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 The kriging procedure gives an optimal linear predictor of a spatial process at a point xo, given
 observations of the process at other locations x1, ..., x,, taking into account the spatial dependence of
 the observations. The kriging predictor is optimal if the weights are calculated from the correct
 underlying covariance structure. In practice, this covariance structure is unknown and is estimated
 from the data. An important, but not very well understood, problem in kriging theory is the effect on
 the accuracy of the kriging predictor of substituting the optimal weights by weights derived from the
 estimated covariance structure. We show that the effect of estimation is negligible asymptotically if the
 joint Gaussian distributions of the process at xo, ..., x, under the true and the estimated covariance
 are contiguous almost surely. We consider a number of commonly used parametric covariance models
 where this can indeed be achieved.
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 1. Introduction

 Kriging is a method for spatial prediction, widely used in mining, hydrology, forestry and other
 fields. Loosely speaking, given a spatial process which, observed at sampling locations x1, ..., x,,
 gives observations z1, ..., z,, it gives the optimal unbiased linear predictor of the process at a
 given point xo where the process is not observed, taking into account the spatial dependence of the
 observations. More specifically, in its simplest form, it is assumed that a stationary Gaussian

 process Z(-) with covariance function C(t) = cov(Z(x + t), Z(x)) is observed at xl, ..., x, and

 we wish to find weights a,,, ..., an, with i aIni -= 1 such that the prediction error

 E(ZaniZ(xi) - ZA(xo)

 is minimized. The restriction on the weights ensures that the kriging predictor i la,,Z(x1)
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 is unbiased, i.e. E(~ian, iZ(xi) - Z(xo)) = 0. The kriging algorithm gives the optimal
 weights as a solution to a system of linear equations involving the covariances of Z(xi),
 i = 0, 1, ..., n (Cressie 1991, p. 123).

 In order to carry out this procedure it is therefore necessary to know the underlying
 covariance function C. The theoretical kriging predictor is optimal among all unbiased
 linear predictors: if Z(-) is Gaussian among all unbiased predictors. Hence it is clear that
 any attempt to approximate the optimal weights while retaining unbiasedness will result in a
 kriging predictor that has a larger prediction error. Common practice is to estimate C and
 adjust the weights according to the estimated covariance structure. We shall call the
 resulting kriging predictor the 'estimating kriging predictor'. Thus, the estimating kriging
 prediction error is at least as great as the theoretical kriging prediction error.

 Although an extremely important practical issue, the effect of estimating C is still not all
 that well understood. There are essentially two approaches to assessing the influence of
 misspecifying or approximating the covariance function.

 The first of these (Diamond and Armstrong 1984; Warnes 1986; Yakowitz and
 Szidarovsky 1985) is effectively a numerical analysis. Since the kriging weights are
 determined by solving linear equations involving the covariance matrix of Z(xl), ..., Z(xn),
 approximating the covariance function results in a perturbation of that covariance matrix.
 The effect of approximating the covariance function on the kriging weights and hence on
 the kriging predictor can then be expressed in terms of the condition number of the
 covariance matrix. This program is carried out in detail by Diamond and Armstrong (1984)
 and gives bounds on the relative difference between the two kriging prediction errors, which
 are valid for every n and can be applied to every configuration of the sampling and
 prediction locations. Unfortunately, the bounds are not very sharp. In fact, as we carry out
 more and more measurements and acquire more observations, the bounds become wider
 instead of smaller as we would expect in most situations.

 In the second approach, due to Stein (1988), the true underlying covariance function Ci is
 assumed to be misspecified by a second covariance function C2. The mean-zero Gaussian
 random fields with covariance functions Ci and C2, defined on a bounded region in Rd, induce

 Gaussian probability measures P1 and P2, respectively. Following Stein (1988), we call C1 and
 C2 equivalent if the induced probability laws P1 and P2 are mutually absolutely continuous. If
 C1 and C2 are equivalent, it is shown in Stein (1988) that, under some conditions, the effect of
 misspecifying C1 is asymptotically negligible, in the sense that the ratio of the estimating
 kriging prediction error and the theoretical kriging prediction error tends to unity as the
 number of observations tends to infinity. Application of this result, however, requires one to
 keep C2 fixed as the number of observations changes. What is worse, typically C and an
 estimated covariance function C, will not be equivalent for any finite n.

 Thus, the question remains open how approximating the true covariance function C by a
 sequence C, affects the accuracy of the kriging predictor. Since Yakowitz and Szidarovsky
 (1985, p. 39) remarked that 'we regard the situation as a (perhaps unfillable) lacuna in
 kriging theory', to the best of our knowledge the problem has not been solved to a
 satisfactory degree.

 The aim of this paper is to study the effect of estimating the covariance function on the
 efficiency of kriging predictors. Our analysis is closest in nature to Stein's approach. In fact,
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 Accuracy of kriging predictors 423

 we mimic the proof of Theorem 1 of Stein (1988). However, where Stein passes to the limit
 first and considers absolute continuity of the resulting Gaussian processes, we retain the

 dependence on n of Cn and the two n-dimensional Gaussian vectors defined by C and Cn
 and consider contiguity of the distributions of these vectors. For a definition of contiguity
 and related concepts, see Sections 2 and 3.

 We prove that, under essentially the same conditions as Stein (1988), the estimating
 kriging predictor is asymptotically efficient with respect to the theoretical kriging predictor,

 provided the (n + 1)-dimensional Gaussian probability distributions P, and P, of (Z(xo),
 Z(xl),..., Z(x,)) under C and Cn are contiguous almost surely.

 The asymptotic set-up that Stein considers is infill asymptotics, where samples are taken
 from a fixed bounded region and where the sampling locations become increasingly dense.
 This has often been contrasted with increasing-domain asymptotics, where the distance
 between neighbouring sampling locations remains bounded from below and the domain
 from which sampling takes place necessarily increases. Recently, however, a mixture of
 these extremes has become popular (Hall and Patil 1994; Lahiri 1997), which combines the
 merits of both approaches. This mixture carries a tuning parameter that determines the
 degree of infilling and increasing domain and makes it a very flexible set-up. Typically, this
 parameter is tuned in such a way that both the size of the sampling region and the number
 of observations in each fixed subset of that region grow with n.

 In principle, contiguity of {Pn} and {P,,} will depend both on the configuration of the
 prediction and sampling locations and on the quality of the estimator C,. Our result on
 asymptotic efficiency of the estimating kriging predictor is only useful if it is indeed

 possible to find an estimator C, of C such that {P, } and {P,} are contiguous almost surely.
 In Section 3 we study the contiguity of Gaussian random vectors in more detail and give
 conditions, first on the covariance matrices involved, then on C,n relative to C that guarantee
 contiguity of {P,} and {Pn }. The usual way the covariance function is estimated is by
 using a nonparametric pilot estimate of C and from that fitting (usually by eye!) a class of
 commonly used parametric covariance functions (Cressie 1991, pp. 61-62). The parameter
 of that parametric class is then estimated using standard statistical techniques such as least
 squares, maximum likelihood and minimum norm quadratic estimation. There are a number
 of reasons for this. First of all, such a nonparametric pilot estimate is notoriously ill
 behaved away from the origin (Journel and Huijbregts 1978), although this may be true as
 well for covariance functions estimated directly within parametric classes. More importantly,
 this covariance function estimator may not be permissible in the sense that a covariance
 matrix derived from it need not be positive definite. For a detailed account of permissibility
 issues see Christakos (1984). Hall and Patil (1994) propose permissible kernel-type
 nonparametric estimators of covariance functions. There is a slightly worrying issue
 concerning covariance function estimation under infill asymptotics, pointed out by Lahiri
 (1996). He shows that the most commonly used nonparametric estimator of C is not
 consistent under infill asymptotics. This makes one very suspicious about the behaviour of
 any estimator of C which is derived from that nonparametric covariance function estimator
 along the lines outlined above. It is not yet clear to us whether (permissible) nonparametric
 covariance function estimators C,, may lead to probability distributions P, and P, which are
 contiguous almost surely. However, within a number of these parametric covariance function
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 models, it can indeed be shown that the parameter within that model can be estimated in
 such a way that the corresponding Gaussian distributions are indeed contiguous almost
 surely. Section 4 contains a number of stylized examples that illustrate this point and
 connect our work with that of Stein (1988) and Stein and Handcock (1989). The examples
 considered here are admittedly limited in scope, with regularly sited spatial data. We do
 believe that the examples in Section 4 can in fact be extended to moderately irregularly
 spaced spatial data as well. To prove contiguity in more general (parametric) covariance
 function models however, such as the Mat~rn model, as proposed by Stein (1999), may pose
 formidable problems. Finally, Section 5 discusses the estimation of the estimating kriging
 prediction error. We conclude this section with a number of remarks.

 The fact that, within a parametric family of covariance functions { Co: 0 e C Rq }, the
 estimating kriging predictor using covariance function Co is asymptotically efficient with
 respect to the theoretical kriging predictor using covariance function Co, implies that the
 optimal prediction error is the same, whether we know 0 or not. This phenomenon, called
 adaptation, is well known in parametric and semi-parametric estimation (Bickel et al.,
 1993, Section 2.4), but we are unaware of any previous occurrences of adaptation in the
 literature in the context of spatial prediction.

 In the geostatistical literature the variogram

 2y(t) = E(Z(x + t) - Z(x))2

 is used more often than the covariance function, one of the reasons being that it requires a
 weaker assumption than the (second-order) stationarity needed for the covariance function,
 namely that the process has stationary increments. In case of stationarity, the relation between
 them is given by

 y(t) = C(0) - C(t).

 Cressie (1991, p. 70) argues with some justification that variogram estimation is to be
 preferred to covariance function estimation. Because conditions for contiguity are most
 naturally expressed in terms of covariance matrices, we have preferred to state our results in
 terms of covariance functions rather than variograms. However, it is straightforward to
 translate those results to variograms as well.

 As in Stein (1988), our results, formulated for ordinary kriging, where Gaussian
 processes are assumed to have constant mean, carry over to the more realistic case of
 universal kriging, where Z is a Gaussian process with mean

 p

 EZ(x) = ZIifi(x) = Tf(x)
 i=O

 and covariance function C, where fi are specified functions and /3 are regression coefficients.
 Typically, fo- 1. In the case of universal kriging, the (n + 1)-dimensional Gaussian
 probability distributions P, and Pn of (Z(xo), Z(xi),..., Z(x)), with mean vector
 (fTf(xo), ..., Tf(xn)) and covariance matrices An and In, have to be contiguous almost
 surely. Since the mean vectors are the same for Pn and Pn, there is no difference in that
 respect between ordinary kriging and universal kriging. The presence of the nuisance

This content downloaded from 128.252.121.153 on Tue, 14 Jun 2016 18:24:36 UTC
All use subject to http://about.jstor.org/terms



 Accuracy of kriging predictors 425

 parameter # may affect estimation of the (parameters of the) covariance function. However,
 typically this will not affect the rate of convergence of the estimated covariance function and

 hence will also not affect contiguity of {P/n} with respect to {Pn}. Cressie (1991, Section
 3.4.3), discusses estimation of the covariance function in the presence of the nuisance
 parameter fl.

 It is possible to include Gaussian measurement error into the model. Suppose we do not

 observe Z(xi), ..., Z(xn) exactly but instead we observe Zi = Z(xi)+ Ci, where e, ..., En
 are independent and identically distributed normal random variables with mean 0 and
 variance r2, denoted in this paper by N,2. This can be incorporated into the model by

 adding a term r21{t=o} to the covariance function C(t) and a term 'n1{t=0} to the estimated
 covariance function Cn(t), where r2 is an estimator of r2. With these adaptations, the main
 result in Section 2 goes through unchanged.

 2. Asymptotic efficiency of the estimating kriging predictor

 Let x0, xl, x2, ... be an infinite sequence of distinct points in a (not necessarily bounded)
 subset - of Rd. Let { Z(x): x E RWd} be a stationary Gaussian process with mean EZ(x) - 0,
 covariance function

 C(t) = cov(Z(x + t), Z(x)),

 and probability law P. We think of C as the true, but typically unknown, underlying
 covariance function of the process. Define Zi = Z(xi), i = 1, ..., n. We observe Z1, ..., Zn,
 and we wish to predict Zo = Z(xo) on the basis of these observations.

 Let In be the (n+ 1)X (n+ 1) covariance matrix of Zo, Z1,..., Zn, where for
 convenience we let indices run from 0 to n, i.e.

 In,ij = cov(Z(xi), Z(xj)) = C(xi - x-), i, j 0, 1, ..., n. (2.1)
 We also define the n x n submatrix Q2n, the n-vector wn and the scalar a2 by

 n,ij = In,ij, i, j= 1, ..., n,
 WOn,ji n,Oi, i 1, ... , n,

 2=2 In,ii = C(O), i-= 0,9... , n.
 Then for an = (anl, ..., ann)T,

 ( 1 - 1TQO1 w,1n an= - ?1 (2.2)

 defines an n-vector which clearly satisfies 1Tan = ,nIani = 1. Here 1 denotes an n-vector
 consisting of is and aT denotes the transpose of a vector or matrix a.

 Define the linear predictor

 ?n(xo) = ani Z(xi) (2.3) i=1
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 and its error

 en(xo) = n(xo) - Z(xo). (2.4)

 The weights ani defined by (2.2) are such that ?n(xo) is unbiased and that varc(en(xo)) is

 minimized among all weights ani with Ei_-lani= 1. We call ?n(xo) the theoretical kriging
 predictor and its mean squared error

 varc(en(xo)) a2 - T - (1TQ n- 1)2(2.5) n on + 11(2.5) n

 the theoretical kriging prediction error.
 Having observed Z1,..., Zn, let Cn(t) be an estimator of C(t) based on Z1,..., Zn.

 Analagous to (2.1)-(2.2), define In, Q,, n, 62 and an by

 .n," --= Cn(xi - xj), i, j = 0, 1,..., n, (2.6)
 Qn,y = n,', i, j -= 1,..., n, (2.7)
 (l)n,i = In,Oi, i 1, .. . , n, (2.8)

 S= nii= Cn(O), i = 0, ... , n, (2.9)
 and

 S 1 T_ 1 0 1(n an= n + 1 .T1 (2.10)

 The resulting linear predictor,
 n

 n (XO) = Z n,iZ(xi), (2.11)
 i=1

 is called the estimating kriging predictor. Clearly, this is no longer the optimal unbiased
 linear predictor of Z(xo). In fact, it does not necessarily enjoy any of these properties

 (optimal, unbiased, linear), the latter two failing because an,i now depends on Z1, ..., Zn. It
 has to be noted, though, that the estimating kriging predictor is in fact often unbiased
 (Christensen 1991). Let

 en(xo) = n(xo) - Z(xo). (2.12)

 Its variance varc(en(xo)) is the prediction mean squared error of the estimating kriging

 predictor ,n(xo) and is called the estimating kriging prediction error. To state our result we need to define contiguity first. For every n, let (?n, >~n) be a
 measurable space and let { Qn } and { Q } be two sequences of probability measures on

 (?X, 4).

 Definition 2.1. The sequence {Q' } is contiguous with respect to {Q, } if for every An E 4,
 Qn(An) -- 0 implies Q'(An) -- 0.
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 For more information on contiguity, see Roussas (1972) or Prakasa Rao (1987).
 Let Pn and Pn be the (n + 1)-dimensional Gaussian distributions with mean zero and

 covariance matrices ,n and n,, respectively. We shall call ?n(xo) asymptotically efficient
 with respect to ?n(xo) if

 lim Ec(Zn(xo) - Z(xo))2
 n--o Ec(Zn(xo) - Z(xo))2

 Thus, when (2.13) is fulfilled, if C is the true underlying covariance function, the estimating

 kriging predictor ?,(xo) based on the estimated C, performs asymptotically equally as well
 as the theoretical kriging predictor ?n(xo) based on the correct covariance function C.
 Clearly, the definition of asymptotic efficiency in (2.13) depends on the sampling locations
 x1, x2, .... If (2.13) is true for all limit points xo of the sampling locations, then it becomes a
 property of the covariance function C and Cn only, and we shall call Cn asymptotically
 efficient with respect to C.

 We are now ready to state our result.

 Theorem 2.1. If

 varc(en(xo)) - 0, as n - oc, (2.14)

 and {P(n} and {Pn} are contiguous, P-almost surely, then ?n(xo) is asymptotically efficient
 with respect to ?n(xo) as in (2.13).

 Proof We shall start by proving (2.13) for a deterministic sequence of alternative covariance

 functions Cn such that {Pn} and {Pn} are contiguous. Later the requirement that Cn be
 deterministic shall be removed. We follow the proof of Theorem 1 of Stein (1988) quite
 closely. In the proof we shall use the notation Z(x) to denote a mean-zero Gaussian random
 field on a subset _ of Rd. The underlying covariance function is either C(t) or Cn(t). It will
 be clear from the context which is the underlying covariance function; in particular, in
 calculating (co)variances we shall use the name of the covariance function as a subscript.

 Since ?n(xo) is optimal under C, we must have

 varc(en(xo))
 varc(en(xo))

 Following Stein (1988), we write

 varc(en(xo)) varc(en(xo)) var (en(xo)) var, (en(xo))
 varc(en(xo)) vare (en(xo)) varc,(en(xo)) varc( n(xo))

 Since ?n(xo) is optimal under Cn, we have

 var. (en(xo))

 var, (n(xo))

 Hence it suffices to show that
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 lim inf varc(e(xo)) 1 (2.16)
 -00oo var en(en(xo))

 and

 var e (n(xo))
 lim inf > 1. (2.17) n--oo varc(n(xo))

 Define

 e,(xo) en(xo)

 Yn (varc(en(xo)))1/2' (varV.n (e(x0)))1/2 '

 so that both EcYn = E Yn = 0 and EcY2 = E  2 = 1. The appropriate lemma of Stein (1988) is now as follows:

 Lemma 2.2. Any subsequence nl, n2, ... contains a further subsequence nk,, nk2, ... such
 that, with Ym = Ykm and Pm = Pkm, we have, for every e > 0,

 PM (M-1 1: 2- _ I > 0, as M--- oo. (2.18)
 m=l

 The proof of Lemma 2.2 goes through unchanged, since it uses only properties of normal
 random variables and optimality of kriging predictors, which remain true under C and Cn.

 For reasons that will become clear later, we proceed by proving a slightly stronger
 statement than (2.16), namely

 lim varc(e,(xo)) = 1. (2.19) n-oo varen(en(xo))

 Supposing that (2.19) is not true, there exists a subsequence nl, n2, ... satisfying

 varc(enk0)) . varc(Y,, k) = l varce lim varclim = c 1, (2.20) k-0oo var (elk(xo)) k-oo var. (Yk) k-+oo 2

 where r2 = var (Yn). Note that c >0, since otherwise, with , = E- Y,, we would have, Yn,
 being normal,

 1/2) _0, I 1/2) i1 Pnk(IYnk -nk I nk , nk(IYnk -nk I nk
 which is in contradiction with the contiguity of {Pn} and {Pn}. So let us suppose that, as
 k - ,

 vark (Ynk) c-' <00. (2.21)
 Pick a further subsequence such that (2.18) holds. For that subsequence we have

 lim) E M Y2m = C-1. (2.22)
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 By the contiguity of {Pn } and { Pn }, we have

 Pm M- EY -1 >)e -0, as n o00, (2.23)

 for all e > 0. Also, since Z(x) is Gaussian, using (2.21), we have, as M - oc,

 var M Y2m = 2M-2 E CZ(coV lM(l, Yim))2
 m=l 1=1 m=l

 E 2M-2 Ivar v (fl) vareM(Ym) 2c-2 1=1 m=1

 Applying Theorem 4.5.2 in Chung (1974) to (2.23), we obtain

 ( M
 lim Ec(M -Z Y m) -1, M--+-0 M M= m=

 which is in contradiction with (2.22). Thus, we have established (2.19) and a fortiori (2.16). It
 remains to show (2.17). Now, using the proof above on Yn, (2.17) will follow from (2.16)

 only if the analogue of (2.14) holds for Cn and ,(xo) as well - this is a small gap in the proof of Stein (1988)! - i.e. we require

 varc(en(xo)) -* 0 as n - 00. (2.24)

 Note, however, that

 varn (&,(xo)) var. (On(xo)) varl?(en(xo))  ?. (2.25) varc(en(xo)) var n(en(xo)) varc(en(xo))

 The first term on the right-hand side of (2.25) is less than or equal to 1 by (2.15), the latter
 tends to 1 by (2.19). Hence

 var n(en(xo))
 lim sup < 1 , n--oo varc(en(xo))

 which, together with (2.14), establishes (2.24). Hence, Lemma 2.2 can be applied to Yn under

 P, and the contradiction argument following that, to prove (2.17) and (2.14) for a
 deterministic sequence of alternative covariance functions Cn such that {Pn} and {P,n are
 contiguous.

 To finish the proof, we note that, for C, random such that {P,} and {P,} are contiguous P-almost surely, the conclusion (2.14) remains valid since a P-null exceptional set where

 {P,} and {P,} are possibly non-contiguous does not contribute to the integrals in (2.13). D
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 3. Conditions for contiguity

 Recall the definition of contiguity given in Definition 2.1 and consider the special case where
 n n

 Qn = J One, Qn =' nEz i (3.1) i=1 i= 1

 are product measures on a product space (Xn, An) = (-ninl Vni, fn=1 Jni) with marginals
 Qn, and Qni on (Xni, Ani). Let qni and qni be densities of Qni and Qni with respect to a-
 finite measures ,ni on (,ni, Ani).

 Definition 3.1. The Hellinger distance between Qni and Qni is defined as

 H2( niQ), =Jni) - /q22 dyni. (3.2)
 The following relation between contiguity of { Q,n} and { Q' } has been proved in

 Oosterhoff and van Zwet (1979) (see also Prakasa Rao 1987).

 Lemma 3.1. The sequence {Q'} is contiguous with respect to {Q, } if and only if

 lim sup H2(Qni, Qni)< 00 (3.3)
 n--oo i=1

 and

 n

 lim qni(x)d=ni(x)- O if cn=, 0. (3.4) n-oo - i=1 {x:q'ni(x)>:Cnqni(x)}

 Supposing that P, and P, are the distributions of (n + 1)-dimensional Gaussian mean-
 zero vectors with covariance matrices In and In respectively, the question remains what

 conditions on I and In are needed to guarantee contiguity of {Pn} with respect to {Pn}.
 Let us denote the difference between the covariance matrices by

 An -= In - In. (3.5)

 Lemma 3.2. The sequence {P(n } is contiguous with respect to {P,n } if and only if there exist 0 < K1 , K2 < o00 such that
 n

 lim sup < K2 (3.6)
 n--oo i=O

 and

 lim inf inf Ai > -1 + K1, (3.7) n--oo O<i<n

 where 0o, ..., tn are the eigenvalues of 'n1An.
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 Proof By Rao (1965, p. 42, (iv, c)), there exists a non-singular (n + 1) X (n + 1) matrix B
 such that

 BTXnB= I and BTXnB= A*, (3.8)

 where A* is diagonal with elements A* as the eigenvalues of Xn1 ? I + 2An.
 It is clear from the definition of contiguity that contiguity is preserved under one-to-one

 transformations. It is also straightforward to see that

 1 H2(N2N 1 2or (a - r)2 1+ 2ar
 2 H2 =+ r2 2 +r ?2222

 Application of Lemma 3.1 then shows that {Pn,} is contiguous with respect to {Pn} if and
 only if

 n

 lim sup Z( - 1)2 < (3.9)
 n --oo i=O

 and

 lim inf inf 4 > 0. (3.10)
 n--oo O<i<-n

 Now let Ai be an eigenvalue of X-1A with corresponding eigenvector xi. Then

 (I + 2- An)xi = (1 + Ai)Xi, (3.11)

 so for every eigenvalue AT of X~' n there exists an eigenvalue Ai = IA of X-'An with
 common eigenvector xi. Replacing AT*- 1 by Ai in (3.9) and (3.10) proves the lemma. We
 note that Ibragimov and Rozanov (1978, pp. 70-77) also contains the essential elements of a
 proof of this lemma. O

 Remark 3.1. The sum of the squares of the eigenvalues of In'An can be calculated by using
 the trace of the square of IC'An:

 n

 A2 = tr(( 'nAn)2). (3.12) i= 1

 Clearly, In and yn depend not only on the covariance functions C and Cn but also on the
 spatial configuration of the sampling locations. Via conditions (3.6) and (3.7), the same is
 true for the Gaussian measures Pn and Pn. Thus, contiguity of {Pn } with respect to {Pn },
 and hence most likely asymptotic efficiency of ?n(xo) with respect to ?n(xo), will depend
 on the location of xl, x2, ..., Xn with respect to xo. In checking contiguity, one would
 therefore wish to take that into account. On the other hand, conditions (3.6) and (3.7) might
 be quite difficult to check in a particular application and it is therefore desirable to give
 more easily verifiable conditions for contiguity, even if they ignore the configuration of the
 sampling locations. The following lemma gives conditions, independent of the sampling

 locations, for contiguity of {Pn} with respect to {Pn}. For any covariance function C on
 2 C Fd, let f denote its spectral density (assuming it exists), i.e.
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 C(t) - ei(t'fv) dv, (3.13)
 where, for t and v in Rd, (t, v)- Ed Itjj. The spectral density can be found from the
 covariance function by the inverse formula of (3.13):

 f(v) = (21)-dd ei(t,v) C(t)dt. (3.14)

 For an extensive treatment of spectral measures in the context of time series, see, for
 example, Priestley (1981).

 Lemma 3.3. Suppose that C and Cn have spectral measures F and Fn, respectively, which
 are absolutely continuous with respect to d-dimensional Lebesgue measure with densities f
 and fn, respectively. Then {Pn } is contiguous with respect to {Pn } if

 (nY) - f(2
 lim sup n sup f( (V < 0o (3.15)
 n-oo vRd f()

 and

 lim inf inf > 0. (3.16)
 n-voo vd f(V)

 Proof. Let Ai be an eigenvalue of n'An with corresponding eigenvector y. Then

 AiyTTny = yTAny, (3.17)
 and hence

 jAil < sup yTAny(318)
 y yTIny

 Since

 2

 yTAy _ JRd yje-iv (fn(v) - f(v))dv yTny )2 s -f(v)
 YTn y Rd yje-ixeV f(v)dv s

 we have

 n2 < (n + 1)sup . f(v) 2

 Similarly, if g* is an eigenvalue of Inn (, then
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 S> inf Y nY> inf n(V) y yTXny v f(V)

 The lemma then follows on applying Lemma 3.2. O

 4. Examples

 In this section we shall apply the results of the previous section to a number of examples.
 The first example was considered in Stein and Handcock (1989).

 Example 4.1. Consider equally spaced locations xi = i/n, i =0, ..., n - 1, in the unit
 interval in R and let, for I tl 1,

 C(t) = 1 - I tl, Cn(t) = C(t) + 3n6(t), (4.1)

 where #n is a sequence of bounded real numbers and 6(t) is a twice continuously
 differentiable function such that Cn(t) is a permissible covariance function for all n. We shall
 see later that the behaviour of the derivative of 6 at the origin dictates different conditions on
 #n for C and Cn for { Pn } and {Pn } to be contiguous. If En denotes the covariance matrix of

 (Z(xo), Z(xi), ..., Z(xn-1)), then clearly n,ij = 1 - |i - jl/n. The matrix An is defined by An,j = nd6(li - jl/n). We use identity (3.12), and study the trace of ( '1An)2. Let Dk denote

 the kth diagonal element of (nn'An)2, and define
 p(t) = (6(t) + 6(1 - t) + 6'(t))6 "(t),

 1 n-1 - 1 I '
 mn = -- 1 )(t)dt. n j=2

 Elementary matrix manipulations show that

 D1 = Dn [(6(0) + 6(1) + 6'(0+))2 + (6(0) + 6(1) + 6'(1))2 - mnl 4

 and, for 2 < k < n - 1,

 Dk 4(6'(0+))2 + 2-2 j( |( ) 2 jIk

 If A1, ..., An denote the eigenvalues of nlAn, we arrive at
 n n I

 A2 = Dk fn n(2'(0+))2 + -(6(0) + 6(1) + 6'(0+))2 i=1 k= l

 +2 (6(0) +(1) + '(1))2 - Jl(t)dt . (4.2)
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 It is not difficult to see that the contributions of the remainder terms in (4.2) are indeed
 negligible. Application of Theorem 2.1 and Lemma 3.2 now tells us that the kriging predictor

 based on Cn is asymptotically efficient if E-n A2 in (4.2) is bounded and (3.7) holds. The

 analysis of =jin__12 in (4.2) exhibits two interesting features. First, subject to the permissibility condition, if 6'(0+) = 0, then we are in a situation where Cn and C behave
 similarly at the origin, in the sense that, for every n, C'(O+) = C'(O+). As a result, for every
 n the Gaussian processes determined by C and Cn respectively are mutually absolutely
 continuous (with some exceptions) and Theorem 1 in Stein (1988) asserts that, for &n = #
 finite, the kriging predictor based on Cn is asymptotically efficient. Our analysis shows that if
 6'(0+) 0, in=A2 remains bounded whenever #n remains bounded and hence the
 estimating kriging prediction error is asymptotically efficient if also (3.7) holds. Stein and

 Handcock (1989, Example 3) discuss this example for 6(t) = (1 - t2)/2 and 0 < Pn 1.
 This indeed makes Cn(t) a permissible covariance function, since

 1 - t2
 C,(t) = C(t) + nI, = (1 - #n,)C(t) + ,n C2(t), 2

 where, for Itl < 1,

 1 t2
 C2(t) = Itl +

 is a permissible covariance function. This follows because its spectral density

 f2(v) = (tv3)-l(v - sin(v))
 is non-negative. The spectral density of C(t) is given by

 fi(v) = (vy2)-l(1 - COS(V)).

 Now (3.16) of Lemma 3.3 implies that (3.7) is fulfilled if

 lim sup ,n < 1, (4.3)
 n--oo

 since if f(v) = fi(v) and fn,(v) = fi (v) + /3n(f2(v) - fl (v)) denote the spectral densities of C
 and C, respectively, we have

 sin v

 f(_) f2() - fi () coS v - V

 M 1 + Pn = 1 4+ n >M 1+ --in, f(v) fM (v) 1 - cos v
 the latter inequality because (sin v)/v < 1. Lemmas 3.2 and 3.3, together with Theorem 2.1,
 imply that for 6(t)- (1 - t2)/2, if (4.3) holds, the estimating kriging predictor is asymp-
 totically efficient with respect to the theoretical kriging predictor. Thus, here our result is in
 agreement with Example 3 in Stein and Handcock (1989).

 For the case 6'(0+) 0, Lemma 3.2 gives valuable additional information. Now for fixed
 n, unless ,n = 0, the Gaussian processes governed by C and C, are not absolutely

 continuous, so Theorem 1 of Stein (1988) cannot be applied. It is easy to see that i=,1,
 remains bounded if ,n = O(n-1/2), SO for {Pn} to be contiguous with respect to {P,} we
 need /,n to be of the order O(n-1/2).
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 Example 4.2. Exponential covariance functions. Consider a Gaussian process on R with
 covariance function

 Co,2z(t) = o2ee-0tl, 02, 0 > 0. (4.4)
 Suppose the process is observed at xi = i/an, i = 1,..., n- 1 and is to be predicted at
 xo = 0. Here an determines the degree of infilling and increasing domain. In particular,
 an = O(n) corresponds to infill asymptotics and an = 0(1) corresponds to increasing-domain
 asymptotics. The sequence an is assumed to be inside the boundaries described above. Let On
 and a 2 be bounded sequences of numbers. Summing up, we assume that there exist constants
 0 < K1 < K2 < o such that

 K1 <- an <K2n, 8n - 01 < K2, 02 -0"21 K K2. (4.5)
 As before, let Pn be the joint distribution of the process at prediction and sampling locations

 under Co,U2 and let Pn be the joint distribution of the process at the same locations under
 Co,,a2 .

 We shall investigate, under various degrees of infilling, what rates are necessary to obtain
 contiguity of {Pn} and {Pn}. In this set-up we have

 En, ij = O2Pli-jl, p = exp(-6/an), (4.6)
 the inverse of which is given in Cressie (1991, p. 133). Similarly, define Xn by substituting

 On, aOF and pn = exp(-On/an) for 0, 02 and p in (4.6). Finally, let

 a2 1 - pp
 cn = 2 2 "

 As in Example 4.1, we use (3.12) and study the sum of the diagonal elements Dk of

 (n An,)2. Straightforward calculations yield
 n n

 S = Dk = S1 + S2 + S3,
 i=1 k=1

 where

 1 - 2pp, + P2 2c2n(pP - p)2 2(n-1) S1 =(2cn - 1)2 + (n - 2) cn 1 PPn(1-ppn)2 (n
 pnC2 (Pn - p)2 1- 2(n-2) S2 = 4

 1 - PPn 1 - p2

 2cn(Pn - p)2 - p2(n-2) S3-= 1_n (n- 2)- n I 1 - pn

 The order of magnitude of these terms can be analysed using (4.5) and noting that

 Cn = O(1), Pn - p = O(an(On - 6)), 1 - p2 = O(anl), 1 - p2n - O(1),
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 which yields

 S1= ( n - 12) s2 = O((On - 0)2), S3 = 0 -n_ 0)2

 Under infill asymptotics (i.e. an = O(n)), it is well known (Ying 1991) that 0 and a2
 cannot be estimated consistently. In fact, 0 and a2 are not identifiable from observing the
 whole path of the processes because, for 862 = 0a2, the Gaussian processes with mean
 zero and covariance functions Co,U2 and Co,a2 are mutually absolutely continuous. Ying
 (1991) shows that the maximum likelihood estimators On and d2 of 0 and a2 are such that

 V(On82n - 80a2) converges to a normal distribution and On - 0 and &a - 2 are bounded
 almost surely. Thus, for the maximum likelihood estimators, in__ A, is bounded almost surely.

 It is instructive to see how far Lemma 3.3 can bring us in checking the conditions of

 Lemma 3.2. Let f and fn denote the spectral density corresponding to Co,~2 and Co2,, respectively. Then (Priestley 1981, p. 236)

 a20 2a On
 f(v) 2 + 2)' (fn() + v2)

 It is easily seen that the supremum of [{jn(v) - f(v)}/f(v)]2 is attained at either v = 0 or
 v = 00, depending on the relative signs of a ono - a20 and On - 6. Thus, (3.15) is fulfilled if
 both n'/2(On - 6) and nl/2(a2 - a2) are bounded. This corresponds to the worst-case
 scenario of increasing-domain asymptotics above, where an = 0(1). We cannot expect a
 condition which guarantees (3.6) for all configurations of sampling locations to give a better
 result than this.

 Lemma 3.3 can also help us to check (3.7) of Lemma 3.2. It is easy to see that (3.16) is

 fulfilled if an2 and On are bounded away from 0 and oc. Thus, a combination of Lemma 3.2 and Lemma 3.3 shows that {Pn} and {Pn} are contiguous under (4.5) if

 On -= O (a(n , oa2 - a20 = O(n-'/2). (4.7) ( ( )non-11/
 Under infill asymptotics, these rates are achieved by the maximum likelihood estimators, as
 proved by Ying (1991). Under increasing-domain asymptotics restricted maximum likelihood
 estimators exist achieving (4.7) (Cressie and Lahiri 1996). We conjecture that also for
 an - 00 but an = o(n) these rates can be achieved.

 The exponential covariance function model in R[, given by (4.4), can be extended to more
 dimensions in two ways. One is retaining isotropy, leading to

 Co,o2(t) = O2 exp(-011tl|), t E Rd, (4.8)
 where Iltll = (T ,t2)1/2 is the Euclidean length of the vector t. In this model the
 identifiability problem remains for d < 3, i.e. 0 and a2 are not identifiable and only the
 product Oa2 can be estimated at x/-rate.

 A second extension,
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 Col,....Od,U2(t) = OF2 exp - Oil tl , (4.9) j= 1

 is mathematically more tractable. It has generally been motivated by applications other than
 those involving spatial data, such as the modelling of computer experiments. In such a
 context, the distance between two points may be defined in terms of the number of nodes
 between them on some grid, leading naturally to consideration of this form of covariance

 function. In Ying (1993) it is shown that 01,..., Od and a2 are identifiable, and asymptotic
 normality of the maximum likelihood estimators 01, ..., Od and O2d is proved. The same
 model was considered by van der Vaart (1996), who proved local asymptotic normality for
 this model under a two-dimensional regularly spaced grid. It is well known that local
 asymptotic normality implies contiguity (Bickel et al., 1993, pp. 16-17), so the local
 asymptotic normality proved by van der Vaart (1996) guarantees that the maximum likelihood
 estimators are such that {Pn } and { Pn } are contiguous almost surely.

 5. Estimation of prediction error

 Estimation of the kriging error in the case where the underlying covariance function C is
 known is straightforward; if C is known then formula (2.5) gives the result. An obvious thing
 to do when C is unknown is to use (2.5), replacing unknown quantities by their estimated

 counterparts. Using the notation of (2.6)-(2.9), we then estimate varc(en(xo)) by

 v2 T- W (1Tonl - 1)2 var-(-(xo)) =On - (T ^)n +n1 (Qn Q1 (5.1)
 Computation of (5.1) requires hardly any additional effort, since most of the quantities are
 needed to compute an in the first place. It can be shown as a by-product of Theorem 2.1 that

 var,(n(xo)) is a consistent estimator of varc(en(xo)).
 Lemma 5.1. Under the conditions of Theorem 2.1,

 var, (en(xo)) varc( 1 P-a.s. (5.2)
 varc(4n(xo))

 Proof The result follows immediately from (2.17). D
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