tle practical difference between the distribution of p-values calculated by the unconstrained and
constrained bootstraps. This is not necessarily the case for other likelihood-based statistics. Con-
sider, for example, the Wald statistic, defined as θ̂ − θ0, standardized by a variance estimate
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Table 2. Comparison of p-values for the inverse Gaussian mean example with n = 5, 10, 15,
nominal sizes α = 1%, 5%, 10% and * = 1·0. All figures are based on 50 000 replications, with
20 000 samples being drawn in the calculation of each bootstrap p-value; the figures give per-

centages of p-values that are less than α, in testing against Ha : θ < θ0

θ0 = θ θ + * θ + 2* θ + 3* θ + 4*

n = 5

P̂N (3·2, 11·0, 18·6) (8·5, 26·1, 40·0) (13·5, 38·1, 55·6) (17·5, 47·0, 66·1) (20·8, 53·4, 73·1)
P̂B (1·2, 5·8, 11·3) (3·2, 14·1, 25·8) (5·1, 21·4, 37·2) (6·6, 27·1, 45·4) (8·0, 31·3, 51·5)
P̂cB (1·0, 5·1, 10·0) (2·5, 12·0, 22·9) (3·9, 17·8, 32·6) (5·0, 22·3, 39·5) (5·9, 25·7, 44·5)
P̂A (1·0, 5·2, 10·4) (2·7, 12·4, 23·4) (4·2, 18·5, 33·2) (5·4, 23·1, 40·3) (6·3, 26·7, 45·4)

P̂W (18·2, 24·8, 29·6) (43·8, 53·5, 60·0) (63·8, 73·5, 78·9) (77·2, 85·0, 89·0) (85·7, 91·5, 94·2)
P̂BW (3·9, 9·9, 15·2) (12·4, 26·0, 35·9) (22·3, 40·7, 52·6) (31·4, 52·3, 64·6) (39·5, 61·4, 73·2)
P̂cBW (0·9, 5·1, 10·4) (2·1, 12·0, 23·5) (3·2, 17·7, 33·4) (3·9, 22·1, 40·6) (4·6, 25·4, 45·8)

n = 10

P̂N (2·1, 8·3, 14·8) (10·5, 31·6, 48·0) (21·2, 53·8, 72·5) (31·3, 69·0, 85·5) (39·4, 78·5, 91·9)
P̂B (1·1, 5·5, 10·8) (6·0, 22·4, 37·3) (12·8, 40·5, 60·1) (19·3, 54·2, 74·5) (24·9, 64·1, 82·9)
P̂cB (1·0, 5·1, 10·1) (5·2, 20·6, 35·3) (11·0, 37·1, 57·0) (16·6, 50·0, 71·1) (21·2, 58·8, 79·4)
P̂A (1·0, 5·2, 10·2) (5·3, 20·7, 35·3) (11·1, 37·2, 57·0) (16·7, 50·0, 71·0) (21·5, 58·9, 79·3)

P̂W (11·5, 18·2, 23·4) (45·2, 58·0, 66·0) (73·4, 83·5, 88·5) (88·2, 94·1, 96·4) (95·0, 98·0, 99·0)
P̂BW (2·8, 7·8, 12·8) (15·1, 31·9, 44·5) (32·7, 56·3, 70·0) (49·3, 73·4, 84·3) (62·5, 83·7, 91·7)
P̂cBW (1·0, 5·2, 10·3) (4·9, 20·7, 35·8) (10·1, 37·3, 57·7) (15·1, 50·1, 71·7) (19·2, 59·0, 80·0)

n = 15

P̂N (1·8, 7·6, 13·8) (14·6, 39·6, 57·0) (33·3, 69·2, 84·5) (50·3, 85·1, 94·9) (62·5, 92·7, 98·3)
P̂B (1·1, 5·5, 10·8) (9·9, 31·6, 48·3) (24·2, 58·9, 76·9) (37·8, 76·4, 90·2) (49·1, 86·0, 95·7)
P̂cB (1·1, 5·2, 10·4) (9·0, 29·9, 46·7) (21·9, 56·2, 75·1) (34·5, 73·4, 88·8) (44·8, 83·5, 94·6)
P̂A (1·1, 5·2, 10·4) (9·1, 30·0, 46·7) (22·0, 56·3, 74·9) (34·5, 73·4, 88·7) (44·9, 83·4, 94·5)

P̂W (9·3, 15·6, 20·8) (49·6, 64·1, 71·9) (81·7, 90·6, 94·2) (94·8, 98·0, 99·0) (98·6, 99·6, 99·9)
P̂BW (2·2, 7·1, 12·2) (19·4, 39·5, 53·5) (45·0, 70·5, 82·4) (66·4, 87·1, 94·1) (80·3, 94·6, 98·0)
P̂cBW (1·0, 5·3, 10·5) (8·7, 30·1, 47·0) (21·1, 56·5, 75·4) (33·2, 73·6, 89·0) (43·1, 83·6, 94·8)

calculated from the expected information evaluated at the global maximum likelihood estima-
tor. Table 2 also reports results corresponding to the approximate p-values P̂W, P̂BW and P̂cBW
obtained, respectively, by normal approximation and the unconstrained and constrained bootstrap
approaches applied with this Wald statistic. Now a substantial difference can be seen in the sam-
pling distributions of the p-values P̂BW and P̂cBW. Plots of the discrepancy D for this statistic
are shown in the Supplementary Material.

In this problem, if the shape parameter λ is the parameter of interest, with the mean θ being
the nuisance parameter, then both the global and the constrained maximum likelihood estimators
of θ are Ȳ =

∑n
i=1 Yi/n, and in fact the signed root statistic is exactly pivotal, so that the two

bootstrap testing procedures coincide and yield tests of size exactly equal to the nominal desired
size, modulo simulation error. However, this is not the case for the inference problem being
considered here.

4·2. Multisample normal model

A more challenging example, considered by Sartori et al. (1999), involves a high-dimensional
nuisance parameter. We observe Yi j (i = 1, . . . , g; j = 1, . . . , n), which are independent normal
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Fig. 1. The discrepancy D plotted against θ0 − θ in the case of nominal size α = 5%, for P̂cB (solid), P̂B (dotted)
and P̂A (dashed): (a) inverse Gaussian example with n = 5, testing H0 : θ = θ0 against Ha : θ < θ0; (b) normal

example with n = 5 and g = 5, testing H0 : θ = θ0 against Ha : θ > θ0.

Table 3. Comparison of p-values for the normal example with nominal sizes α = 1%, 5%, 10%
and g = 5. The figures are based on 50 000 replications with 20 000 samples drawn in the calcu-
lation of each bootstrap p-value for n = 10, 20, 50, and based on 10 000 replications with 10 000
samples drawn for n = 100, 200, 500; the figures give percentages of p-values that are less than

α, in testing against Ha : θ < θ0

θ0 = θ θ + 0·5/n θ + 0·5/n1/2

n α P̂N P̂B P̂cB P̂A P̂N P̂B P̂cB P̂A P̂N P̂B P̂cB P̂A

10 1% 4·1 1·0 1·0 1·0 7·3 1·9 12·0 2·0 19·0 6·4 6·7 6·9
5% 14·2 4·8 5·0 5·1 22·0 8·5 8·8 8·9 43·3 21·5 22·0 22·3

10% 23·7 9·7 10·0 10·2 34·2 15·9 16·3 16·6 58·4 34·4 35·1 35·5
20 1% 2·6 1·0 1·0 1·0 4·3 1·6 1·7 1·7 16·0 7·7 7·9 8·0

5% 10·7 4·8 4·9 4·9 15·3 7·6 7·7 7·7 38·8 24·0 24·3 24·4
10% 18·6 9·9 10·0 10·1 25·4 14·5 14·6 14·7 53·5 37·4 37·6 37·8

50 1% 2·0 1·1 1·1 1·1 2·7 1·6 1·6 1·6 14·0 9·1 9·2 9·3
5% 8·2 5·0 5·1 5·1 10·5 6·7 6·8 6·8 35·2 26·2 26·3 26·3

10% 15·0 10·0 10·0 10·1 18·7 12·9 12·9 13·0 49·7 39·8 40·0 40·0
100 1% 1·5 0·9 0·9 0·9 2·0 1·2 1·2 1·2 12·6 9·1 9·2 9·1

5% 6·8 4·8 4·8 4·8 8·3 6·0 6·0 6·0 33·0 27·2 27·2 27·1
10% 12·8 9·5 9·5 9·5 15·4 11·5 11·5 11·5 47·1 40·1 40·1 40·2

200 1% 1·2 0·9 0·9 0·9 1·5 1·1 1·1 1·1 2·7 10·4 10·4 10·3
5% 6·2 4·7 4·7 4·8 7·3 5·7 5·7 5·7 32·6 28·2 28·2 28·4

10% 12·5 10·2 10·2 10·2 13·9 11·6 11·6 11·6 47·3 42·0 42·0 42·1
500 1% 1·0 0·8 0·8 0·8 1·3 1·0 1·0 1·0 11·7 10·2 10·2 10·2

5% 5·6 4·8 4·8 4·8 6·3 5·3 5·3 5·3 30·9 28·1 28·1 28·2
10% 11·2 9·7 9·7 9·7 12·0 10·5 10·6 10·6 45·0 41·8 41·8 41·9

random variables with means µi and variances θµ
1/2
i . The parameter of interest is θ , with

(µ1, . . . , µg) being the nuisance parameter. We set g = 5 or 10 and µi = i , with the true θ equal
to 0·7. We consider testing H0 : θ = θ0 against the alternatives Ha : θ < θ0 and Ha : θ > θ0, again
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Table 4. Comparison of p-values for the normal example with n = 5, 10, 20, nominal sizes
α = 1%, 5%, 10%, * = 0·05 and g = 5. The figures are based on 50 000 replications with 20 000
samples drawn in the calculation of each bootstrap p-value for n = 5, 10, and based on 10 000
replications with 10 000 samples drawn for n = 20; the figures give percentages of p-values that

are less than α, in testing against Ha : θ > θ0

θ0 = θ θ − * θ − 2* θ − 3* θ − 4*

n = 5

P̂N (0·2, 0·9, 2·2) (0·3, 1·9, 4·1) (0·9, 3·7, 7·4) (1·9, 7·2, 12·6) (4·3, 12·9, 20·6)
P̂B (0·9, 4·6, 9·6) (1·8, 8·0, 14·8) (3·7, 13·1, 22·1) (7·3, 20·7, 31·8) (13·1, 31·1, 43·5)
P̂cB (1·0, 4·8, 9·8) (2·0, 8·3, 15·1) (4·0, 13·5, 22·3) (7·7, 21·1, 32·1) (13·7, 31·5, 43·8)
P̂A (0·9, 4·6, 9·4) (1·9, 7·9, 14·4) (3·7, 12·9, 21·6) (7·4, 20·4, 31·2) 13·2, 30·6, 42·7)

n = 10

P̂N (0·3, 1·6, 3·6) (0·9, 3·9, 7·8) (2·4, 8·9, 15·7) (6·4, 18·2, 28·1) (15·0, 32·9, 45·0)
P̂B (1·0, 4·8, 9·7) (2·6, 10·1, 18·0) (6·4, 19·3, 30·1) (14·1, 32·9, 45·7) (27·3, 50·5, 63·4)
P̂cB (1·0, 4·9, 9·9) (2·7, 10·3, 18·2) (6·6, 19·5, 30·3) (14·5, 33·2, 46·0) (27·8, 50·9, 63·6)
P̂A (1·0, 4·8, 9·7) (2·7, 10·1, 17·9) (6·5, 19·3, 30·0) (14·3, 32·9, 45·6) (27·6, 50·5, 63·2)

n = 20

P̂N (0·4, 2·3, 5·1) (1·7, 7·5, 13·8) (6·4, 19·4, 29·6) (19·1, 39·2, 52·8) (41·0, 65·1, 75·7)
P̂B (1·0, 5·1, 10·3) (3·8, 13·7, 22·9) (12·1, 29·7, 42·5) (28·5, 53·1, 66·0) (54·0, 75·9, 84·4)
P̂cB (1·1, 5·1, 10·4) (3·8, 13·8, 23·0) (12·2, 29·9, 42·6) (28·8, 53·2, 66·1) (54·2, 76·0, 84·5)
P̂A (1·1, 5·1, 10·3) (3·9, 13·8, 22·9) (12·0, 29·7, 42·4) (28·6, 53·0, 66·0) (54.2, 75.8, 84.4)

using the signed root likelihood ratio statistic R(θ0). Numerical results for tests of nominal size
α = 1%, 5% and 10% are reported in Tables 3 and 4 for the case where g = 5; further results,
which include the case of g = 10, are given in the Supplementary Material. Now the adjusted
signed root statistic R∗(θ0) is intractable and the analytic p-value P̂A is based on the approx-
imation described by Skovgaard (1996). Again, the results are as predicted by theory. Across
all the scenarios studied, there is no substantial discrepancy in the power properties of the two
bootstrap procedures, with the slight differences that are seen reflecting differences in actual size
across the replications. There is close agreement between the results for the bootstrap p-values
P̂cB and those for the analytic p-values P̂A. Both bootstrap procedures are very accurate in terms
of size, even in the context of a 10-dimensional nuisance parameter (g = 10). In this example,
normal approximation to the unadjusted statistic delivers tests of actual size very different from
the nominal desired size, being liberal for testing against Ha : θ < θ0 and conservative for testing
against Ha : θ > θ0. Figure 1(b) shows a more complete picture of the power functions for the
case in Table 4 where n = 5 and g = 5 , plotting the discrepancy D against θ0 − θ for P̂A, P̂B
and P̂cB. The graphs were again obtained by interpolation from the simulated power values at
11 values of θ0. Linearity and positive slope of the discrepancy D is again as predicted by the
asymptotic theory. The normal approximation has size substantially below the nominal 5% con-
sidered here, and its power function increases more slowly as θ0 − θ decreases from 0 than do
those of the bootstrap tests or the test based on normal approximation to the adjusted statistic,
which are fairly indistinguishable in terms of power.

5. DISCUSSION
Inference on a scalar parameter of interest in the presence of a nuisance parameter can con-

veniently be made using a likelihood-based test statistic which is asymptotically distributed as
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standard normal under a null hypothesis of interest. We have examined higher-order expansions
of the distribution of p-values obtained by normal approximation and by bootstrap approximation
under an asymptotic regime involving a general contiguous alternative hypothesis. Our analysis is
based on the testing framework described by DiCiccio et al. (2001) and Lee & Young (2005). That
framework, and the conclusions of Lee & Young (2005) concerning the distribution of p-values
under the null hypothesis, was extended by Stern (2006) to test statistics based on a certain class
of M-estimators, and future extension of the results here concerning distributions of p-values
under an alternative hypothesis to such statistics would be worthwhile.

In the literature there is relatively little on finite-sample comparisons of the distributions of
different approximate p-values under an alternative hypothesis, although some evidence has been
provided for very specific cases; see, for example, Hung et al. (1997). Martin (2007) provided
empirical results on the power of bootstrap tests when applied to common statistical inference
problems. A general first-order asymptotic analysis of the sampling distributions of various
p-values, primarily those motivated by Bayesian considerations, is given by Robins et al. (2000).
Among the methods they consider is the constrained bootstrap p-value P̂cB. The conditions on
the test statistic assumed in our analysis ensure, in the language of Robins et al. (2000), an asymp-
totic frequentist p-value. It is readily established that the quantities of asymptotic relative power
and asymptotic relative efficiency used by Robins et al. (2000) to distinguish between differ-
ent p-value constructions coincide for all the p-values P̂N, P̂cB, P̂B and P̂A considered here,
and higher-order analysis of p-values is therefore necessary to provide asymptotic discrimina-
tion between the different approximate p-values. Of particular interest is the elucidation of the
asymptotic behaviour under an alternative hypothesis of constrained and unconstrained bootstrap
p-values, P̂cB and P̂B. Importantly from a methodological perspective, the asymptotic analysis
is found to predict well the distribution of p-values observed for small sample sizes n. The com-
parative power properties of the two bootstrap procedures are seen to reflect the respective dis-
crepancies between the actual sizes of the tests and the nominal desired size, which are often
quite negligible in practice (Lee & Young, 2005; Young & Smith, 2005, Ch. 11).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes derivations of the technical
results described in § 3 and further numerical results for both of the examples in § 4.
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1. TECHNICAL DETAILS

Derivations are given of the theoretical results presented in §3 of the main text.
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Denote by G(·; ⌘, ✓0) the distribution function of T (✓0). As in Lee & Young (2005), we assume that
G(·; ⌘, ✓) has the expansion
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Similar arguments show that the third- and higher-order cumulants of T (✓) and T (✓)⌥ (M
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P-value based on normal approximation

As noted before, the asymptotic N(0, 1) distribution of T (✓0) under the null hypothesis allows the
p-value for the test to be approximated by bPN = 1� �{T (✓0)}. It follows by (S2) and (S4) that the
distribution function of bPN has the expansion
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We consider two cases.

(i) If � = O(n�1/2
) but � 6= o(n�1/2

), the expansion (S5) reduces to
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(ii) If � = o(n�1/2
), the expansion (S5) reduces to
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P-value based on constrained parametric bootstrap

Recall that the constrained parametric bootstrap estimates the null distribution of T (✓0) by the bootstrap
distribution of T (Y ⇤

✓0
, ✓0), where Y ⇤

✓0
denotes a random sample of n observations drawn from Fb⌘✓0

. Using
(S2) and expanding about ⌘, the above bootstrap distribution has the expansion
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Inverting (S7) and using (S8), we get
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As defined previously, the constrained bootstrap estimate of the p-value is given by

bPcB = 1�G{T (✓0); b⌘✓0 , ✓0}.
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It follows by (S9) and the delta method that the sampling distribution of bPcB has the expansion
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b

ǧ
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Similarly, it can be shown that third- and higher-order cumulants of T (✓0) + n��/2
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n
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differ by O(n�(�+2)/2
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.
It follows by (S2), (S3), (S4), (S5) and (S10) that
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The expansion (S11) can be simplified under two separate conditions on �.

(i) If � = O(n�1/2
) but � 6= o(n�1/2

), we have
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In general, the test statistic T (✓0) is chosen such that the ± sign above corresponds to testing against
the alternative ✓ > ✓0 and ✓ < ✓0 respectively. Noting that ✓ � ✓0 = g

i

(⌘0)�i +O(k�k2) and applying
(S6) under ⌘ = ⌘0, the expansion (2) follows.

(ii) If � = o(n�1/2
), the expansion (S11) reduces to
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which implies (3).

P-value based on unconstrained parametric bootstrap

As before, denote by Y ⇤ a random sample of n observations drawn from Fb⌘ . Recall that the uncon-
strained parametric bootstrap estimates the null distribution of T (✓0) by the bootstrap distribution of
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T (Y ⇤, b✓), which has the expansion
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Lagrangian arguments show that
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{š
j

� E
⌘

(š
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Inverting (S12) and using (S13), we get
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It follows by (S14) and the delta method that
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On the other hand, the third- and higher-order cumulants of T (✓0) + n��/2
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Analogous to (S11), we have by subtracting (S5) from (S17) that
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)ǧ
j

ˇJ ijz
x

�(z
x

) +O
⇣

n�(�+2)/2
⌘

= �

�

G0
(�z̃; ⌘, ✓) +K

i

(⌘)�i(1� z̃2)�(z̃)
 �

z
x

+G�1
(1� x; ⌘, ✓)

 

� (1/2) z̃�(z̃)
�

z
x

+G�1
(1� x; ⌘, ✓)

 2
⌥ n�(�+1)/2�̌�1d

n,i

(⌘,�z
x

)ǧ
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Thus the following holds for the unconstrained bootstrap.

(i) If � = O(n�1/2
) but � 6= o(n�1/2

), the expansion (S18) reduces to
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which implies (2) of the main text.
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(ii) If � = o(n�1/2
), the expansion (S18) reduces to
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Then (4) follows by recalling (3) and applying (S6) and (S19) under ⌘ = ⌘0.

Change in power function

It may be of interest to compare the power under a local alternative with the actual size of a nominal
level ↵ test constructed by each of the three methods. In what follows we consider only a local alternative
with � = o(n�1/2

).

(a) For the normal approximation method, we have
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(b) For the constrained and unconstrained bootstrap methods, we have Q(
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which proves Theorem 3.
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2. ADDITIONAL NUMERICAL RESULTS

Further Tables are presented for Examples 1 and 2 of the main text, and a Figure is provided of the
discrepancy quantity D for the case of Fig. 1(a) of the main text, but when the statistic is the Wald
statistic.

Table S1. Comparison of p�values, inverse Gaussian mean example, n = 5, 10, 15, nominal
sizes ↵ = (1, 5, 10)%, � = 0.25. All figures based on 50,000 replications, with 20,000 samples
being drawn in calculation of each bootstrap p�value. Figures give percentages of p-values
< ↵. Testing against Ha : ✓ > ✓0.

✓0 = ✓ ✓ �� ✓ � 2� ✓ � 3� ✓ � 4� ✓ � 5�

n = 5

bPN (1.5, 5.5, 9.7) (3.3, 10.6, 17.1) (7.5, 19.8, 29.3) (16.8, 35.8, 47.1) (35.0, 58.7, 69.5) (65.0, 84.3, 90.2)
bPB (0.8, 5.0, 10.2) (2.0, 9.6, 17.6) (5.0, 18.5, 29.7) (11.9, 33.7, 47.2) (27.5, 56.3, 69.1) (56.3, 82.3, 89.6)
bPcB (0.9, 4.9, 9.8) (2.2, 9.5, 17.1) (5.4, 18.3, 29.0) (12.6, 33.5, 46.6) (28.8, 56.2, 68.8) (57.8, 82.3, 89.5)
bPA (1.0, 5.2, 10.2) (2.4, 9.9, 17.6) (5.8, 18.9, 29.8) (13.3, 34.4, 47.30 (30.1, 57.0, 69.4) 59.2, 82.9, 89.8)

n = 10

bPN (1.1, 4.6, 9.0) (3.5, 11.8, 19.4) (10.9, 26.9, 38.2) (29.4, 52.0, 63.9) (61.4, 80.8, 87.7) (91.3, 97.4, 98.7)
bPB (1.0, 5.1, 10.4) (3.4, 12.6, 21.3) (10.6, 28.1, 40.3) (28.5, 53.0, 65.4) (60.2, 81.1, 88.3) (91.0, 97.4, 98.6)
bPcB (1.0, 4.9, 10.0) (3.3, 12.3, 20.9) (10.4, 27.6, 39.8) (28.4, 52.5, 65.0) (60.0, 80.9, 88.1) (91.0, 97.4, 98.8)
bPA (1.0, 5.0, 10.2) (3.4, 12.4, 21.1) (10.6, 27.8, 40.0) (28.6, 52.8, 65.2) (60.4, 81.1, 88.2) 91.1, 97.4, 98.8)

n = 15

bPN (1.0, 4.5, 8.9) (4.2, 13.8, 22.4) (15.6, 34.2, 46.4) (42.6, 65.5, 75.7) (79.5, 91.7, 95.3) (98.3, 99.6, 99.8)
bPB (1.1, 5.1, 10.2) (4.4, 15.0, 24.6) (16.0, 36.0, 48.6) (42.9, 66.8, 77.2) (79.5, 92.0, 95.6) (98.3, 99.6, 99.9)
bPcB (1.0, 4.9, 10.0) (4.3, 14.7, 24.2) (15.7, 35.5, 48.3) (42.6, 66.4, 76.9) (79.3, 91.9, 95.5) (98.3, 99.6, 99.9)
bPA (1.1, 5.0, 10.0) (4.3, 14.8, 24.3) (15.8, 35.7, 48.4) (42.7, 66.5, 77.0) (79.5, 92.0, 95.5) (98.3, 99.6, 99.9)
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Table S2. Comparison of p�values, normal example, n = 5, 10, 20, nominal sizes ↵ =

(1, 5, 10)%, � = 0.05, g = 5. Figures based on 50,000 replications, with 20,000 samples be-
ing drawn in calculation of each bootstrap p�value for n = 5, 10; 10,000 replications with
10,000 samples for each p�value for n = 20. Figures give percentages of p-values < ↵. Testing
against Ha : ✓ < ✓0.

✓0 = ✓ ✓ +� ✓ + 2� ✓ + 3� ✓ + 4� ✓ + 5�

n = 5

bPN (7.7, 21.7, 33.1) (10.6, 27.9, 40.5) (14.1, 34.4, 48.0) (18.1, 40.9, 55.5) (22.7, 47.6, 62.5) (27.6, 54.2, 68.8)
bPB (0.9, 4.8, 9.8) (1.4, 6.9, 13.3) (2.1, 9.5, 17.6) (3.0, 12.5, 22.4) (4.2, 16.1, 27.6) (5.5, 19.9, 33.1)
bPcB (1.0, 5.2, 10.3) (1.6, 7.5, 14.1) (2.4, 10.2, 18.5) (3.3, 13.4, 23.6) (4.7, 17.3, 29.1) (6.2, 21.4, 34.8)
bPA (1.1, 5.5, 11.0) (1.7, 7.9, 14.9) (2.6, 10.9, 19.5) (3.6, 14.2, 24.7) (5.0, 18.2, 30.2) (6.7, 22.5, 35.9)

n = 10

bPN (4.1, 14.2, 23.7) (7.3, 22.0, 34.2) (11.9, 31.4, 45.4) (17.9, 41.6, 56.7) (25.2, 52.1, 66.9) (33.3, 61.9, 75.7)
bPB (1.0, 4.8, 9.7) (1.9, 8.5, 15.9) (3.5, 13.7, 23.7) (5.9, 20.2, 32.9) (9.3, 28.1, 42.7) (13.8, 36.8, 52.8)
bPcB (1.0, 5.0, 10.0) (2.0, 8.8, 16.3) (3.6, 14.1, 24.2) (6.2, 20.8, 33.5)) (9.7, 28.8, 43.5) (14.4, 37.7, 53.6)
bPA (1.0, 5.1, 10.2) (2.1, 8.9, 16.6) (3.8, 14.3, 24.50 (6.3, 21.1, 33.9) (9.9, 29.2, 43.9) (14.7, 38.1, 54.0)

n = 20

bPN (2.8, 10.7, 18.4) (6.5, 20.8, 32.2) (13.9, 34.4, 48.9) (24.1, 50.1, 65.1) (36.7, 65.4, 78.4) (50.9, 78.1, 87.9)
bPB (1.0, 4.8, 10.1) (3.0, 11.4, 19.9) (6.4, 21.1, 33.1) (13.2, 33.9, 48.9) (22.4, 48.8, 64.5) (33.7, 63.5, 77.3)
bPcB (1.0, 4.8, 10.1) (3.0, 11.4, 19.9) (6.4, 21.2, 33.2) (13.3, 34.0, 49.0) (22.4, 48.9, 64.6) (33.8, 63.6, 77.4)
bPA (1.0, 4.9, 10.1) (3.0, 11.5, 20.1) (6.4, 21.3, 33.3) (13.3, 34.2, 49.2) (22.6, 49.1, 64.6) (34.2, 63.8, 77.4)
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Table S3. Comparison of p�values, normal example, n = 5, 10, 15, nominal sizes ↵ =

(1, 5, 10)%, � = 0.05, g = 10. Figures based on 10,000 replications, with 10,000 samples be-
ing drawn in calculation of each bootstrap p�value for n = 5, 10, 15. Figures give percentages
of p-values < ↵. Testing against Ha : ✓ < ✓0.

✓0 = ✓ ✓ +� ✓ + 2� ✓ + 3� ✓ + 4� ✓ + 5�

n = 5

bPN (12.1, 29.9, 43.0) (18.9, 41.0, 55.0) (26.4, 52.2, 65.6) (35.7, 62.2, 75.4) (45.3, 71.5, 83.0) (54.5, 79.4, 88.8)
bPB (1.0, 5.0, 9.6) (1.9, 8.2, 15.6) (3.5, 12.7, 22.4) (5.5, 18.8, 30.6) (8.2, 25.6, 39.9) (12.0, 33.7, 49.3)
bPcB (1.1, 5.1, 10.0) (2.1, 8.6, 16.2) (3.7, 13.3, 23.1) (5.9, 19.7, 31.6) (8.8, 26.5, 41.0) (12.7, 34.8, 50.6)
bPA (1.2, 5.7, 10.8) (2.3, 9.2, 17.3) (4.1, 14.4, 24.5) (6.5, 21.0, 33.4) (9.5, 28.1, 42.7) (13.8, 36.6, 52.3)

n = 10

bPN (6.1, 19.2, 29.9) (13.2, 33.0, 46.7) (23.9, 49.0, 63.9) (37.1, 65.2, 77.9) (51.8, 78.3, 87.7) (66.0, 87.4, 93.9)
bPB (0.9, 4.9, 9.8) (2.6, 10.9, 19.7) (6.2, 20.7, 32.8) (12.2, 33.0, 47.8) (21.4, 47.4, 63.0) (32.4, 61.7, 76.0)
bPcB (1.0, 5.0, 9.9) (2.7, 11.2, 20.0) (6.3, 21.1, 33.1) (12.6, 33.5, 48.3) (21.9, 47.9, 63.5) (33.1, 62.3, 76.4)
bPA (1.0, 5.2, 10.2) (2.8, 11.4, 20.4) (6.5, 21.5, 33.6) (12.9, 34.0, 48.8) (22.4, 48.4, 64.1) (33.6, 62.8, 76.9)

n = 15

bPN (4.3, 15.1, 25.5) (11.9, 32.4, 46.3) (26.1, 52.8, 67.3) (44.5, 71.7, 83.0) (62.9, 85.6, 93.0) (78.3, 93.8, 97.5)
bPB (1.1, 4.8, 9.4) (3.4, 13.1, 23.4) (9.1, 28.0, 42.3) (20.9, 46.6, 61.8) (36.3, 65.1, 78.2) (53.9, 79.9, 89.8)
bPcB (1.1, 4.8, 9.5) (3.5, 13.3, 23.6) (9.3, 28.3, 42.5) (21.0, 47.0, 62.1) (36.6, 65.5, 78.3) (54.4, 80.2, 89.9)
bPA (1.1, 4.9, 9.6) (3.6, 13.5, 23.8) (9.4, 28.5, 42.8) (21.5, 47.2, 62.3) (37.0, 65.9, 78.6) (54.6, 80.4, 90.1)
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Table S4. Comparison of p�values, normal example, n = 5, 10, 20, nominal sizes ↵ =

(1, 5, 10)%, � = 0.05, g = 10. All figures based on 10,000 replications, with 10,000 samples
being drawn in calculation of each bootstrap p�value. Figures give percentages of p-values
< ↵. Testing against Ha : ✓ > ✓0.

✓0 = ✓ ✓ �� ✓ � 2� ✓ � 3� ✓ � 4� ✓ � 5�

n = 5

bPN (0.1, 0.5, 1.1) (0.2, 1.2, 2.8) (0.7, 3.3, 6.4) (2.1, 7.9, 13.7) (6.1, 17.3, 26.4) (15.4, 33.0, 44.0)
bPB (1.0, 4.8, 9.9) (2.5, 9.9, 17.9) (5.8, 18.5, 29.8) (13.0, 32.0, 44.2) (25.6, 47.9, 60.7) (43.1, 65.9, 76.6)
bPcB (1.0, 4.9, 10.0) (2.6, 10.1, 18.0) (6.0, 18.8, 29.9) (13.4, 32.1, 44.3) (25.9, 48.0, 60.8) (43.4, 66.0, 76.7)
bPA (1.0, 4.5, 9.3) (2.4, 9.4, 17.1) (5.7, 17.9, 28.6) (12.8, 31.0, 43.0) (24.8, 46.7, 59.4) (42.2, 64.6, 75.6)

n = 10

bPN (0.1, 0.8, 2.3) (0.6, 3.5, 7.3) (3.0, 11.0, 18.5) (10.8, 26.5, 38.5) (28.1, 51.0, 63.5) (55.5, 75.9, 84.2)
bPB (0.8, 5.0, 10.2) (3.6, 13.3, 22.2) (11.4, 28.9, 41.9) (27.3, 51.5, 64.3) (52.1, 74.1, 83.4) (76.4, 90.8, 94.9)
bPcB (0.9, 5.0, 10.2) (3.7, 13.4, 22.3) (11.5, 29.1, 41.9) (27.5, 51.6, 64.4) (52.3, 74.2, 83.4) (76.6, 90.9, 94.9)
bPA (0.9, 4.9, 10.0) (3.6, 13.2, 22.0) (11.3, 28.5, 41.4) (27.0, 51.2, 64.0) (51.8, 73.9, 83.1) (76.5, 90.7, 94.7)

n = 20

bPN (0.2, 1.3, 2.9) (1.3, 5.8, 10.9) (6.4, 19.2, 29.6) (22.4, 44.2, 57.3) (51.6, 74.1, 83.5) (81.7, 93.5, 96.5)
bPB (1.0, 4.8, 9.4) (4.7, 15.5, 25.6) (16.5, 37.4, 50.8) (40.5, 65.2, 76.7) (71.0, 88.4, 93.6) (92.3, 97.7, 98.9)
bPcB (1.0, 4.9, 9.5) (4.7, 15.6, 25.7) (16.6, 37.5, 50.8) (40.7, 65.3, 76.7) (71.1, 88.5, 93.6) (92.4, 97.7, 98.9)
bPA (1.0, 4.8, 9.4) (4.6, 15.5, 25.5) (16.5, 37.2, 50.6) (40.5, 65.1, 76.6) (70.8, 88.3, 93.6) (92.4, 97.6, 98.9)
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Fig. S1. Discrepancy D, inverse Gaussian example, n = 5,
nominal size ↵ = 5%, bPcB (solid), bPB (dots), bPA (dashes),
testing H0 : ✓ = ✓0 against Ha : ✓ < ✓0. Wald statistic.


