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 ABSTRACT. Kriging is a method for spatial prediction that, given observations of a spatial
 process, gives the optimal linear predictor of the process at a new specified point. The kriging
 predictor may be used to define a prediction interval for the value of interest. The coverage of the

 prediction interval will, however, equal the nominal desired coverage only if it is constructed using
 the correct underlying covariance structure of the process. If this is unknown, it must be estimated
 from the data. We study the effect on the coverage accuracy of the prediction interval of substi-

 tuting the true covariance parameters by estimators, and the effect of bootstrap calibration of
 coverage properties of the resulting 'plugin' interval. We demonstrate that plugin and bootstrap
 calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration

 appears to have a significant effect in improving the rate of convergence of coverage error.

 Key words: bootstrap, kriging, prediction, resampling

 1. Introduction

 The purpose of predictive inference is the assessment of the values of a small number, typically

 one, of as yet unobserved random variables, given a data sample. Data y represent the ob-

 served value of a random variable Y, with density py (y; 0), depending on the unknown pa-

 rameter 0, and the unobserved Z to be predicted has, conditionally on Y = y, the density

 q(z I y; 0). In this paper we will be concerned specifically with the construction of prediction

 intervals for a scalar Z. The aim is the construction of an interval I _ I(y) which contains Z
 with some specified probability, say 1 - 2y. In the more usual unconditional approach we
 require:

 P[Z E I(Y)] = 1 - 27,

 with the probability over the joint distribution of (Z, Y). Alternatively, we may adopt a

 conditional approach, in which the coverage requirement is conditional on the observed y:

 P[Z E I(y)] = 1 -27,

 where now the probability is with respect to the conditional distribution of Z, given Y = y.

 Various approaches to predictive inference have been proposed, including notions of pre-

 dictive likelihood and fully Bayesian solutions. A brief review is given by Barndorff-Nielsen &
 Cox (1994, Section 9.4). In some circumstances, the prediction interval may be constructed via

 a pivotal quantity, a function of (Z, Y) with a known distribution, not depending on 0. More

 usually, however, an estimative approach is taken, in which an interval, depending on 0, is
 constructed with the correct coverage properties, and then an estimate of 0 is substituted for
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 the unknown true value. The resulting 'plugin' interval then has coverage properties which

 differ from the nominal required coverage. In order for the prediction interval to achieve the

 required coverage interpretation asymptotically it may be necessary for prediction limits to be

 modified to account for the effects of parameter estimation. Beran (1990a, b) suggested the use

 of bootstrap calibration to control the coverage probability of the prediction interval: see also

 Hall et al. (1999) and Loh (1987, 1988). The idea is to use bootstrapping, simulating from a

 model estimated from the data y, to estimate how the actual coverage of the prediction interval

 varies as a function of the nominal desired coverage. The nominal coverage of the plugin

 interval is then recalibrated to deliver an actual coverage closer to the desired coverage than

 that obtained from the unmodified interval. Hall et al. (1999) provide evidence that bootstrap

 calibration of estimative approaches to predictive inference may be more effective than pre-

 dictive likelihood approaches.

 A key issue concerns the general effectiveness of bootstrap calibration as a means of ac-

 counting for parameter uncertainty in construction of prediction intervals. The work of Beran

 (1990a, b) and Hall et al. (1999) is concerned with independent data settings, or those, such as

 autoregressive time series and linear models, which can be expressed in terms of independent

 errors. In this paper, the principal objective is to investigate the effectiveness of bootstrap

 calibration in handling parameter uncertainty in a specific, dependent data, spatial setting,

 that of kriging prediction. In this context, a point predictor is constructed for the value of a

 Gaussian spatial process at a particular spatial location, given observations of the process at a

 set of sampling locations. Kriging methods are described in detail by Cressie (1993, Chapter 3).

 This setting is considered by Putter & Young (2001), who establish conditions under which the

 kriging predictor constructed using estimates of the parameters of the covariance function is

 asymptotically efficient with respect to the kriging predictor that utilizes the true values of the

 parameters.

 The present paper considers the effect of parameter estimation on the asymptotic cov-

 erage accuracy of the plugin prediction interval constructed from the kriging predictor, and

 considers the effect of bootstrap calibration in reducing the coverage error. In this context,

 parametric bootstrapping from a fitted Gaussian process is used to estimate the effects of

 parameter uncertainty on the accuracy of the prediction interval. Informally, it is reasonable

 to expect that bootstrapping from a fitted model with parameter values 'close' to the true

 values will provide evidence of the effects of parameter estimation and allow a recalibration

 of the prediction interval, to yield a reduction in coverage error over that of the crude

 plugin interval, which makes no attempt to allow for parameter uncertainty. We establish

 that in some generality asymptotic accuracy is achieved by both the plugin and bootstrap

 calibrated intervals, and demonstrate further that the bootstrap calibration does indeed

 have a significant effect in reducing the order of magnitude of the coverage error. We

 believe that these findings point to the value of bootstrap calibration as a means of modi-

 fying an inference to accomodate parameter uncertainty in more general problems of spatial

 prediction.

 Section 2 of the paper describes the problem of kriging prediction, and the procedure of

 ordinary kriging, which is the primary focus of the rest of the paper. Plugin and bootstrap

 calibrated unconditional prediction intervals are defined in Section 3, with conditional pre-

 diction intervals described in Section 4. Coverage properties and our main theoretical results

 are described in Section 5. Extension of our results to the technique of universal kriging is

 detailed in Section 6. Section 7 considers a number of specific covariance models, while a

 numerical study, which includes illustration of examples of Section 7, as well as more general

 models, is reported in Section 8. Concluding remarks are given in Section 9 and proofs of the
 main results are given in the Appendix.
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 2. Ordinary kriging

 Kriging is a method for (spatial) prediction, widely used in mining, hydrology, forestry and

 other fields. Given a spatial process, observed at sampling locations x, ... I X,n, it gives the
 optimal (minimum Mean Squared Error, MSE) unbiased linear predictor of the process at a

 given new point, xp, taking into account the spatial dependence of the observations. In ordinary
 kriging, it is assumed that the mean of the process {Z(x), x E R d} is constant but unknown, and

 that the covariance structure is known. In particular we consider a stationary Gaussian process

 {Z(x),x E R d} with E[Z(x)] = p and covariance function C (t) = Cov[Z(x + t), Z(x)], depend-

 ing on some parameter 4. Given the observations Z = (Z(xi ... . ,Z(x ))T, we wish to find
 weights a = (a1n, . . ., ann)T with in = 1 such that the MSE

 En 1~~~~~~2

 E [S ainZ(xi) - Z(xp) (1)

 is minimized. The restriction on the weights ensures that the kriging predictor

 n

 Y(Xp)= 5ainZ(xi),
 i=l

 is unbiased. The n x n covariance matrix of Z is denoted by

 Q = Cov[Z, I ] = {CX (xi -X) }i,j= 1,...,n1.

 the n-dimensional covariance vector by

 Co = COV [Z (xp), I] = { CX (xp-xi ) }i= 1,...,n I

 and the variance of the process by c72 = Var[Z(xi)]. Then,

 a= a4)= o1 + 1 jg-1 Q _))) (2)

 defines an n-vector which minimizes (1) given C& (.), and satisfies lToc= 1. The theoretical
 kriging prediction error in terms of minimum MSE, for the (theoretical) kriging predictor

 2(xp), using the weights in (2), is

 = () = Var[.Y(xp) - Z(xp)] = 2 _ wT Q-l3 + (lTQl - 1)2

 Note that (2) and (3) depend uniquely on the covariance structure. In this paper we will

 consider prediction intervals for Z(xp) under two types of asymptotics; infill asymptotics, where
 samples are taken from a fixed bounded region and the sampling locations become

 increasingly dense, and increasing domain asymptotics, where the distance between neigh-

 bouring sampling locations remains bounded from below and the domain from which

 sampling takes place necessarily increases.

 3. Unconditional prediction intervals

 Let FD(z,) = 1 - y, where 1D denotes the standard normal distribution function. If the covari-
 ance structure is known, it follows that

 Iy M = (xp) ? zy v,

 is an exact 1 - 2y prediction interval for Z(xp). Hence, we have
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 P~ [Z(xp) C I'()] = 1-2y.

 Note that the probability is over the joint distribution of (Z(xp), Z), and that the interval I,()
 does not depend on p. The coverage is exactly 1 - 2y only if constructed using the correct

 underlying covariance structure. In practice, this covariance structure will be unknown and is

 estimated from the data. We will study how the coverage of the prediction interval is affected

 when the true covariance parameters are substituted by estimates, so called plugin prediction

 intervals. We will also study the effect of bootstrap calibration of coverage properties of plugin

 intervals.

 3.1. Plugin prediction intervals

 When 4 is unknown, the bootstrap substitution principle replaces 4 by an estimator 8,n cor-
 responding to estimating the covariance function C~ (t) by C<: (t). The plugin prediction interval

 of nominal coverage 1 - 2y is Iy((,). Write

 Irn (^y, ) PX [Z(xp) e Iy (n )] Iv

 for the true coverage, under 4, of the prediction interval Iy This is not in general equal to
 the nominal coverage 1 - 2y. The probability ir, (y, ,) does not depend on p if (n is a location
 invariant estimator, since

 P [Z(xp) E = PIy i Z(x]) - p-a (E- 1)I <Z7Ip1
 Pj[lZ(Xp) - &TZI ?z7i| = 0].

 Here, and in the sequel a - denotes when the parameters 4 have been replaced by cn in any
 function. In this paper we will focus on Maximum Likelihood (ML) estimators, which for a

 Gaussian process makes Xn location invariant.

 3.2. Bootstrap calibrated prediction intervals

 Ideally, we want to recalibrate the plugin prediction interval I~(n) by seeking a y such that

 r(n, 4) = Pj [Z(xp) e I = 1- 2y.

 We would hence use the plugin prediction interval of nominal coverage 1 - 27. Since y is

 unknown we construct a bootstrap estimator. Because 7rn (y, ) is monotonically decreasing
 and continuous in y (see the proof of Lemma 1), we define - (., d) to be the inverse of it,2X, ,)

 with respect to y. We estimate j by 7n-1 (1 - 2y, n), where

 7rn (Y, dn) = Pgan [Z* (xp) E Iv (n)v

 is a bootstrap estimator of t1n(y, ). The bootstrap sample Z*(xp),Z*(x1),...,Z*(xn) is a
 realization of a Gaussian process with covariance parameters E,n = cn (Z) and mean zero.
 Furthermore, Xn = Xn (Z*) denotes the parameter estimator as constructed from

 = (Z* (Xi),., Z* (xn))T. The bootstrap calibrated prediction interval is I, l(' 20,,qY)(fn)
 Monte Carlo simulation can be used to approximate the function 7,n((y, n) to arbitrary
 accuracy. In practice, we use a finite number, B, say, of bootstrap samples, to approximate

 7tn(y, M) for a set of values of y close to the nominal desired coverage, and approximate the
 bootstrap estimator y by simple quadratic interpolation.
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 4. Conditional prediction intervals

 A conditional prediction interval is constructed in such a way that the coverage probability,

 computed conditional on the observed values, corresponds to the desired coverage 1 - 2y.

 Therefore, it will in general not be equivalent to an unconditional prediction interval, which is

 formed to have coverage 1 - 2y without holding the observed values fixed. In this section we

 will consider conditional prediction intervals for Z(xp) given Z. The distribution of Z(xp) given
 Z is Gaussian with mean value

 n = E [Z(xp)IZ] = p + aTn-1E,

 where E = Z - p1, and variance

 t2= Var[Z(xp)IZ, <] = U-2 _TQl-I.

 A conditional prediction interval for Z(xp) given Z with true coverage 1 - 2y is given by

 (4:: = '1 +:z,,.

 The corresponding conditional plugin prediction interval with nominal coverage 1 - 2y is

 Iy?(~4. Inserting the ML estimators cn and A = 1TQ-1111TQ-11 gives us IZ(7i) = aT; ?zyi.
 The true coverage of Iyc(Q',) given Z is

 P,[Z(xp) E 4n )IZ] = (A5 + zyBc) - D(A -zyBncB), (4)

 where An satisfies

 *)An (0 = ((j)TQ-l - CTK- 1)E +(1 (1 _TQlI 1)#E (5)

 with PiE = A-,u = lT1Q E/lT 1, and

 BC = Bc = T(4n)/T(4) (6)

 The coverage of the plugin prediction interval Iy(c,) that was proposed in Section 3.1, given
 1, is

 Pt [Z(xp) E Iy(,n)IZ] = FD(An +zyBn) - D(An -zyBn),) (7)

 where

 Bn = Bn (M) = V(Qn )/T(Q)* (8)

 5. Coverage properties

 In order to say something about the (asymptotic) coverage of the different plugin prediction

 intervals we need to know some properties of the parameter estimators. Contiguity is one

 such property, which can be defined as follows (for more details see e.g. Roussas, 1972). For

 every n, let (Xn, -4n) be a measurable space and let {Qn }n>, and {Qn }n> be two sequences
 of probability measures on {(.Tn,,S)}1n, .1 Then the sequence {Qnln>l is said to be conti-
 guous with respect to {QI},,>l if for every Dn e s, QnI(D>) -+ 0 implies that Qt"(D,) - 0, as
 n -* oc. Let E denote the parameter space of (, and let M(4) denote the set of all sequences
 InIn >.- in E such that {Pn,,n}I>1 is contiguous with respect to {P,n}n,> 1. Here Pg,n denotes
 the joint distribution of Z given (, and similarly Pd.,n denotes the joint distribution of Z given
 (n. In both cases we assume that the mean of the process is zero. This implies no restriction
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 in the reasoning below as long as the estimators Xn are location invariant. We have from (7)
 that

 P<:n [Z(xp) E I7(4n)IZ] = G(y,An (n), Bn (n)), (9)

 where the function G is continuous in all its arguments and G(y, 0, 1) = 1 - 2y.

 Lemma 1

 Assume that

 An(4n) - 0 and Bn(Qn) -* 1 in PX,n-probability, (10)

 for some {I,nI} E M(4). Then

 P4n [Z(xp) E I (5n) I] - 1 -2y in PX,n-probability, (11)

 xn (Y, (n) = PEn[Z(xp) E IA(A)] -1-2 y as n - oc, (12)
 and

 1 (I - 2y, Xn) - y as n -* oc. (13)

 The above lemma, with Xn, ensures that both the unconditional and the conditional plugin

 prediction intervals for Z(xp) asymptotically give the correct coverage 1 - 2y. A similar
 property holds for the bootstrap calibrated plugin intervals. Let Ms(4) be some subset of M(,).

 Lemma 2

 Assume that (10) holds for all {I,n,} c Ms(c,), and that {En } c MsQ() a.s. Then for any
 4n I E Ms (4),

 P4n [Z(XP) E (Izl( -2yZg) (4n) I 1 -] 1- 2 in PX,n -probability, ( 14)
 and

 Pn [Z(xp) E 4I1r(1-2y,")(n)] 1- 2) as n -* oc. (15)

 Lemmas 1 and 2 also hold if Iy(,n) and Bn are replaced by IC(4n) and Bc, respectively.

 Remark 1. The condition {nl} C Ms(Q) a.s. in Lemma 2 can be relaxed to the following
 condition: For each subsequence {fnk} there is a subsequence {nk(l) } such that {f nk(l) } E Ms(4)

 a.s., which is equivalent to that {Pen,} is contiguous with respect to {P~,n} a.s. for that sub-
 sequence. This is useful if we know how the estimator Qn behaves in probability (see Section 7).

 5.1. Convergence rates

 The convergence rate of the bootstrap calibrated prediction intervals turns out to be faster

 than for the plugin prediction intervals under some additional assumptions. The following

 lemmas will summarize these properties. First we state two important assumptions.

 (Al) Suppose that there are functions {a.1(M)} such that

 ? Board of the Foundation of the Scandinavian Journal of Statistics 2003.
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 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Ee[An(4)] = all (,)/n + o(n-1),

 Ee [Bn()- 1] = al2A4)/n + o(n-1),

 EX [(Bn -1)2] = a22(4)/n + o(n-1).

 (A2) Assume that the sequences {nA2(g)} and {n(Bg(4) - 1)2} are uniformly integrable.

 Lemma 3

 Suppose that (Al) and (A2) hold. Then, under the assumptions of Lemma 2,

 7rn(Qy,) = 1-2y+b(y, )/n+o(n-1), (16)
 where

 b(y, zy) = z((z,)[2al2( )-all () -I a22Q4)],

 and (p(*) is the density of a standard normal distribution. Moreover,

 Rn(Y 8,) ='-'1(- 2y, )y -b(y, 01)2n = o(n-1). (7

 This lemma implies that the (unconditional) plugin prediction interval I(4n) typically has

 coverage 1 - 2y + O(n-').

 Lemma 4

 Suppose that OG(y,An, Bn)/lay and b(y, () are bounded. If

 E [nRn(Y, X)] n O, and c, = bQ(y, cn) - b()y 0, as n-+ oo, (18)

 then, under the assumptions of Lemma 3,

 (n -l(I -2y, I),) = 1 -2y+o(n').

 Remark 2. Lemmas 3 and 4 hold even if the functions {ajj(4)} depend on n, when the
 functions are uniformly bounded with respect to n.

 Here, we conclude that the (unconditional) bootstrap calibrated prediction interval

 I (l-2y,) ( n) has coverage 1 - 2y + o(n-1), and thus a faster convergence rate than the
 plugin prediction interval.

 6. Universal kriging

 Suppose that the mean of the process {Z(x),x E R d} changes with x in a way such that

 Z(x) = [(x) + 6(x),

 where

 q

 8f(X) = E (x)I
 j=l

 and e(x) is a mean zero Gaussian stationary process with covariance parameters (. Here fj(x),
 i = 1,. .. . . q, are known functions of the coordinates, and ,B = (IBl .... 8_)T are unknown
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 coefficients. Suppose that we have observed the process at n locations, giving us the observed

 values Z = Xf3 + E, whereX = {f1(xi)} is an n x q matrix and E = (E(xI), . . ., e(xn))T. We want

 to predict the value of the process at a new location xp, corresponding to Z(xp) = f3Tfp + c(xp),
 where fp = f1(xe),... ,q(xp) )T. Assuming that the covariance structure is known, the
 universal kriging predictor corresponds to the best linear unbiased predictor of Z(xp), given Z,
 minimizing (1). It is given by Yu(xp) = axZ, where

 au= Q1 [ + X(XTQ-X)-1 (f _XTQW-10)].

 The unbiasedness of Yu(xp) implies that acXul = P.Tfp. The MSE is

 V2 = E[(Yu(xp) -Z(Xp))2] = C2 _ -jn-10)

 + (f -XTnilw)T(XT -IX)-I (f _ XT-Ir). (19)

 Hence, an exact 1 - 2y (unconditional) prediction interval for Z(xp) is

 T= ? ZyVu, (20)

 and the corresponding plugin prediction interval I7 with coverage
 frn(Qy, () = PE[Z(xp) E Iy( n)] We further have that

 = E,[Z(xp))I Z] = f3TfP + COTK-1E

 and

 Var[Z(xp)IZ, U] = z2(2) = - _)TQ-1

 From this we can construct an exact 1 - 2y prediction interval conditional on Z as

 IyQ() = 4 +zjr, assuming that 4 and /3 are known. The corresponding conditional plugin

 prediction interval with nominal coverage 1 - 2y is IC Inserting the ML estimators t>n and
 1 (XTQ -X)-'XT!b-;Z gives us

 IC ()=&TZ ?Z i. yC ( n) = u 7

 The true coverage of Iyc(:,,) given Z corresponds to (4) with Bc(4) = TQ(,n)/T(Q) and A,(n)
 satisfying

 T(4)A,(4)= (pT!TQ-I _wTQ-I)E + (fT- _6TI-YX)ftE, (21)

 where IE = f - / - (XTf2-lX)-lXTQ-l E. The coverage of the plugin prediction interval of
 (20), given Z, equals (7), with A, satisfying (21) and B, = vu(4T)/z(4). The ML estimators (,n
 are location invariant, which implies that the coverage probabilities of all the plugin prediction

 intervals are the same whether or not ,B = 0. For example, using the fact that &aX/3 P,Tfp,

 P4 [Z(xp) E I7 (4n) I Z] =i P[|Z(Xp) _fTf _-?cT (Z;_X4)| I-<Zy|, ,B]'

 = Pj[IZ(Xp) - &TZI ?ZyVuqZ, / = o].

 Hence, Lemmas 1-4 hold for universal kriging situations as well, with the corresponding

 changes of An and Bn-

 7. Examples

 In this section, two examples with exponentially decaying covariance functions are discussed.

 Both infill and increasing domain asymptotics are considered. We will show that the plugin
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 and the bootstrap calibrated prediction intervals have the correct coverage asymptotically for

 these examples.

 7.1. A one-dimensional example

 Consider a stationary Gaussian process, {Z(x) E RO}, on the real line with expected value ,u and

 covariance function

 C (xi - xj) = Cov[Z(xi), Z(xj)] = a2 e-IX XJIx , x 2,0 > 0, (22)

 with 4 = (a2, 0)T. Suppose that the process is observed at locations xi = i/an, i = 1,. . , n. If
 an = 0(1) it corresponds to increasing domain asymptotics and if an = 0(n) it corresponds to
 infill asymptotics. We will consider these two cases separately, demanding that there are

 constants 0 < K1 ?K2 < oo such that K1 San <K2n. Let XO = -o0,xn+ = oc, and define
 k = k(n) to be an integer satisfying Xk <Xp <Xk+1, where xp is the location where we want to
 predict the process. This gives us information about whether or not the point of prediction is

 an interior point, in between the observed locations. The coverage of the prediction intervals

 depends on several items. From Lemma 1 in Ying (1993) and the notation Cn e-O(Xp-Xk)
 dn = e-O(xk+I-xp), and E = (ci, ... I, En)T' where Ei = Z(xi) - p, it follows that

 1TQlW = (cn + dn)/(l + e-/an), (23)

 ETQ-1 EkCn(l - dn2) + Ek+ldn(I -cn) (24)

 U2(l -C2)(l _-d2) (5
 T2 (n) -e2/ (25)

 and

 21TQIE - n(l -e eOa;)e + e-0/an(i ? e) (26)
 1 ?e-Olan

 where e = E7 ci/n. Let E0 be a compact region in 1R+ (positive orthant) that contains the
 true parameters 4 = (a2 0)T as an interior point.

 7.1.1. Infill asymptotics

 For a mean zero Gaussian process, Putter & Young (2001) showed that if

 {n = (2n on)T} e Ms(4), where

 MS( )= If n E E0} 0,n - 6 = 0(1) and n-n 02 n = -

 then {P4n,,} is contiguous with respect to {P<,n} under infill asymptotics. Furthermore, Ying
 (1991) showed that the ML estimators cn E 6H7o are not consistent estimators of 4 but that
 n20,, a20 a.s. and &nO,, - a20 - 0_(n-'2). Hence, for each subsequence of {tn }, there is a
 subsequence that belongs to MsQ() a.s. Assume that xp is an interior point, which implies that
 Xk+l - Xk = 0(n-1). By (25) and Taylor expansions, we then have

 T2() = 2g20(xp- Xk)(Xk+l -xp)an[1 + 0(n-2)] = 0(n-1). (27)

 Hence, Bc(Qn) = T(4T)/z(,n) -* 1 a.s. if {n,} e Ms (). Let us now consider An(4n) and let
 On = _(J,n) and Qn = Q(,n). From (24) and Taylor expansions, we conclude that
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 (COTQ~-1 _ w)Tg-Y)E = Eko(n') + Ek+lo(n ). (28)

 Equation (26), with E = 1, implies that &2lTf-1 1 > 1, and further that

 P1E = (El + En)O(l) + ?O(1) (29)

 From (23), we conclude that 1 _ CiTQ-l11 = O(n-2). This, together with (27)-(29) implies that

 An(4n) = o(n- 1/2) + Ek+lo(n- 1/2) + (,E + En)O(n 3/2) + -O(n 3/2), (30)

 when { n} E Ms(,). We thus conclude that An (n) -> 0 in Pq,n-probability, since the variance of
 e is bounded. Furthermore, (1 -_iTQ-ll)2/lTQ-l1 = O(n-4), which from (3) implies that

 Bn(4n) = V(QX)/T(4n) -+1 a.s.

 All the above ensures that both the conditional and the unconditional prediction intervals,

 I7C(tn) and I^ (4) as well as their bootstrap calibrated versions, have the correct coverage
 asymptotically. A similar reasoning shows that the same holds if xp is not an interior point.

 Remark 3. In order to understand the convergence rates of the plugin and bootstrap cal-

 ibrated prediction intervals, we need to study the conditions of Lemma 4. For this example,

 the derivative

 6G(T An, BC)16 = -BC[(p(An +Z7BC) + p(A, -zyBc)]/p(z,),

 is bounded, since Bc is bounded. Conditions (Al) and (A2) are also verifiable for An: From

 (30) we have that E~[A2] = o(n-1), which implies that all(Q) = 0. Moreover, since {Ei} is
 Gaussian with finite variance, (30) implies that {nA2} is uniformly integrable. Turning our

 attention to Bc, we have that

 (BC)2 _1 - T(n) _ 2() - (&2n - 2) +) 2

 It is possible to verify that the bias and MSE of &2nfn is of order O(n-1), and that
 n((Bc)2_- 1)2} is uniformly integrable (see Sjostedt-de Luna, 2002). More specifically,

 a22(4) = 2a402, and

 a2l (iQ n) = 2 (E [2&O22 _ b242] _ U202) + 2a2 Z EJLEOS(6i ? i) )-2

 which implies that b(y, d) is bounded. However, since (&2, On) are not consistent estimators of

 (a2, 0) (cf. Ying, 1991) the rest of the assumptions in Lemma 4 are difficult to verify.

 7.1.2. Increasing domain asymptotics

 For increasing domain asymptotics the distance between neighbouring observations is

 bounded from below such that for some ( > 0 it always holds that lxi - xj1 I 5 for any two
 locations. Let

 Ms( )= c{ n E o0} n- - 0= O(n-1"2) and on0-on 20 =

 Putter & Young (2001) showed that {PE,nj} is contiguous with respect to {P<,n} if
 {n} E Ms(E ), for ,u = 0. The ML estimators are asymptotically normally distributed, and
 such that 8n - , = 0_(n-1'2) and i - = Op(n-1'2), when xi = i/an, and an = 0(1). This
 follows by checking the conditions of Theorem 3 given by Mardia & Marshall (1984).

 Therefore, /in(&2On _- 20) is also asymptotically normally distributed. Hence, for every
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 subsequence of {8,,,}, there is another subsequence that belongs to Ms(4) a.s. Assume that xp is
 an interior point such that xk+I - Xk = 0(1). It follows from (24) that

 j- Q Qn )E = ek[h(n, an,xp-Xk,xk+ -xp) -h(Ofn an, xp-Xk,Xk+1 -xp)]

 + Ek+ I [h(fJn an) vxk+ 1-Xp, Xp-Xk) -h (On , an, xk+I - Xp,-Xk)]k) (31)

 where h(.) represents the continuous function

 h(0, a s t)- e-os(l - e ) I,a,s,t - 1-21

 Note that (an,xk+? - Xp,Xp - Xk) are bounded, and that (Ek+1, Ek) = Op(1). This implies that
 (31) converges in probability to zero if { ,,} E Ms(4), since a continuous function always is

 uniformly continuous on a compact set. A similar argument shows that

 T(4,) - T(4n) O_' as n -- oo,

 if {I,n} E Ms(4). Knowing that P1E = Op(n-1/2), it follows from (23), that

 (1-_6TQ1- 1)piE 0 O as n - oo.

 Because 0 < Tn(4n) = 0(1), together with the above, we have that Bc(Q,) = Tn( n)tn(-n 1
 and An(4n) -+ 0 in PX,n-probability for {,,} E Ms(4). It follows from (26), with E = 1, that
 &2 1 TQ-l ? I + n(I - e-0b)/2, and hence,

 (lTQ-li - 1)2/lT 1 -* 0 as n -* oo. (32)

 Thus, Bn ( V) = v()/(4n) converges to 1 in Pd,n-probability. Therefore, (1 )-(l 5) hold for
 I (cn) as well as for I;(4). Also in this case similar reasoning shows that the plugin prediction
 intervals and the bootstrap calibrated prediction intervals have asymptotically correct

 coverage if xp is not an interior point.

 7.2. A two-dimensional example

 Consider a stationary Gaussian process on Rt2, {Z(x),xERD2}, with mean zero and covariance
 function

 C (t) = Cov[Z(x+t),Z(x)] = a2 e-iltlI-01t2l, a2,O2 > 0, (33)

 where ( = (o, O,)T, t = (tl, t2)T, and t,x E lR2. Suppose that the process is observed on a
 lattice, at locations Xik = (Ui, Vk)T i = 1X.. . , m, k = 1 ... , n. This gives us the nm observation

 vector Z = Z,m = [Z4,.. .,Z]T, where ZT = [Zil,.. ,Zin] and Zik = Z(U, Vk). Without loss of
 generality, both {ui} and {Vk} are arranged in ascending order. The design need not be nested,

 i.e. it is not assumed that Znm C Z,4m', where n < n' and m <m'. The coverage of the plugin
 (bootstrap calibrated) prediction intervals of the ordinary kriging predictor at an interior

 point xpp = (up, vp) will be studied under infill asymptotics such that

 max{A = u- ui} = 0(m-1), max{4k = Vk-Vk-1} =0(n1),
 i ~~~~~~~~~~~k

 and n/m -* p < oo, as n, m -* oo. Define s = s(m) and t = t(n) to be integer values satisfying
 us < UP < u,+1, and vt < vp < vt+l. The covariance matrix of ; is

 Q1 = Cov[Z, Z] = a2A (A) ( B(0),

 where A(i) = {e-Ilui-ujl}l<ij<m, B(O) = {e-01vk-vII}l(kl.n and 0 denotes the Kronecker
 product. We further have that
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 w) = Cov[Z, Z(xpp)] = a(2() 0 b(0),

 where a(i.) - {eAIui-I } 1 i mj and b(I) = {CO_Vk-)PI } 1 Sk n . Using the notation am -
 bm = e`(us+L-up), Cn = e-0(vP-v,), and d_ - e-O(v+ -vp)), from Lemma 1 in Ying (1993) we have that

 _T- [am (l - b2) ZT + bm (l -a2 )ZT+ ]B(0) I1b(0)
 1 - e-2NA +1

 ( m ZT - e-,AjzT) (zTT? 11ezT B(O)'11, (35)

 1TQ-Irl = (1C + dn)(am + bmi) (36)
 (1 ?e0-?-1 ? e-~A,+)

 and

 T -I 2 (a2 (I -b2 ) + bm( am)(n l _n _4+1 dn .
 (1 - e-NA,?) 1e-e20~t+1 37

 Let Ho be a compact set in Rl that contains the true parameters 4 as an interior point. The ML

 estimator of 4 over Ho is location invariant, strongly consistent and asymptotically normally

 distributed such that (n, - ,) = Op(n-112) (see Ying, 1993). Moreover, van der Vaart (1996)
 showed the Local Asymptotic Normality (LAN) property for this model which implies that

 {PE,,n } is contiguous with respect to {P8,n} for all {In} E Ms( ) {{n IEo} * - ) =
 O(n-1/2)} (see Bickel et al. 1993, pp. 16-17). Hence, for each subsequence of {n}n there is
 another subsequence that belongs to Ms(4) a.s. We have by Taylor expansions of (34), noting
 the close relationship between ZTB(0)-1b(0) and (24), that

 ZT [Q 1 co-Qn 1 Cn] = ZstO(n 1) + Zs,t+l O(n-') + Zs+l,tO(n- 1) + Zs+I,t+l O(n 1').

 By inserting Z = 1, in (35) and comparing with (29) we conclude that &2IlTQ-1 1 > 1. In order

 to confirm that i = Op(l) it is therefore sufficient to show that ZfTB(0n)' 1 = Op(1), which
 then by similar reasoning implies that &2/7T1-1 1 = Op(1). By Lemma 1 in Ying (1993) we have

 ZTB(OO ()1 - Zil + j (Z - =k Zie + 2Ie(Zk - e kZk_ )
 k=2 + e-&kn4~ +2 Z(k -eOkZ

 n 0 bn CknC
 + Z E(eok - e0o k)Zk-1 +- (Zik - e- Zi,kZ 1)O(CK)j
 2k=2 2k=2

 FIach of the three sums above has bounded variance, and thus ZTB(0>n)1 = Op (1). Further,
 Taylor expansions of (36) and (37) yield, respectively, that 1- _Tj-ljo = 0(n-2), and

 T2 a 2)f (As+) ? &2Ogt~+i) + 0(n 2) 0n1,(8
 T) = (1 - AAs+l + 0(n-2))(1 - 0t + 0(n_2)) - O(n ) (38)

 where

 f(As+I) = [As+- (u-u)2- (U?i- U)2]/As+l = 0(nW),

 and

 g((t+l) = [t+ -(VP - Vt) - (Vt+? - Vp)2]/&t+? = 0(nW).

 All this implies that An(4n) = 0(n-1/2) in Pq,n-probability for all {Rn} E Ms(4). We further
 have from (38) and the consistency of L, that B5C(L5) -* 1 in P ,n-probability if L C Msc(U
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 Also, from the above, (32) divided by r(W) tends to zero a.s. at the rate O(n-71/2) which implies
 that Bn (p,) -+ 1 in Px,0-probability. Thus, the correct asymptotic coverage for plugin and

 bootstrap calibrated intervals for IC(cQn) as well as I~(4n) is verified.

 8. Numerical illustrations

 In this section, we provide three numerical illustrations of the coverage properties of plugin

 and bootstrap calibrated prediction intervals of nominal 90 per cent coverage, for a stationary

 mean zero Gaussian process. In each case the coverages were estimated by Monte Carlo

 simulation, for a range of sample sizes n. Parameters were estimated by maximum likelihood,

 in each case the mean of the process being treated as a nuisance parameter and estimated

 together with the covariance function parameters. Bootstrap calibration was carried out by

 estimating coverages at three nominal coverage levels, 0.90, 0.95 and 0.99, with the recali-

 brated level estimated to yield the nominal desired coverage 0.90 being obtained by simple

 quadratic interpolation.

 Our first example, illustrated graphically in Fig. 1, concerns the one-dimensional example

 considered in Section 7.1. The covariance function (22) was specified, with parameter values

 r2 = 0 = 1. The process was observed at sampling locations xi = i/an, i = 1, . . ., n, for a range

 of sample sizes n. An increasing domain asymptotic regime was specified by taking an = 1,
 with the process being predicted at 0. Results are shown in Fig. 1 (a). The reduction of coverage

 error with increasing sample size n, as well as the benefits of bootstrap calibration, are evident.

 An infill asymptotic regime was specified by taking a, = n, with the process now being pre-
 dicted at /VX. Results for this regime are shown in Fig. l(b). The plugin interval is seen to
 yield low coverage error for small sample sizes n, and the benefits of calibration are, contrary

 to theoretical expectation, not realised for this particular regime. In both the increasing do-

 main and infill cases, coverage properties of the two prediction intervals were simulated from

 10,000 Monte Carlo replications, with B = 500 bootstrap samples being drawn for each

 bootstrap calibration.

 Our second example concerns a two-dimensional stationary process of mean zero, and with

 covariance function of the form (33), and true parameter values &2 = A = 0 = 1. The process

 6S -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3

 o . . .......- o

 6 ~~~~~~~~~~~~~~~~~~~~ 6 ~~~~~~~~~~~~~.....Plugin
 ---- Bootstrap calibrated

 0 Plugin
 --;- Bootstrap calibrated

 o, 0

 5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 20

 n n

 (a) (b)

 Fig. 1. Empirical coverage, as a function of sample size n, of 90 per cent equal-tailed prediction intervals
 obtained for the one-dimensional example in Section 8, under: (a) increasing domain asymptotics; and
 (b) infill asymptotics.
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 was observed at a regular lattice of sampling locations Xik = [(i - 1/n - 1), (k - 1/n - 1)],

 i = I II. , n; k = 1, . . , n, the effects of infill asymptotics being studied by increasing n, and
 the process was predicted at (1 /V2, 1/v/2). Coverage figures for this case were approximated
 from 2000 Monte Carlo replications at each value of n, with B = 200 bootstrap samples being

 drawn for each bootstrap calibration. Results are presented in Fig. 2. Again, the effectiveness

 of bootstrap calibration in eliminating coverage error is clear.

 Our final example concerns a two-dimensional stationary process of mean zero, and with

 isotropic covariance function

 C(t) = Cov[Z(x + t), Z(X)] = a2 e-OlltI,

 where t = (tl, t2)T, with x, t E IR2, and Itli denotes the Euclidean length of t. In the simulations
 we specified a2 = 0 = 1. The process was observed at random sampling locations

 xi= bn Ui, i = 1, . . , n, where Ui, . . ., Un are independent, identically distributed on the unit

 disc {t: lltHl < 1}, and predicted at (0,0). As the sample size n was varied, nested sampling
 locations were used, so that, for example, the sampling locations for n = 10 consisted of the

 sampling locations for n = 9, together with another uniformly random sampling location.

 An infill asymptotic regime was specified by taking bn = 1, while an increasing domain regime

 was specified by taking bn = n1/2. Coverage figures were approximated from 2000 Monte
 Carlo replications, with B = 200 bootstrap samples being used for the calibration. Results are

 presented in Figs 3(a) and (b) for the increasing domain and infill cases, respectively. Again the

 effectiveness of bootstrap calibration is striking.

 9. Final remarks

 In this paper, we have studied plugin and bootstrap calibrated prediction intervals for kriging

 predictors. It is shown that, in some generality, both intervals give the correct coverage

 asymptotically. We have focused our attention on Gaussian random fields. It would be of

 o( ___________._________________

 LO,,
 0

 6n - - - - - -- - - - - - - - - - - ------- Pugi
 cm
 CZ

 0

 co

 ...... Plugin
 ---- Bootstrap calibrated

 Co
 co l oi I I I I

 3x3 4x4 5x5 6x6 7x7

 Fig. 2. Empirical coverage, as a function of sample size n x n, of 90 per cent equal-tailed prediction
 intervals obtained for the two-dimensional lattice example in Section 8, under infill asymptotics.
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 (5! 0 ,, 0@':,.

 o P . ....... . P lugi
 ---- Bootstrap calibrated .... Plugin

 ---- Bootstrap calibrated

 5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15
 n n

 (a) (b)

 Fig. 3. Empirical coverage, as a function of sample size n, of 90 per cent equal-tailed prediction intervals

 obtained for the two-dimensional example with isotropic covariance function in Section 8, under:
 (a) increasing domain asymptotics; and (b) infill asymptotics.

 interest to study whether the same type of results remain valid if distributional assumptions

 are avoided and some form of non-parametric block bootstrap is used instead of the para-

 metric bootstrap in the calibration. However, we doubt that similar infill asymptotics results

 can be shown for the non-parametric bootstrap: infill sampling implies a long range de-

 pendence structure in the data, for which block bootstrap methods are known to perform

 poorly (cf. Lahiri, 1993).
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 Appendix

 Proof of Lemma 1. The contiguity and (10) imply that A,(4n) - 0 and Bn(4n) -1 in PXn,n-
 probability. Since G is continuous in all its arguments it follows that G(y, An, B)

 G(y, 0, 1) = - 2y in PXn,,-probability, that is, (11) holds. By dominated convergence it then
 follows that (12) holds. Further, note that 7rn(y, Qn) is continuous in y for each n, motivated by

 the following reasoning. We have that

 7tn (7Y ) = E, [G(y, AnXBn) = j H(y, n, XE)dE,
 n ga~~~~~~~~n

 where H(y, ,n, E) = G(y,A,(4n, E E))f(E, Xn) and f(E, En) is the normal density of E
 with mean zero and covariance parameters cn. Let {ym }m I be a sequence converging to y. The
 continuity of H in y guarantees that H(ym, ,ni E) -4 H(y, tn, E) as m oo pointwise for all
 E E R and En EE 6. Further O<H(ym, ,n E) Af(E, n) for all m andf(E, n) is integrable. Then,

 by dominated convergence, 7rn(Y., Xn) -*n gn (y, En) as m -* o0, and hence 7rn is continuous in y.
 Because G(y, An, B) is decreasing in y it follows that 7rn is decreasing in y as well. Since (12)

 holds for each y E (0, 0.5) it ensures that for any {I} e M(4), the equation

 [7(n (1 (I- 2y, dn), n) - 1 + 27r- (1 - 2y, Xn)]/2 = ir- (1 - 2y, Xn) -Y

 tends to zero as n -+ oo.

 Proof of Lemma 2. Suppose that (14) does not hold. Then there is a subsequence {n, (k)}
 and E, 6 > 0 such that

 P4[IG(-l(k)(' - 2y, Xn(k)),Anl(k)(4nl(k)),Bni(k)(4n (k))) - 1 + 2y1 > E] > 6, (39)

 for some sequence {In} E Ms (Q). By going to a further subsequence {n2(k)} C {ni (k)} we have

 from the assumptions that {P,n n} is contiguous with respect to {P,n } a.s. for that subsequence.
 This implies that lrIk)(l - 2y, Xn2(k)) -> y a.s., as k -> oo. From (10) and knowing that

 {'n,(k)} I Ms( ) it follows that An2(k) (4n(k)) -* 0 and Bn2(k) (4n2(k)) -+ 1 in PX,n-probability.
 Therefore, it is possible to find a further subsequence {n3(k)} C {n2(k)} such that

 An3(k) (4n(k)) and Bn3(k) (4n(k)) _A 1 as k -* oo. From this and the assumed properties of
 G it follows that

 G(n- 1 l- 2y, 4n3(k))IAn3(k) Bn(k)) - G(y, 0, 1) = 1 - 2y a.s.,
 which contradicts (39). Hence (14) holds. By dominated convergence it then follows that (15)

 holds.
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 Let G(iJ,k) (y, a, b) denote a partial derivative of G(y, a, b).

 Proof of Lemma 3. Taylor expansions of G over (An, B) around the point (0, 1), where

 An = An (4) and Bn = Bn() yield

 P [Z(xp) E Iy(4n) I E] = G(y, An Bn) = 1- 2 + 2zyp(zy) (Bn - 1)

 -zy 9(zy)AX -z3p(z )(Bn - 1)2 +An[G(0'2'0)(y,A7B5)

 -G(0'2'0)(y,O, 1)]/2 + An(Bn -l)GO? 1 )(y,A ,

 + (Bn- )2[G(0n02)(yA Bn) - G(002)(y,0, 1)]/2. (40)

 Here, An is between An and 0, and Bn is between Bn and 1. The second moments in (Al) and the
 continuity of the derivatives of G entail that

 nAn G(0'2'0)Qy, 0,1)] Gn 0 in P,5n -probability. (41)

 A uniform integrability argument, based on (A2) and the boundedness of G(0'2'0), shows that

 the convergence (41) also occurs in expectation. Similar arguments give

 E<[nAn(Bn - l)G(0'1")(y,An,Bn)] -O 0 as n -o

 and

 Eq [n (Bn - 1)2 [G(0'0'2) (y, An, Bn) - G(00'2) (y, O, 1)]] - 0 as n -* 00.

 Hence, conclusion (16) follows from the fact just established, by taking expectations over (40).

 By substituting i1 (1 - 2y, 4) for y into (16) and rearranging terms, we have

 -n1 (1-2y, 4) y + b(y, t)/2n + [b((-l (-2)-, 2 ), ,)-b(y, 4)]/2n + o(n-')

 = y + b(y, 4)/2n + o(n-1),

 since b(y, ,) is continuous in y, which implies (17).

 Proof of Lemma 4. Let K,(,y, ) = irn-1(1-2)y, ,) and Kno(y, )=y+b(y, )/2n. Then

 JCn (nr 1(I - 2y, 4n)n ) Eg [G(Kn (y, 4n), An,Bn)].

 By Taylor expansions around Kno(y, 4n), we have

 G(Kn (y, Xn),AAn,Bn) = G(Kno(y, Xn),AAn,Bn) + Rn (Y, n) )G(1"0)'(kn,,An,,Bn),

 where kn is between Kn (y, ,n) and Kno(y, 4n). Taking expectations and using (18) and the
 boundedness of G(1 0'0) we get

 E4 [G(Kn (y, 4n),An, Bn)| = Es [G(Kno (y, 4n), An, Bn)] + o(n-1).

 We further have that

 G(Kno(y, ,n),AAnAB) = G(Kno(y, 4),AAn,Bn) + bnG(1 ??)(k",An,Bn)12n,

 where kn is between KnO (y, 4n) and Kno(y, (). From (18) and the boundedness of b(y, () and
 G1A00), by dominated convergence, we have that

 Ex [bn G( 1 0,0) (k-n An,X Bn)] -* 0 as n -* oo. (42)
 Taking expectations and using (42) we get
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 ES [G(Kno(T, 5n),A5,Bn)] = E [G(Kno(T, 4),An5,Bn)] + o(n- ).

 Finally,

 Ed [G(Kno (7, 4),An iBn)] = E4 [G(Kn (y ), )An, Bn) - Rn (Y, 4)E4[G(1, ??)(kn, An, Bn)]

 = 1 -2y+o(n-1),

 by (17). Therefore, Irn(it-'(l - 2y, n), O) = 1 - 2y + o(n-1).
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