
Biometrika (1987), 74, 3, pp. 469-79
Printed in Great Britain

The bootstrap: To smooth or not to smooth?

BY B. W. SILVERMAN
School of Mathematical Sciences, University of Bath, Bath BA2 JAY, U.K.

AND G. A. YOUNG
Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, U.K.

SUMMARY

The bootstrap and smoothed bootstrap are considered as alternative methods of
estimating properties of unknown distributions such as the sampling error of parameter
estimates. Criteria are developed for determining whether it is advantageous to use the
smoothed bootstrap rather than the standard bootstrap. Key steps in the argument leading
to these criteria include the study of the estimation of linear functionals of distributions
and the approximation of general functionals by linear functionals. Consideration of an
example, the estimation of the standard error in the variance-stabilized sample correlation
coefficient, elucidates previously-published simulation results and also illustrates the use
of computer algebraic manipulation as a useful technique in asymptotic statistics. Finally,
the various approximations used are vindicated by a simulation study.
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1. I N T R O D U C T I O N

1-1. The standard bootstrap
The bootstrap is an appealing nonparametric approach to the assessment of errors and

related quantities in statistical estimation. The method is described and explored in detail
by Efron (1979, 1982). A typical context in which the bootstrap is used is in assessing
the sampling mean squared error a(F) of an estimate 6{XX,..., Xn) of a parameter
6{F) based on a sample Xx,..., Xn drawn from an unknown distribution F. If F were
known, a might be most easily estimated by repeatedly simulating samples from F. The
standard bootstrap technique is to estimate a(F) by the sampling method, but with the
samples being drawn not from F itself but from the empirical distribution function Fn

of the observed data X , , . . . , Xn. A sample from Fn is generated by successively selecting
uniformly with replacement from {Xx,..., Xn} to construct a bootstrap sample
{X*,..., X*}. For each bootstrap sample, the estimate 0(X*,..., X*) of the quantity
d(Fn) is calculated. Since arbitrarily large numbers of bootstrap samples can be construc-
ted, a(Fn) can easily be estimated to any reasonable required accuracy from the simula-
tions. The quantity a{Fn) is then used as an estimate of a(F).

The bootstrap method thus consists of two main elements, which are often confused.
There is first the idea of estimating a functional a(F) by its empirical version a(Fn),
and secondly the observation that a(Fn) can in very many contexts be constructed by
repeated resampling from the observed data. The resampling idea is an extremely
important one, but it has, perhaps, been overstressed at the expense of the underlying
estimation step. Once the two steps are conceptually separated it becomes easier to gain
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470 B. W. SlLVERMAN AND G. A. YOUNG

a fuller understanding of how the bootstrap actually works. In particular it becomes clear
that there is nothing special about estimating functional a(F) that are themselves
sampling properties of parameter estimates; the bootstrap idea can be applied to any
functional a(F) of interest.

1-2. The smoothed bootstrap
Because the empirical distribution Fn is a discrete distribution, samples constructed

from Fn in the bootstrap simulations will have some rather peculiar properties. All the
values taken by the members of the bootstrap samples will be drawn from the original
sample values, and nearly every sample will contain repeated values. The smoothed
bootstrap (Efron, 1979) is a modification to the bootstrap procedure to avoid samples
with these properties. The essential idea of the smoothed bootstrap is to perform the
repeated sampling not from Fn itself, but from a smoothed version F of Fn. Two possible
versions of the smoothed bootstrap will be described in more detail below; whatever
method of smoothing is used, the net effect of using the smoothed bootstrap is to estimate
the functional a(F) by a(F).

The main aim of this paper is to investigate some properties of the smoothed bootstrap,
in order to give some insight into circumstances when the smoothed bootstrap will give
better results than the standard bootstrap. As an important by-product, the value of
computer algebraic manipulation as a tool in asymptotic statistics will be demonstrated.

Efron (1982) considered the application of the bootstrap, and various other techniques,
to the estimation of the standard error of the variance-stabilized transformed correlation
coefficient. He illustrated by direct simulation that in a particular case a suitable smoothed
bootstrap gave better estimates of standard error than the standard bootstrap. We shall
discuss Efron's example later in the present paper and demonstrate how his results can
be elucidated and extended by using a suitable approximation argument.

Before going on to discuss the estimation of general functionals a(F), we shall first
consider the estimation of functionals a that are linear in F. For such functionals we
shall obtain simple sufficient conditions under which using the smoothed bootstrap can
decrease the mean squared error in the estimation of a(F).

We close this section by giving details of the two kinds of smoothed bootstrap considered
in later discussion. Suppose Xx,...,Xn is a set of /--dimensional observations drawn
from some r-variate density / and that V is the variance matrix of/, or a consistent
estimator of this variance matrix, such as the sample variance matrix of the data. Choose
a kernel function K such that K is a symmetric probability density function of an r-variate
distribution with unit variance matrix, for example the standard unit r-variate normal
density.

Define the kernel estimate jU*) of f(x) by

/*(*) = I Vr*n-/T' t K{h-xV-Kx-Xt)}, (1-1)

and the shrunk kernel estimate /h,,(x) by

/,,,,(*) = (l + /J
2)*7U(l + *2)ix}. (1-2)

Density estimates in general are discussed, for example, by Silverman (1986). The
smoothing parameter h determines the amount by which the data are smoothed to provide
estimates. Estimates of the form (1-2) have the property that the density/^ has the same
variance structure as the original data, if V is taken to be the sample variance matrix.
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The bootstrap: To smooth or not to smooth! 471

Given any functional a(F) of an r-variate distribution F, the unshrunk smoothed
bootstrap estimate of a{F) is defined to be a(Fh) and the shrunk smoothed bootstrap
estimate is a{FKs), where Fh and FK, are the distribution functions corresponding to
fh and /^j respectively. It is easy to simulate either from /,, or from fK, by sampling with
replacement from the original data and perturbing each sampled point appropriately;
for details see Efron (1979) or Silverman (1986, § 6.4). Hence values of a(Fh) and a(FhiS)
can be obtained in practice by simulation if necessary.

2. LINEAR FUNCTIONALS

In this section we consider the estimation of a linear functional A(F). Because A is
linear, standard calculus demonstrates the existence of a function a(t) such that

The standard bootstrap estimate A0(F) will satisfy

A0(F) = A(FH) = \a{t)dFn{t) = n-x £ a{X,).

The unshrunk smoothed bootstrap estimate Ah(F) will satisfy

Ah(F) = ^ a(t)fh(t)dt,

and the shrunk smoothed bootstrap estimate AK,(F) will satisfy

with fh and fK, as defined in (1-1) and (1-2) above.
In the discussion that follows we assume that the function a has continuous derivatives

of all orders required. All unspecified integrals are taken over the whole of r-dimensional
space. Assume that V is fixed and define the differential operator Dv by

Dva=t t V^a/dx, dxj.

Our first theorem gives a criterion for smoothing, without shrinkage, to be of potential
value in the bootstrap estimation process.

THEOREM 1. Suppose a(X) and DyaiX) are negatively correlated. Then the mean
squared error of Ah(F) can be reduced below that of A0(F) by choosing a suitable h>0.

Proof. Assume without loss of generality that A{F) = 0, by replacing a(t) by
a(t)-\ a(x)f(x) dx if necessary. By this assumption,

MSE {Ah(F)} = E{Ah(F)2} = vaT{Ah(F)} + [E{Ah(F)}]2. (2-1)

Now, by some easy manipulations, Ah(F) = n~'£ w(X,), say, where the sum is over
i = 1 , . . . , n, and where

= I a(t)h-r\V\-lK{h-*V-l(t-x)}dt= \w{x)= I a(t)h-r\V\-lK{h-*V-l(t-x)}dt= \ K{£)a{x + hV^) d£ (2-2)
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472 B. W. SlLVERMAN AND G. A. YOUNG

on making the substitution t = x + hV${;. A Taylor expansion gives

a(x + hV^) = a{x) + h( V^)T{a(x)}2+±h2( V^)THa(x)( V^) + O(h\

where Ha{x),j = d2a(x)/dx, dx,-. By our assumptions on the kernel K it follows that
2 , (2-3)

E{Ah(F)} = E{w{X)} = {h21 f(x)Dva(x) dx + O{hA), (2-4)

since J a(x)f(x) dx = 0. Also, since X , , . . . , Xn are independent,

nvar{/MF)} = varMX)}= | a(x)2f(x) dx + h2 \ a{x)Dva{x)f{x) dx + O(h4)

(2-5)

using (2-3). Combining (24) and (2-5) gives the mean squared error

MSE{A,(F)} = fj-' | a(x)2f(x) dx + n-'h2 f a(x)Dya(x)f(x) dx+O(h4). (2-6)

For fixed n, the equation (2-6) demonstrates that, under the assumption that a{X) and
Dva(X) are negatively correlated, the mean squared error of Ah(F) will, at least for
small h, be smaller than that of A0(F), completing the proof of the theorem. •

The next theorem gives the corresponding criterion for smoothing with shrinkage to
lead to more accurate bootstrap estimation. Define a*(X) by

a*(X) = DMX) ~X. Va(X).

THEOREM 2. Suppose a(X) and a*(X) are negatively correlated. Then the mean squared
error of A^,{F) can be reduced below that ofA\t(F) = A0(F) by choosing a suitable h>0.

Proof. As before assume without loss of generality that A(F) = 0. We have by similar
manipulations to those used above, Ahs(F) = n~l1 w*(X,), where

*r f a(t)h~r
w*(x) = (1 + /i2)*r f a(t)h~r\ V|-iX[/j-' V~i{x-(1 + /»2)*/}] dt

on making the substitution t = (x + hV*£)/(l + /i2)*. Now, for h small, (1 + /i2)"*-! -\h2,
so

w*(x)—

A Taylor expansion of a about x, and our assumptions on the kernel K give

. (2-7)

Now we have

E{AKl(F)} = E{w*(X)} = {h2 J /(x)a*(x) dx + O{h\
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The bootstrap: To smooth or not to smoothi 473

and, on using (2-7),

n var tfh.,(F)} = J a(xff{x) dx + h2^ a(x)a*(x)f(x) dx + O(h4).

The proof of Theorem 2 is completed in the same way as that of Theorem 1. •
As a simple illustration, consider the estimation of the sixth moment J x6f(x) dx of a

univariate density. It is not immediately clear whether smoothing is worthwhile in this
case. In the notation used above, a(x) = x6, Dva{x) = 7,Q Vx4 and a*(x) = 30 Vx4-6x6.
It follows that, setting /xr = EXr,

If, for example, X has a normal distribution with mean zero and variance V, we have
fiy = VJ2~J(2j)l/jl and hence cov {a(X), a*(X)} = -34020V*<0.

Thus a shrunk-smoothed estimate J x6fK,(x) dx will always, for a suitably chosen value
of h, give a more accurate estimate of E(X6) than will the raw sixth moment if X is
drawn from a normal distribution. Similar calculations for other distributions show that
the same conclusion holds under a wide variety of distributional assumptions for X.

The results obtained by applying the criteria can sometimes be a little surprising.
Suppose X is drawn from a standard normal distribution. Application of the criterion
for estimation by unshrunk smoothing demonstrates that, for small h, this will have a
deleterious effect in the estimation of either E(X4) or E{X2) alone. However, for the
linear combination of moments E(X4- cX2), unshrunk smoothing will be worth perform-
ing provided c > 6. Details of this somewhat counter-intuitive result are left to the reader
to reconstruct.

We do not, in this paper, devote much attention to the question of how much smoothing
should be applied in cases where smoothing is worth performing; that problem is left
for future work. However, the last example of this section demonstrates that the question
of how much to smooth can be a rather delicate one. In this example, let <£„ denote the
density of the normal distribution with mean zero and variance a2. Let

*>.{t) dF(t),

and suppose that the quantity e converges to zero as the sample size increases. Assume
that F has a smooth density / with derivatives of all orders required. Consider the
estimation of Ae(F) by the unshrunk smoothed estimator Ah(F), constructed using the
normal density as the kernel. We shall investigate the optimal large-sample behaviour of
the smoothing parameter h. Assume throughout that h is small for large n and that/(O) > 0.

Setting 82 = h2 + e2 and performing some simple manipulations, we have

Ah(F) = | <M0/*(0 dt = iT'

Hence, substituting u = tS and performing a Taylor series expansion,

E{Ah(F)} = J Mt)f(0dt = J <t>(u)f(u8)du=f(0)+±82r(0) + O(84).

Since, by a similar argument,

AAF) = J 0.(0/(0 dt =/(0) +le2A0) + O(£
4),

 at W
ashington U

niversity at St L
ouis on June 14, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


474 B. W. SlLVERMAN AND G. A. YOUNG

it follows that

E{Ah(F)} - AAF) = \h2f\Q) + O(8A).

By standard arguments

var {Ah(F)} = n"1 var {<f>8(X)} = /)-
1/(0)/(25^){l + O(5)}.

Thus the mean squared error of Ah(F) will be, asymptotically, given by

where the terms neglected are of order n~l + S6. This approximate mean squared error
is a convex function of 5, and its minimizer will satisfy 53(S2-e2) = C(f)n~\ where
C(f) =/(0)/{27r*/'(0)2}, or, in terms of h and e,

(1 + h2/e2)3/2h2/e2 = C( / ) /TV 5 . (2-8)

Denote by tf>(R) the root in [0, oo) of the equation

then by simple calculus ij/(R)- R^asR-* 0, and if/(R) ~ R1/5 as R -*• oo. The asymptotically
optimal h for the estimation of As will satisfy, from (2-8),

U n-le
Standard density estimation theory (Parzen, 1962) shows that this is the asymptotically

optimal smoothing parameter for the estimation of the density at zero. Thus, in this case,
the best estimate of At will be based on the best estimate of the density.

Unfortunately this will by no means always be the case. If n~le~5-*0, we will have

hpt~ eC(/ )V4 £ - 5 / 2 = C(f)*n-te->'2

and if n~'e~5-»a, where 0<a<oo, hopt~ etfi{aC(f)}.
In neither of these cases will it be optimal to construct an optimal estimate of / in

order to estimate Ae{f), since the optimal choice of h will be smaller, in order of
magnitude in the first case, than that required for the estimation of / itself. Thus the
optimal estimate of AC(F) will be based on an undersmoothed estimate of the underlying
density. This example is, of course, rather artificial, but it does illustrate the likely difficulty
of obtaining general rules for deciding how much to smooth when estimating functionals
of a density. Even in cases where smoothing is advantageous, the amount of smoothing
required may be quite different from that needed for the estimation of the density itself.

3. MORE GENERAL FUNCTIONALS

3 • 1. Linear approximation
In this section, the work of § 2 is extended, by considering local linear approximations,

to more general functionals of an unknown distribution. When an explicit bootstrap
method is being used the functional being estimated is unlikely to be linear, and so a
more general theory is necessary. Local linear approximations to functionals of distribu-
tions have also been used by Hinkley & Wei (1984) and Withers (1983).
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The bootstrap: To smooth or not to smooth! 475

Consider the estimation of a functional a(F0) of an unknown distribution Fo underlying
a set of sample data. Suppose that a admits a linear von Mises expansion about Fo given
by

F0), (3-1)

where the linear functional A is representable as an integral

-F0) = ̂  a(t)d(F-F0)(t). (3-2)

A detailed discussion of differentiation of functionals and general von Mises approxima-
tion is given by Fernholz (1983). The precise accuracy of the expansion (3-1) depends
on the detailed properties of a, but the error will in general be of order sup|F-F0 |2 .

The expansion (31) gives an obvious approximation to the bootstrap estimate of a(Fo).
If F is an estimate of Fo, then we will in general have, provided sup |F- Fo| is Op(n~*),

and so the sampling properties of a(F) will be approximately the same as those of A(F).
The criteria of § 2 can then be applied to the linear functional A. If using an appropriate
smoothed bootstrap will improve the estimation of A(F0) then, neglecting any errors
inherent in the linear approximation (3-1), the smoothed bootstrap will be worth using
in the estimation of a(F0).

3-2. The transformed sample correlation coefficient
In this section we consider application of the linear approximation procedure to

estimation of the sampling standard deviation of the variance-stabilized sample correlation
coefficient. Suppose Fo is a bivariate distribution with mean zero and correlation coefficient
p, and let f = tanh~' p. Let r be the computed sample correlation coefficient based on a
sample of n independent observations from Fo, and let z = tanh"1 r be the sample estimate
of £. Then the functional of interest is an(F0) = {var (z)}K Efron (1982) devoted consider-
able attention to the estimation of an (Fo) by a variety of methods, including the smoothed
bootstrap, for the specific case of Fo bivariate normal, with marginals of unit variance
and p = | , and for sample size n = 14.

A key step in our investigation of the estimation of an(F0) will be an approximate
formula, given by Kendall & Stuart (1977, p. 251). Let

L ( l - p ) L/in 4 \ ^ 2 0 M02
a(Fo)

where fiy is the (i,j)th moment given by /x(/ = J x',X2 dF0(x). Here and subsequently in
this section unsubscripted letters x will denote vectors (x,, x2). Kendall & Stuart give

so that estimation of an(F0) is approximately equivalent to that of a(F0).
Consider now the calculation of the function a(t) defined in (3-2). For fixed t let 5,

be the distribution function of a point mass at t and, for any e > 0 let Fe be the improper
distribution F0+e5,. Then simple calculus combining (3-1) and (3-2) gives

a(t) = [(d/de)a(Fe)]e.o. (3-4)
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476 B. W. SlLVERMAN AND G. A. YOUNG

Our functional a(F) is defined for improper distributions, as well as for probability
distribution functions, and hence there is no need when calculating a(t) to consider the
more complicated perturbation e(5, - Fo) to Fo used by Hinkley & Wei (1984). The actual
algebraic manipulations required in the calculation of a(t) from (3-4) and (3-3) are
extremely laborious. However, it is relatively easy to write a program in a computer
algebraic symbolic manipulation language, such as MACSYMA, to perform the necessary
differentiations and substitutions. The function a(t) itself is a fourth-order polynomial
in f] and t2 whose coefficients depend on the moments of Fo. It is only used as an
intermediate step, in the special cases considered below, in the calculation of the criteria
derived from Theorems 1 and 2, and the calculation of these criteria was also performed
by computer algebra. Further details of the manipulations are available from the authors.

To complete this section we consider the results of the application of the computer
algebraic manipulation procedure to the functional (3-3) for two special cases. Further
details of the results discussed will be given in § 3-3 below. Let ASB(F0) be the criterion
obtained from Theorem 2 for the shrunk smoothed bootstrap to be advantageous in the
estimation of the functional A(F0). Recall that ASB(Fo)<0 means that some smoothing
at least is worthwhile.

Suppose, first, that the distribution of the data can be reduced by an affine transforma-
tion to a radially symmetric distribution Ft . Without loss of generality it can be assumed
that F t has unit marginal variances. Let R be the radial component of Ft , and denote
by Sj the jth central moment of R2. Computer algebra shows that the criterion ASB(F0)
reduces, in this case, to

(3-5)

where /Jo is the positive quantity ̂ a(F0)~\ Using the standard inequality s| =s s2s4, we have

-32ASB(Fo)j3o2 > 3s4 - 4 ^ 4 - 3s\sl/2 + s\ + 2s\ + 2As2 +16

This gives the general conclusion that ASB(F0)^ -\fi\ for any distribution Fo which can
be affinely transformed to radial symmetry.

Another class of distributions for which /4SB(F0) is guaranteed not to be positive is
the class for which a particular affine transformation of Fo to unit variance-covariance
matrix yields a distribution with independent marginals. Let X be a random vector with
distribution Fo, and let a\ - var (X,), a\ = var (X2) and p = corr (X,, X2). Define a matrix

ft :i: %
here the power \ denotes the symmetric positive-definite square root. Define a bivariate
distribution F* by F*(w) = F0(5u) for all 2-vectors u. A random vector Y = S~'X with
distribution F* and unit variance-covariance matrix can be obtained by first rescaling
the marginals of X to have unit variance and then rescaling the principal components
of the resulting vector to have unit variances. If this natural affine transform of Fo has
independent marginals, then an argument given in §3-3 below demonstrates that
ASB(F0) *£ 0, with equality only if X has a uniform discrete distribution giving probability
^ to each of four points.
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The bootstrap: To smooth or not to smooth? 477

In summary, we have derived the following conclusion. Provided all the approximations
we have made are reasonable, using a shrunk smoothed bootstrap, with an appropriate
smoothing parameter, will give improved estimation of an(F0) over that obtained by the
standard bootstrap, if either Fo is an affine transformation of a radially symmetric
distribution or Fo is an affine transformation, of a particular kind, of a distribution with
independent marginals, and Fo is not a uniform four-point discrete distribution. In
practice the underlying distribution Fo will not be known. An obvious topic for future
investigation is the construction of empirical versions of the criteria of Theorems 1 and
2, on the basis of which a decision whether or not to smooth can be made for each data
set encountered. Some preliminary simulations along these lines have been encouraging.

3-3. Some technical details
Throughout this section, define the matrix 5 as in (3-6), and suppose that X is a

random vector with distribution Fo. Let Y = S~1X as in §3-2, and let F*(y) = F0(Sy)
be the distribution of Y. It is easily seen that the existence of an affine transformation
reducing Fo to radial symmetry is equivalent to the radial symmetry of the particular
affine transformation F*.

Define as(u) = a(Su) and let ky = E(Y[YJ
2), where Y=S~lX. In both of the two

special cases considered in §3-2, fci3 = fc3i = 0, and computer algebraic manipulation
showed that as(u) reduces to the simple form

The criterion given in Theorem 2 also reduces to a simple form when expressed in
terms of as. We have, by standard calculus,

say, where a*s{u) = {2{\ + k22){u]+u\)-4k22-4u\u\}Po-
Since, by definition, a(X) = as(Y), it follows that

ASB(F0) = cov {a(X), a*(X)} = cov {as( Y), a*s( Y)}

= E{as(Y) + pok22}a*s(Y) (3-7)

since it is immediate that E{as(Y)} = -fiok22.
Suppose, now, that the distribution of Y is radially symmetric, so that YT =

(R cos 0, R sin 0) with 0 uniformly distributed on (0, 2TT). The form (3-7) for ASB(F0)
can be expressed in terms of even moments of Y up to order 8, and each of these moments
can be expressed in terms of the moments of R2. For example

k22 = E(R4 sin2 0 cos2 0) = £(i?4/8) = (s2 + 4)/8,

where, as in § 3-2, s, = E(R2-2y is the jth central moment of R2; the assumption that
E(Y2) = E{Y\) = 1 implies that R2 has mean 2. Performing all these substitutions, by
computer algebra, yields the form (3-5) for ASB(F0) and hence the conclusion given in
§ 3-2 for distributions that can be transformed to radial symmetry.

Now suppose that Yx and Y2 are independent, but that Y is not necessarily radially
symmetric. It will then be the case that k22 = E(Y])E( Y\) = 1 and hence

a%(u) = -40o(u2W2- u\- u2
2+ 1) = -4{as(u) + /30}.

It follows that i4SB(F0) = - 4 var {as(y)}. Since Yx and Y2 are independent, the only way
\ar{as(y)} can be zero is for Y to have the four point distribution giving probability \
to each of the points (±1, ±1); otherwise as(Y) has positive variance, and ASB(Fo)<0.
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478 B. W. SlLVERMAN AND G. A. YOUNG

4. SIMULATION STUDY

The discussion in § 3 above involved heavy dependence on two approximations, one
of them specific to the example under consideration and the other a key feature of our
proposed general methodology. In this section, we investigate both of these approxima-
tions by a simulation study which extends the one carried out by Efron (1982, Table
5.2). All our simulations are carried out under the assumptions of Efron's model, that
Fo is the bivariate normal distribution with unit marginal variances and correlation |.
Efron considered only samples of size 14, though we consider here larger sample sizes
as well. We follow Efron in using the values 0 and j for the smoothing parameter h.

For each sample size n, the accuracy of the bootstrap and smoothed bootstrap estimates
of the sampling standard deviation an(F0) of the variance-stabilized correlation coefficient
was assessed in three different ways. First, a direct simulation of the bootstrap procedure
itself was carried out; two hundred data sets were generated from Fo and for each one
an(Fo) was estimated by the usual resampling procedure, using two hundred resampled
data sets of size n in each case. The true value of an(F0) is known and so it is possible
to estimate the root mean squared error of the direct bootstrap procedures from our
simulations. The results thus obtained are labelled 'direct' in Table 1.

Table 1. Estimates of root mean squared errors of bootstrap estimates of sampling standard
deviations of variance-stabilized and untransformed correlation coefficients; sample sizes n

and smoothing parameters h.

n

14

20

30

40

50

100

Variance-stabilized
Direct Linear Delta

0
I
0
i
0

0
i
0
i
0

0-075
0045

0-049
0033

0029
0019

0024
0015

0020
0013

0011
0-008

0071
0046

0050
0-032

0033
0021

0025
0016

0020
0013

0010
0006

0077
0-057

0-053
0037

0033
0-022

0-025
0017

0-021
0-014

0-010
0-007

Direct

0-070
0-057

0046
0-045

0033
0-027

0-024
0021

0020
0019

0010
0009

Untransformed
Linear

0076
0055

0-053
0039

0036
0026

0027
0019

0021
0015

0011
0008

Delta

0-060
0-052

0044
0-041

0-030
0-027

0-027
0020

0019
0018

0010
0-008

Secondly, in order to investigate the accuracy of our linear approximation AKl(F0),
some analytic calculations were carried out, making use of computer algebra. By this
means, the behaviour of the approximation can be studied without recourse to any
simulation. For the bivariate normal population under consideration, the standard devi-
ation of AKl(F0) was found to be n~'(l + h2)~2. This quantity is referred to as the 'linear'
estimate of the root mean squared error of the bootstrap procedure. Closeness of the
'linear' and 'direct' estimates of root mean squared error would vindicate our proposed
procedure of studying the sampling properties of the bootstrap by means of linear
approximations.

Our development of the linear approximation involved the intermediate step of
approximating an(F0) by n~$a{F0), as given in (3-3). This intermediate approximation
raises the possibility of studying the sampling properties of the smoothed bootstrap by
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considering those of the approximation (3-3), with Fo replaced by Fhl. This corresponds
to substituting the moments of FKt, which are easily calculated from the sample, into
(3-3). By analogy with § 6.5 of Efron (1982), we refer to this procedure as the nonpara-
metric delta approximation to the smoothed bootstrap. For each of two hundred simulated
samples from Fo this approximation was calculated. From the values thus obtained, a
third estimate of the root mean squared error of the smoothed bootstrap procedure was
found. This is labelled 'delta' in Table 1.

The analogous investigation was carried out for the untransfonned correlation
coefficient r, in the context of the same bivariate normal model. The factor (1 - p2)'2 is
omitted from (3-3) in this case; otherwise the same algebraic manipulations and simula-
tions were performed as for the variance-stabilized coefficient z. The 'linear' estimate of
the root mean squared error is now3/i~1(l + /i2)~2(2 + 2/j2 + /j4)*. The results are presented
in the last three columns of Table 1.

The broad conclusions to be drawn from Table 1 are the same for both correlation
coefficients. Even for the small sample size considered by Efron (1982), our linear
approximation procedure gives good estimates of the accuracy of the full bootstrap
procedure, and the relative improvement due to smoothing is well predicted. Efron's
conclusions could have been obtained without recourse to any simulation. On the whole
the delta procedure, which itself involves some simulation, gives slightly inferior estimates
of the bootstrap's accuracy.

It is known (Davison, Hinkley & Schechtman, 1986) that the variance-stabilized
correlation coefficient is highly correlated with its linear approximation, but the untrans-
formed correlation coefficient is in general not. The suspicion expressed by a referee that
this may have a deleterious effect on our approximations in the untransformed case does
not appear to have been borne out by the simulation study, except that the beneficial
effects of smoothing the bootstrap were systematically slightly exaggerated by the linear
method in this case.
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